CN107843743A - 一种基于冲击加速度的强夯施工数据采集方法 - Google Patents

一种基于冲击加速度的强夯施工数据采集方法 Download PDF

Info

Publication number
CN107843743A
CN107843743A CN201710893735.5A CN201710893735A CN107843743A CN 107843743 A CN107843743 A CN 107843743A CN 201710893735 A CN201710893735 A CN 201710893735A CN 107843743 A CN107843743 A CN 107843743A
Authority
CN
China
Prior art keywords
mrow
hammer ram
msub
acceleration
ramming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710893735.5A
Other languages
English (en)
Other versions
CN107843743B (zh
Inventor
黄玮
梁永辉
秦振华
李伟
何立军
刘坤
苏志鹏
蒋松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Architectural Design And Research Institute Co Ltd Shanghai Underground Space And Engineering Design Research Institute
SHANGHAI SHENYUAN GEOTECHNICAL ENGINEERING Co Ltd
Original Assignee
East China Architectural Design And Research Institute Co Ltd Shanghai Underground Space And Engineering Design Research Institute
SHANGHAI SHENYUAN GEOTECHNICAL ENGINEERING Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Architectural Design And Research Institute Co Ltd Shanghai Underground Space And Engineering Design Research Institute, SHANGHAI SHENYUAN GEOTECHNICAL ENGINEERING Co Ltd filed Critical East China Architectural Design And Research Institute Co Ltd Shanghai Underground Space And Engineering Design Research Institute
Priority to CN201710893735.5A priority Critical patent/CN107843743B/zh
Publication of CN107843743A publication Critical patent/CN107843743A/zh
Application granted granted Critical
Publication of CN107843743B publication Critical patent/CN107843743B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/046Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/054Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/11Plc I-O input output
    • G05B2219/1105I-O

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Soil Sciences (AREA)
  • Automation & Control Theory (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明公开了一种基于冲击加速度的强夯施工数据采集方法,其特征在于所述强夯施工数据采集方法具体包括以下步骤:在夯锤上安装冲击加速度传感器,并将所述冲击加速度传感器与信号处理装置连接;在所述夯锤对土体进行夯击的过程中,所述信号处理装置根据所述冲击加速度传感器的测量结果测算所述夯锤的夯击能级、夯沉量以及所述夯锤在夯击时的倾斜度。本发明的优点是:通过信息化技术采集夯锤冲击地面时的加速度,通过对采集数据的传输、分析和处理,实现了强夯施工状态的实时监控,既节省了成本,又提高了工作效果。

Description

一种基于冲击加速度的强夯施工数据采集方法
技术领域
本发明属于土木工程领域,具体涉及一种基于冲击加速度的强夯施工数据采集方法。
背景技术
强夯法是一种经济高效的地基处理方法。上世纪60年代末由法国Menard技术公司首先创用,由于强夯技术效果显著、经济易行、施工便捷、施工周期短、适用范围广等优点,自1975年引进我国以来得到迅速推广和应用。
强夯法加固地基的原理是反复将夯锤从一定高处自由落下,将势能转化为动能,而后在土体中产生很大的冲击波和高应力,从而提高地基强度,降低压缩性,改善土体的性能。强夯法具有施工简单、效果好、费用低等优点,适用于多种地基土,尤其大面积地基处理的工程中应用强夯法的优势很显著。
在强夯施工过程中,记录的施工参数主要包括夯击击数、夯击能级和单击夯沉量。收锤标准通过夯击的击数和最后两击平均夯沉量控制。
目前,夯击的击数主要通过人工测读进行记录,每夯击一下便在总击数上增加一次夯击击数。中国实用新型专利(CN 201662703 U)公开了一种通过在强夯机上安装击数计量电子机构的方法,记录夯击的击数。但该机构安装复杂,稳定性较差。
常用的夯击能级的测量方法,通常是在夯击前对夯锤进行称重,获得夯锤的质量,将夯锤质量乘以提升高度再乘以重力加速度,即可得到夯锤夯击能级,单位为kN.m。
单击夯沉量的测量方法主要有三种,分别为:人工测量法、光电编码器测量法、激光测距法。
人工测量法测量夯沉量,是在每次夯击完成后,由一个工人将水准尺竖直放置于夯锤顶部,另一个工人通过水准仪测读水准尺上的读数,将本次读数与前一次读数之差作为该次夯击的夯沉量。该方法由于夯锤并非完全水平,夯锤顶部存在高度不等的覆土,以及工人放置水准尺的位置不同,均在对夯沉量的测量造成客观误差,同时,测量仪器的精度,以及测量人员读数的准确性也会造成人为误差。但该方法由于操作简便,在实际施工过程中得到广泛应用。
光电编码器测量法,是通过在起升卷筒的轴上安装光电编码器,并连接卷扬,通过编码器的输出实时监测下落绳长,计算单击夯沉量(如CN 103471541 B)。该方法具有一定的适用性,但设备安装较为复杂,且测量误差较大。
激光测距法或双目测距法,是采用激光测距传感器监测夯锤相对于激光传感器的距离,并对数据进行计算处理,从而获得单击夯沉量(如CN 102032896 B)。由于施工环境恶劣,空气中尘土较多,容易遮挡激光测量,同时夯锤顶部通常都会被尘土覆盖,可能造成测量误差,实际应用效果较差。
在强夯施工完成后,需要对场地进行地基处理效果的检测,常用采用平板载荷试验、动力触探试验和标准贯入度试验等原位测试方法。这些检测方法通过在场地内选取一定数量的点进行检测,因此具有一定的随机性,而且检测时间较长,对施工进度容易造成影响。
中国发明专利(CN 102943461 A)公开了一种利用瑞雷面波评价地基强夯加固效果的量化方法,该方法通过室内试验得到土体最大剪切波速,通过对比夯击前后土体的剪切波速,定量的评价强夯加固效果。该方法检测结果受瑞雷面波采集点与夯锤的距离影响较大,实际应用效果较差。
发明内容
本发明的目的是根据上述现有技术的不足之处,提供一种基于冲击加速度的强夯施工数据采集方法,该方法通过利用冲击加速度传感器测量夯锤的加速度从而准确地推算出夯锤的夯沉量等参数,解决了现有技术中存在的技术问题。
本发明目的实现由以下技术方案完成:
一种基于冲击加速度的强夯施工数据采集方法,所述强夯施工数据采集方法具体包括以下步骤:在夯锤上安装冲击加速度传感器,并将所述冲击加速度传感器与信号处理装置连接;在所述夯锤对土体进行夯击的过程中,所述信号处理装置根据所述冲击加速度传感器的测量结果测算所述夯锤的夯击能级、夯沉量以及所述夯锤在夯击时的倾斜度。
所述夯锤对土体进行夯击的过程中,所述信号处理装置持续对所述冲击加速度传感器的检测结果进行采样,得到冲击加速度的采样序列{ai}。
所述信号处理装置计算所述夯击能级采用的计算公式如下所示:
其中,W为所述夯锤的夯击能级,单位kN·m;m为所述夯锤的质量,单位kg;ai为第ti时刻采样的冲击加速度的绝对值,单位m·s-2;vi为第i次采样时间ti时刻所述夯锤的速度,单位m·s-1;Δt为第i次采样时间ti与第i-1次采样时间ti-1的差值,单位为s。
所述信号处理装置计算所述夯沉量采用的计算公式如下所示:
其中,S为所述夯锤的单击夯沉量,单位m;η为综合系数,与被夯击的土体的类型和夯击能级有关,通过试夯试验确定;vi为第i次采样时间ti时刻所述夯锤的速度,单位m·s-1;Δt为第i次采样时间ti与第i-1次采样时间ti-1的差值,单位为s。
所述夯锤的上表面上安装有四个所述冲击加速度传感器,四个所述冲击加速度传感器呈矩形排列。
所述夯锤对土体进行夯击的过程中,所述信号处理装置持续对四个所述冲击加速度传感器的检测结果进行采样,得到所述夯锤每次夯击时四个所述冲击加速度传感器检测到的最大峰值加速度aj(j=1~4),所述信号处理装置计算所述夯锤在夯击时的倾斜度采用的计算公式如下所示:
其中,β为所述夯锤在夯击时的倾斜度;amax为四个最大峰值加速度中的最大值,amin为四个最大峰值加速度中的最小值。
各所述冲击加速度传感器的安装位置与所述夯锤的边缘之间的距离大于10cm。
本发明的优点是:(1)通过信息化技术采集夯锤冲击地面时的加速度,通过对采集数据的传输、分析和处理,实现了强夯施工状态的实时监控,既节省了成本,又提高了工作效果;(2)采用加速度传感器测量冲击加速度,采用PLC逻辑控制器对数据进行分析处理,稳定可靠;(3)采用无线传输方式将数据采集仪采集到的加速度信号,传输至PLC逻辑控制器中,避免了传输数据线的布置;(4)结构简单,安装、拆卸简便,无需对原有机械设备进行改造,可用于各种强夯机,同时,不受外界施工环境影响,持续工作时间长,稳定性高。
附图说明
图1为本发明中逻辑控制器的结构框图;
图2为本发明中夯锤的侧视图;
图3为本发明中夯锤的俯视图。
具体实施方式
以下结合附图通过实施例对本发明的特征及其它相关特征作进一步详细说明,以便于同行业技术人员的理解:
如图1-3,图中标记1-14分别为:冲击加速度传感器1、数据采集仪2、逻辑控制器3、夯锤4、固定外壳5、减振防护泡沫6、中央处理器7、计数模块8、存储器9、显示器10、串口扩展电路11、WiFi通信模块12、供电单元13、吊轴14。
实施例:如图1至3所示,本实施例具体涉及一种基于冲击加速度的强夯施工数据采集方法,本方法主要通过在安装夯锤4上的冲击加速度传感器1采集夯锤4夯击过程中的加速度,并根据夯锤4的冲击加速度计算夯锤4的夯击能级、夯沉量以及夯击时的倾斜度;该方法具体包括以下步骤:
1)如图1至3所示,在夯锤4上安装冲击加速度传感器1,并将冲击加速度传感器1与信号处理装置连接;本实施例中信号处理装置包括数据采集仪2以及逻辑控制器3;在安装过程中,将冲击加速度传感器1以及数据采集仪2安装在夯锤4的上表面,将逻辑控制器3安装在强夯机的驾驶室内部;冲击加速度传感器1与数据采集仪2连接;数据采集仪2与逻辑控制器3之间通过无线网络连接。
如图2、3所示,本实施例中冲击加速度传感器1为压电式加速度传感器,传感器的量程大于±500g,工作温度范围-40~120℃;本实施例中冲击加速度传感器1的数目为四,四个冲击加速度传感器1在所述夯锤的上表面呈矩形排列;冲击加速度传感器1通过螺栓与所述夯锤4刚性连接,冲击加速度传感器1的安装位置与夯锤4的边缘之间的距离大于10cm;在冲击加速度传感器1顶端设置有信号传输线以便冲击加速度传感器1与数据采集仪2连接。
如图2、3所示,数据采集仪2的数据采集通道大于四,各冲击加速度传感器1分别与一个数据采集通道连接;数据采集仪2具有无线WiFi模块以及以太网接口,以便数据采集仪2与逻辑控制器3进行通信;数据采集仪2内部设置有可充电锂电池,电池的容量使得数据采集仪2的工作时长不小于8小时;夯锤4的上表面设置有用于容纳数据采集仪2的固定外壳5,固定外壳5的内壁与数据采集仪2之间的空隙填充有减振防护泡沫6;固定外壳5与减振防护泡沫6使得数据采集仪2可以在强振、高温等恶劣环境下长时间稳定的工作;数据采集仪2的安装位置与夯锤4的吊轴14之间的距离大于20cm,以防止夯锤4起吊和脱钩对数据采集仪2造成不良影响。
如图1所示,本实施例中,逻辑控制器3为PLC逻辑控制器;逻辑控制器3包括中央处理器7、计数模块8、存储器9、显示器10、串口扩展电路11、WiFi通信模块12和供电单元13。中央处理器7用于控制PLC逻辑控制器的运行,并对接收到的数据进行相关处理;计数模块8可以记录夯锤4的夯击击数;存储器9用于存储冲击加速度传感器1采集到的数据;显示器10可以为触屏也可以为非触屏,主要用于显示处理结果和施工人员进行相关操作;供电单元13为逻辑控制器3提供电源,保证PLC逻辑控制器正常工作;WiFi通信模块12与数据采集仪相适配,用于接收数据采集仪2发出的数据。
2)如图1、2所示,在工作过程中,强夯机重复地将夯锤4提升并将夯锤4脱钩释放,使得夯锤4自由落体下落,利用下落的动能对其下方的土体进行夯实加固;在夯锤4每次下落的过程中,冲击加速度传感器1持续地采集夯锤4的加速度数据;冲击加速度传感器1将采集到的信号通过传输线传送至数据采集仪2,数据采集仪2对冲击加速度传感器1的电压信号进行滤波处理和A/D转换,转换后的数据通过无线网络传输至逻辑控制器3;逻辑控制器3会根据接收到的加速度数据计算夯锤4的夯击能级、夯沉量以及夯锤倾斜度。
2.1)如图1、2所示,每次夯锤4下落并对土体进行夯击的过程中,信号处理装置的数据采集仪2持续对冲击加速度传感器1的检测结果进行采样,得到冲击加速度的采样序列{ai},并将冲击加速度的采样序列{ai}发送至信号处理装置的逻辑控制器3;逻辑控制器3可根据冲击加速度的采样序列{ai}以及采样间隔计算出夯锤4的速度采样序列{vi};本实施例中夯锤4上安装有四个冲击加速度传感器1,冲击加速度的采样序列{ai}可采用四个冲击加速度传感器1中任意一个传感器的测量结果。
如图1、2所示,信号处理装置的逻辑控制器3可根据冲击加速度的采样序列{ai}以及速度采样序列{vi}计算夯锤4的夯击能级,计算夯击能级采用的计算公式如下所示:
其中,W为夯锤4的夯击能级,单位kN·m;m为夯锤4的质量,单位kg;ai为第ti时刻采样的冲击加速度的绝对值,单位m·s-2;vi为第i次采样时间ti时刻夯锤4的速度,单位m·s-1;Δt为第i次采样时间ti与第i-1次采样时间ti-1的差值,单位为s。
如图1、2所示,信号处理装置的逻辑控制器3可根据冲击加速度的采样序列{ai}以及速度采样序列{vi}计算夯锤4的夯沉量,计算夯沉量采用的计算公式如下所示:
其中,S为夯锤4的单击夯沉量,单位m;η为综合系数,与被夯击的土体的类型和夯击能级有关,通过试夯试验确定;vi为第i次采样时间ti时刻所述夯锤的速度,单位m·s-1;Δt为第i次采样时间ti与第i-1次采样时间ti-1的差值,单位为s。
2.2)如图1、2所示,每次夯锤4下落并对土体进行夯击的过程中,信号处理装置的数据采集仪2持续对四个冲击加速度传感器1的检测结果进行采样,得到夯锤4每次夯击时四个冲击加速度传感器1检测到的最大峰值加速度aj(j=1~4),信号处理装置计算夯锤4在夯击时的倾斜度采用的计算公式如下所示:
其中,β为夯锤4在夯击时的倾斜度;amax为四个最大峰值加速度中的最大值,amin为四个最大峰值加速度中的最小值。
本实施例的有益技术效果为:(1)通过信息化技术采集夯锤冲击地面时的加速度,通过对采集数据的传输、分析和处理,实现了强夯施工状态的实时监控,既节省了成本,又提高了工作效果;(2)采用加速度传感器测量冲击加速度,采用PLC逻辑控制器对数据进行分析处理,稳定可靠;(3)采用无线传输方式将数据采集仪采集到的加速度信号,传输至PLC逻辑控制器中,避免了传输数据线的布置;(4)结构简单,安装、拆卸简便,无需对原有机械设备进行改造,可用于各种强夯机,同时,不受外界施工环境影响,持续工作时间长,稳定性高。

Claims (7)

1.一种基于冲击加速度的强夯施工数据采集方法,其特征在于所述强夯施工数据采集方法具体包括以下步骤:在夯锤上安装冲击加速度传感器,并将所述冲击加速度传感器与信号处理装置连接;在所述夯锤对土体进行夯击的过程中,所述信号处理装置根据所述冲击加速度传感器的测量结果测算所述夯锤的夯击能级、夯沉量以及所述夯锤在夯击时的倾斜度。
2.根据权利要求1所述的一种基于冲击加速度的强夯施工数据采集方法,其特征在于所述夯锤对土体进行夯击的过程中,所述信号处理装置持续对所述冲击加速度传感器的检测结果进行采样,得到冲击加速度的采样序列{ai}。
3.根据权利要求2所述的一种基于冲击加速度的强夯施工数据采集方法,其特征在于所述信号处理装置计算所述夯击能级采用的计算公式如下所示:
<mrow> <mi>W</mi> <mo>=</mo> <mi>m</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>a</mi> <mi>i</mi> </msub> <mi>&amp;Delta;</mi> <mi>s</mi> <mo>=</mo> <mi>m</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>a</mi> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>i</mi> </msub> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow>
其中,W为所述夯锤的夯击能级,单位kN·m;m为所述夯锤的质量,单位kg;ai为第ti时刻采样的冲击加速度的绝对值,单位m·s-2;vi为第i次采样时间ti时刻所述夯锤的速度,单位m·s-1;Δt为第i次采样时间ti与第i-1次采样时间ti-1的差值,单位为s。
4.根据权利要求2所述的一种基于冲击加速度的强夯施工数据采集方法,其特征在于所述信号处理装置计算所述夯沉量采用的计算公式如下所示:
<mrow> <mi>S</mi> <mo>=</mo> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>n</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>i</mi> </msub> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
其中,S为所述夯锤的单击夯沉量,单位m;η为综合系数,与被夯击的土体的类型和夯击能级有关,通过试夯试验确定;vi为第i次采样时间ti时刻所述夯锤的速度,单位m·s-1;Δt为第i次采样时间ti与第i-1次采样时间ti-1的差值,单位为s。
5.根据权利要求1所述的一种基于冲击加速度的强夯施工数据采集方法,其特征在于所述夯锤的上表面上安装有四个所述冲击加速度传感器,四个所述冲击加速度传感器呈矩形排列。
6.根据权利要求5所述的一种基于冲击加速度的强夯施工数据采集方法,其特征在于所述夯锤对土体进行夯击的过程中,所述信号处理装置持续对四个所述冲击加速度传感器的检测结果进行采样,得到所述夯锤每次夯击时四个所述冲击加速度传感器检测到的最大峰值加速度aj(j=1~4),所述信号处理装置计算所述夯锤在夯击时的倾斜度采用的计算公式如下所示:
<mrow> <mi>&amp;beta;</mi> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>a</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>a</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mi>min</mi> </msub> </mrow> </mfrac> <mo>&amp;times;</mo> <mn>100</mn> <mi>%</mi> </mrow>
其中,β为所述夯锤在夯击时的倾斜度;amax为四个最大峰值加速度中的最大值,amin为四个最大峰值加速度中的最小值。
7.根据权利要求5所述的一种基于冲击加速度的强夯施工数据采集方法,其特征在于各所述冲击加速度传感器的安装位置与所述夯锤的边缘之间的距离大于10cm。
CN201710893735.5A 2017-09-27 2017-09-27 一种基于冲击加速度的强夯施工数据采集方法 Active CN107843743B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710893735.5A CN107843743B (zh) 2017-09-27 2017-09-27 一种基于冲击加速度的强夯施工数据采集方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710893735.5A CN107843743B (zh) 2017-09-27 2017-09-27 一种基于冲击加速度的强夯施工数据采集方法

Publications (2)

Publication Number Publication Date
CN107843743A true CN107843743A (zh) 2018-03-27
CN107843743B CN107843743B (zh) 2020-01-10

Family

ID=61661824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710893735.5A Active CN107843743B (zh) 2017-09-27 2017-09-27 一种基于冲击加速度的强夯施工数据采集方法

Country Status (1)

Country Link
CN (1) CN107843743B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109610413A (zh) * 2018-11-13 2019-04-12 天津大学 基于滞后相位角的坝料压实质量实时检测装置及方法
CN111898277A (zh) * 2020-08-06 2020-11-06 长沙理工大学 确定强夯过程夯沉量和最佳夯击次数的方法
CN115752339A (zh) * 2022-11-11 2023-03-07 广州市市政工程设计研究总院有限公司 一种水下凿岩贯入深度测定方法及凿岩锤

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04189913A (ja) * 1990-11-22 1992-07-08 Jdc Corp 動圧密工法の施工管理方法
JPH06317510A (ja) * 1993-05-06 1994-11-15 Oyo Corp 動的貫入試験方法及びそれに用いる計測装置
CN101736761A (zh) * 2009-12-18 2010-06-16 同济大学 强夯置换法室内模型试验装置
CN102644265A (zh) * 2012-02-15 2012-08-22 长安大学 一种夯锤及夯实路基的方法
CN103510502A (zh) * 2013-09-27 2014-01-15 同济大学 基于夯锤冲击加速度测量的强夯机施工实时监测方法与系统
CN104074181A (zh) * 2014-06-24 2014-10-01 中北大学 定义并计算夯沉比确定最优夯击数的方法
CN104075747A (zh) * 2014-06-24 2014-10-01 中北大学 定义并计算夯沉比评价夯锤转换效能的方法
CN205530202U (zh) * 2016-03-07 2016-08-31 中交第四航务工程局有限公司 水下重锤运动、夯击作用力和夯沉量的实时同步监测仪
CN106149670A (zh) * 2015-03-23 2016-11-23 徐工集团工程机械股份有限公司 夯实度传感器和强夯机以及夯实度检测方法
CN106284287A (zh) * 2016-10-08 2017-01-04 中石化上海工程有限公司 一种球形强夯锤

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04189913A (ja) * 1990-11-22 1992-07-08 Jdc Corp 動圧密工法の施工管理方法
JPH06317510A (ja) * 1993-05-06 1994-11-15 Oyo Corp 動的貫入試験方法及びそれに用いる計測装置
CN101736761A (zh) * 2009-12-18 2010-06-16 同济大学 强夯置换法室内模型试验装置
CN102644265A (zh) * 2012-02-15 2012-08-22 长安大学 一种夯锤及夯实路基的方法
CN103510502A (zh) * 2013-09-27 2014-01-15 同济大学 基于夯锤冲击加速度测量的强夯机施工实时监测方法与系统
CN104074181A (zh) * 2014-06-24 2014-10-01 中北大学 定义并计算夯沉比确定最优夯击数的方法
CN104075747A (zh) * 2014-06-24 2014-10-01 中北大学 定义并计算夯沉比评价夯锤转换效能的方法
CN106149670A (zh) * 2015-03-23 2016-11-23 徐工集团工程机械股份有限公司 夯实度传感器和强夯机以及夯实度检测方法
CN205530202U (zh) * 2016-03-07 2016-08-31 中交第四航务工程局有限公司 水下重锤运动、夯击作用力和夯沉量的实时同步监测仪
CN106284287A (zh) * 2016-10-08 2017-01-04 中石化上海工程有限公司 一种球形强夯锤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
水伟厚 等: ""10000kNm高能级强夯振动加速度实测分析"", 《工业建筑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109610413A (zh) * 2018-11-13 2019-04-12 天津大学 基于滞后相位角的坝料压实质量实时检测装置及方法
CN111898277A (zh) * 2020-08-06 2020-11-06 长沙理工大学 确定强夯过程夯沉量和最佳夯击次数的方法
CN115752339A (zh) * 2022-11-11 2023-03-07 广州市市政工程设计研究总院有限公司 一种水下凿岩贯入深度测定方法及凿岩锤

Also Published As

Publication number Publication date
CN107843743B (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
CN107843711B (zh) 一种基于冲击加速度的强夯施工效果检测方法
CN102279135B (zh) 锚杆拉拔力无损动力检测装置和方法
CN105973551B (zh) 钻孔动力学模拟测试系统
CN101446517A (zh) 一种输电线路高塔结构振动测试方法
CN202101909U (zh) 锚杆拉拔力无损动力检测装置
CN202688979U (zh) 在建基坑一体化监测系统
CN104074181B (zh) 定义并计算夯沉比确定最优夯击数的方法
CN103510503B (zh) 一种夯点土体加固状态振动实时监控方法
CN109339127A (zh) 高速液压夯夯实地基承载力实时确定方法及系统
CN101699296A (zh) 一种泥石流流速测量系统与测量方法及应用
CN1793898A (zh) 一种用于锚杆锚固系统的无损探伤检测方法
CN107843743A (zh) 一种基于冲击加速度的强夯施工数据采集方法
CN104677754B (zh) 一种材料旋转冲击响应特性测试系统
CN113847948A (zh) 强夯自动化监测与分析方法及数字化集成系统
CN109183861A (zh) 一种基于mems传感器的基坑智能监测方法及监测系统
CN106066289A (zh) 一种剪切波速动力触探测试装置
CN106774069B (zh) 一种基于三维激光扫描的土方填筑监控装置及方法
CN101701882B (zh) 塔式结构刚度的快速识别方法
CN104763000A (zh) 一种基桩完整性的检测方法
CN209619984U (zh) 铁路高陡岩质边坡微震监测系统
CN2677881Y (zh) 强夯作业参数自动测量记录分析装置
CN213874468U (zh) 一种强夯施工过程的参数自动监测装置
CN207337183U (zh) 一种基于冲击加速度的强夯施工数据采集与检测系统
CN106124148B (zh) 一种深孔传递函数测试系统及其测试方法
CN207794158U (zh) 一种基于震动响应的桩基检测设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant