CN107840519B - 一种叠氮化钠污水的处理方法及污水处理专用系统 - Google Patents

一种叠氮化钠污水的处理方法及污水处理专用系统 Download PDF

Info

Publication number
CN107840519B
CN107840519B CN201711339479.1A CN201711339479A CN107840519B CN 107840519 B CN107840519 B CN 107840519B CN 201711339479 A CN201711339479 A CN 201711339479A CN 107840519 B CN107840519 B CN 107840519B
Authority
CN
China
Prior art keywords
storage tank
wastewater
sodium azide
alkaline
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711339479.1A
Other languages
English (en)
Other versions
CN107840519A (zh
Inventor
冯维春
周倜
张晓谦
何海林
张雪元
秦瑞昌
刘广刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Ift Science & Technology Co ltd
Shandong Suyuan Green Chemical Research Institute
Original Assignee
Shandong Ift Science & Technology Co ltd
Shandong Suyuan Green Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Ift Science & Technology Co ltd, Shandong Suyuan Green Chemical Research Institute filed Critical Shandong Ift Science & Technology Co ltd
Priority to CN201711339479.1A priority Critical patent/CN107840519B/zh
Publication of CN107840519A publication Critical patent/CN107840519A/zh
Application granted granted Critical
Publication of CN107840519B publication Critical patent/CN107840519B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/343Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明公开了一种叠氮化钠污水的处理方法及污水处理专用系统,包括叠氮化钠污水的处理方法及污水处理专用系统,其特征在于所述采用氢氧化钙有效的解决了硫酸根去除,降低了因降温结晶产生的能耗的同时,硫酸钙的微溶特性,起到了缓冲的作用,将pH维持在一定的范围内,便于工艺的控制;次氯酸钠和高锰酸钾的协同作用,使在弱碱条件下实现了对叠氮化钠的去除,特别是生成的二氧化锰起到了催化剂的作用,加速了叠氮化钠分解成氮气的反应速度。

Description

一种叠氮化钠污水的处理方法及污水处理专用系统
技术领域
本发明属于化工污水处理技术领域,更具体地涉及一种叠氮化钠污水的处理方法及污水处理专用系统。
背景技术
叠氮化钠是一种医药的原料药物,能够用于降压药物的制备,但是叠氮化钠也是一种剧毒化学品,能够破坏机体的氧化还原过程,产生变性的血红蛋白,从而导致头闷头昏等症状,排放到环境中会对人体的中枢神经系统造成损坏。然而,在叠氮化钠生产过程中会产生两种废水,一种是含有30-40%硫酸钠的酸性废水,除此之外酸性废水中还含有少量的亚硝酸钠和硫酸,另一种是含有酒精的碱性废水,除此之外,碱性废水中还含有20-30%的氢氧化钠和5-10%的叠氮化钠及2-5%的水合肼。
利用常规的酸碱中和反应,将酸性废水和碱性废水混合后,会导致叠氮化钠的分解产生大量的有毒气体氮氢酸。
学术论文《叠氮化钠生产废水治理方法研究》公开了叠氮化钠污水的处理方法,充分研究了各种物质在酸性环境中对于叠氮化钠的分解反应,但是该论文以亚硝酸钠为氧化剂直接将酸性废水和碱性废水混合,由于混合液中含有大量的盐离子,pH很难控制,而且该研究使用的降温析出法将硫酸钠晶体析出,这种方法能耗极高,在实际的工业化生产中难以实现。
以常规手段将酸性废水利用氢氧化钙或氧化钙沉淀后,酸碱中和后pH维持在弱酸性或者碱性条件,以该论文阐述的方法无法实现叠氮化钠的去除,该论文中已经对于亚硝酸钠、次氯酸钠对于叠氮化钠的去除只有在酸性条件下具有明显的效果。
因此如何寻求一种能耗较低、叠氮化钠去除效率高且无二次污染物生成的叠氮化钠污水的处理方法迫在眉睫。
发明内容
为解决上述问题,克服现有技术的不足,本发明提供了一种反应条件温和、反应周期短及能耗较低的叠氮化钠污水的处理方法及专用设备,能够有效的解决能耗较高、叠氮化钠去除效率低且有二次污染物生成的问题。
本发明解决上述技术问题的具体技术方案为:叠氮化钠污水的处理方法,叠氮化钠污水包括碱性废水和酸性废水,其特征包括以下步骤:
Ⅰ向酸性废水中加入氢氧化钙充分搅拌并调pH至4-5,利用连续离心机离心,得到酸性废水滤饼和酸性废水滤液;
Ⅱ将碱性废水利用蒸馏塔进行蒸馏,压力为-0.09MPa,温度为78-82℃,得到碱性废水处理液和乙醇溶液;
Ⅲ将步骤Ⅱ得到的所述碱性废水处理液加入高锰酸钾,然后加入等质量的所述酸性废水滤液,搅拌,采用流加的方式加入酸性废水滤液,调节pH为7-8;
Ⅳ在反应步骤Ⅲ中流加重量份数为20-30%的次氯酸钠水溶液,搅拌,利用板式过滤器过滤,得到处理水和废渣。
进一步地,所述的次氯酸钠水溶液中,次氯酸钠与碱性废水处理液质量比为0.5-1:1000。
进一步地,所述的高锰酸钾加入重量与碱性废水处理液重量比为1-2:1000。
进一步地,一种叠氮化钠污水处理专用系统,包括储罐、处理装置和反应釜,其特征在于:所述储罐包括酸性废水储罐、碱性废水储罐、乙醇储罐、碱性废水处理液储罐、酸性废水滤液储罐和次氯酸钠水溶液储罐,所述处理装置包括连续离心机、蒸馏塔和板式过滤器,所述碱性废水储罐通过管道与蒸馏塔相连,所述蒸馏塔的顶部与乙醇储罐相连,蒸馏塔的底部与碱性废水处理液储罐相连,所述碱性废水处理液储罐通过管道与反应釜相连,所述酸性废水储罐通过管道与连续离心机相连,所述连续离心机设置有固相出口和液相出口,液相出口通过管道与酸性废水滤液储罐相连,所述酸性废水滤液储罐底部通过管道与反应釜相连,酸性废水滤液储罐一侧设置有微量进样器Ⅰ,所述次氯酸钠水溶液储罐一侧设置有微量进样器Ⅱ,微量进样器Ⅰ与微量进样器Ⅱ分别与反应釜相连,所述反应釜底部通过管道与板式过滤器相连,所述反应釜顶部通过管道设置有尾气处理装置,所述尾气处理装置内设置有亚硝酸钠和次氯酸钠水溶液。
进一步地,所述蒸馏塔设置成三层。
进一步地,所述酸性废水储罐和反应釜内均设置有搅拌装置,所述搅拌装置包括搅拌电机、搅拌杆和搅拌浆。
进一步地,所述反应釜顶部和尾气处理装置均设置有安全阀,尾气处理装置设置有排空阀。
本发明的有益效果是:采用氢氧化钙有效的解决了硫酸根去除,降低了因降温结晶产生的能耗的同时,硫酸钙的微溶特性,起到了缓冲的作用,将pH维持在一定的范围内,便于工艺的控制;次氯酸钠和高锰酸钾的协同作用,使在弱碱条件下实现了对叠氮化钠的去除,特别是生成的二氧化锰起到了催化剂的作用,加速了叠氮化钠分解成氮气的反应速度。
附图说明:
附图1是本发明污水处理专用系统结构示意图;
附图中:1. 板式过滤器、2. 尾气处理装置、3. 安全阀、4. 排空阀、5. 次氯酸钠水溶液储罐、6. 微量进样器Ⅱ、7. 微量进样器Ⅰ、8. 酸性废水滤液储罐、9. 连续离心机、10. 酸性废水储罐、11. 乙醇储罐、12. 碱性废水储罐、13. 蒸馏塔、14. 碱性废水处理液储罐、15. 反应釜。
具体实施方式:
在本发明的描述中具体细节仅仅是为了能够充分理解本发明的实施例,但是作为本领域的技术人员应该知道本发明的实施并不限于这些细节。另外,公知的结构和功能没有被详细的描述或者展示,以避免模糊了本发明实施例的要点。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
本发明的具体实施方式:所述叠氮化钠污水处理专用系统,包括储罐、处理装置和反应釜15,其特征在于:所述储罐包括酸性废水储罐10、碱性废水储罐12、乙醇储罐11、碱性废水处理液储罐14、酸性废水滤液储罐8和次氯酸钠水溶液储罐5,所述处理装置包括连续离心机9、蒸馏塔13和板式过滤器1,所述碱性废水储罐12通过管道与蒸馏塔13相连,所述蒸馏塔13的顶部与乙醇储罐11相连,蒸馏塔13的底部与碱性废水处理液储罐14相连,所述碱性废水处理液储罐14通过管道与反应釜15相连,所述酸性废水储罐10通过管道与连续离心机9相连,所述连续离心机9设置有固相出口和液相出口,液相出口通过管道与酸性废水滤液储罐8相连,所述酸性废水滤液储罐8底部通过管道与反应釜15相连,酸性废水滤液储罐8一侧设置有微量进样器Ⅰ77,所述次氯酸钠水溶液储罐5一侧设置有微量进样器Ⅱ6,微量进样器Ⅰ7与微量进样器Ⅱ6分别与反应釜15相连,所述反应釜15底部通过管道与板式过滤器1相连,所述反应釜15顶部通过管道设置有尾气处理装置2,所述尾气处理装置2内设置有亚硝酸钠和次氯酸钠水溶液。
进一步地,所述蒸馏塔13设置成三层。
进一步地,所述酸性废水储罐10和反应釜15内均设置有搅拌装置,所述搅拌装置包括搅拌电机、搅拌杆和搅拌浆。
进一步地,所述反应釜15顶部和尾气处理装置2均设置有安全阀3,尾气处理装置2设置有排空阀4。
本发明叠氮化钠污水的处理方法如下:
Ⅰ在酸性废水储罐10取1000kg酸性废水加入氢氧化钙充分搅拌并调pH至4-5,利用连续离心机9离心,得到酸性废水滤饼和酸性废水滤液;
Ⅱ将碱性废水储罐12的碱性废水利用蒸馏塔13进行蒸馏,压力为-0.09MPa,温度为80℃,得到碱性废水处理液和乙醇溶液;
Ⅲ将步骤Ⅱ得到的所述碱性废水处理液1000kg导入反应釜15中,加入高锰酸钾固体2kg,然后将酸性废水滤液储罐8中的1000kg所述酸性废水滤液导入反应釜15,搅拌,采用流加的方式加入酸性废水滤液,调节pH为7-8;
Ⅳ在反应釜15流加质量分数为20%的次氯酸钠水溶液5kg,搅拌,利用板式过滤器1过滤,得到处理水和废渣;同时将反应釜15生成的废气经尾气处理装置2处理,尾气处理装置2内设置有亚硝酸钠和次氯酸钠水溶液。
为了更加直观的展现本发明的工艺优势,特以在叠氮化钠生产过程中产生两种废水,一种是酸性废水,含有30-40%硫酸钠和少量的亚硝酸钠和硫酸,另一种是的碱性废水,含有大量酒精、20-30%的氢氧化钠和5-10%的叠氮化钠及2-5%的水合肼;在不同pH条件下,对于不同氧化剂进行处理,以本发明进行处理实施例,并与不同氧化剂在不同pH下进行反应对比,具体参数如表1所示:依据GB 26754—2011,进行叠氮化钠含量的测量;并将产生尾气进行收集冷却处理,利用凯式定氮法测量氮氢酸含量,“+”为检出氮氢酸,“—”为未检出氮氢酸;以检出出否有气体生成作为计量点,计算反应时间:
对比案例1
将碱性废水利用蒸馏塔进行蒸馏,压力为-0.09MPa,温度为80℃,得到碱性废水处理液和乙醇溶液;将得到的所述碱性废水处理液1000g,加入次氯酸钠固体3g,然后用硫酸水溶液调pH至2.0,加水定容至2000ml;
对比案例2
将碱性废水利用蒸馏塔进行蒸馏,压力为-0.09MPa,温度为80℃,得到碱性废水处理液和乙醇溶液;将得到的所述碱性废水处理液1000g,加入高锰酸钾固体3g,然后用硫酸水溶液调pH至2.0,加水定容至2000ml;
对比案例3
将碱性废水利用蒸馏塔进行蒸馏,压力为-0.09MPa,温度为80℃,得到碱性废水处理液和乙醇溶液;将得到的所述碱性废水处理液1000g,加入次氯酸钠固体3g,然后用硫酸水溶液调pH至7.5,加水定容至2000ml;
对比案例4
将碱性废水利用蒸馏塔进行蒸馏,压力为-0.09MPa,温度为80℃,得到碱性废水处理液和乙醇溶液;将得到的所述碱性废水处理液1000g,加入高锰酸钾固体3g,然后用硫酸水溶液调pH至7.5,加水定容至2000ml;
对比案例5
将碱性废水利用蒸馏塔进行蒸馏,压力为-0.09MPa,温度为80℃,得到碱性废水处理液和乙醇溶液;将得到的所述碱性废水处理液1000g,加入高锰酸钾固体2g,加入次氯酸钠固体1g,然后用硫酸水溶液调pH至7.5,加水定容至2000ml;
对比案例6
将碱性废水利用蒸馏塔进行蒸馏,压力为-0.09MPa,温度为80℃,得到碱性废水处理液和乙醇溶液;将得到的所述碱性废水处理液1000g,加入高锰酸钾固体2g,加入二氧化锰固体1g,然后用硫酸水溶液调pH至7.5,加水定容至2000ml;
实施案例7
在1000g酸性废水加入二氧化钙充分搅拌并调pH至4-5,利用连续离心机离心,得到酸性废水滤饼和酸性废水滤液;将碱性废水利用蒸馏塔进行蒸馏,压力为-0.09MPa,温度为80℃,得到碱性废水处理液和乙醇溶液;将得到的所述碱性废水处理液1000g加入高锰酸钾固体2g,然后加入所述酸性废水滤液,搅拌,调节pH为7.5;在反应步骤Ⅲ中流加质量分数为20%的次氯酸钠水溶液5g,加水定容至2000ml,搅拌过滤,得到处理水和废渣。
表1:本工艺的实施实例基本参数对比
组数 样本 碱性废水处理液总量g 反应pH 反应物Ⅰ 反应物Ⅱ 反应时间min 氮氢酸 叠氮化钠残留量mg/l 叠氮化钠清除率%
1 对比例1 1000 2.0 次氯酸钠 - 30 + 6.2 98.76
2 对比例2 1000 2.0 高锰酸钾 - 20 + 3.7 99.26
3 对比例3 1000 7.5 次氯酸钠 - 30 - 326 34.8
4 对比例4 1000 7.5 高锰酸钾 - 20 - 74 85.2
5 对比例5 1000 7.5 次氯酸钠 高锰酸钾 20 - 10.3 97.94
6 对比例6 1000 7.5 次氯酸钠 MnO2 20 - 132 73.6
7 试验组7 1000 7.5 次氯酸钠 高锰酸钾 20 - 8.6 98.28
由表1的基础数据分析可知:其中由对比例1和2可知,次氯酸钠和高锰酸钾酸性条件下,对于叠氮化钠的清除效果很好,但是在强酸条件下,有少量的氮氢酸检出;由对比例3和4可知次氯酸钠或高锰酸钾弱碱性条件下,对于叠氮化钠的清除效果很差;由对比例5可知次氯酸钠和高锰酸钾的共同使用,能够在弱碱性条件下对叠氮化钠的清除效果有明显的效果;由对比例3、5和6可知:高锰酸钾对于叠氮化钠能够在弱碱性条件下对叠氮化钠的清除效果有明显的效果,同时缩短了反应时间,可能与生成的MnO2对于叠氮化钠的分解起到了催化作用有关,因此本工艺的实施例7与对比例1-6相比,有效的解决了强酸环境中叠氮化钠分解产生少量氮氢酸的问题,同时次氯酸钠和高锰酸钾的共同使用,能够在弱碱性条件下对叠氮化钠的清除效果有明显的效果;特别是次氯酸钠和高锰酸钾的共同使用保证了叠氮化钠的清除效果的同时大大缩短了反应时间。
综上所述:将酸性废水经过传统的工艺去除硫酸根后,实现了盐分的降低,保证了后续工艺的顺利进行,避免了降温析出法将硫酸钠晶体析出能耗极高,在实际的工业化生产中难以实现的问题;同时通过优化工艺,实现了在弱碱条件下高效快速对叠氮化钠的分解,避免了叠氮化钠在强酸条件下易于产生氮氢酸的问题,特别是神奇的发现次氯酸钠和高锰酸钾的共同使用能够对于叠氮化钠的分解具有高效的协同作用,并且大大缩短了反应时间,降低了生产成本,提高了生产效率。

Claims (7)

1.一种叠氮化钠污水的处理方法,叠氮化钠污水包括碱性废水和酸性废水,其特征包括以下步骤:
Ⅰ向酸性废水中加入氢氧化钙充分搅拌并调pH至4-5,利用连续离心机(9)离心,得到酸性废水滤饼和酸性废水滤液;
Ⅱ将碱性废水利用蒸馏塔(13)进行蒸馏,压力为-0.09MPa,温度为78-82℃,得到碱性废水处理液和乙醇溶液;
Ⅲ将步骤Ⅱ得到的所述碱性废水处理液加入高锰酸钾,然后加入等质量的所述酸性废水滤液,搅拌,采用流加的方式加入酸性废水滤液,调节pH为7-8;
Ⅳ在反应步骤Ⅲ中流加重量份数为20-30%的次氯酸钠水溶液,搅拌,利用板式过滤器(1)过滤,得到处理水和废渣。
2.根据权利要求1所述的叠氮化钠污水的处理方法,其特征在于所述的次氯酸钠水溶液中,次氯酸钠与碱性废水处理液质量比为0.5-1:1000。
3.根据权利要求1所述的叠氮化钠污水的处理方法,其特征在于所述的高锰酸钾加入重量与碱性废水处理液重量比为1-2:1000。
4.一种如权利要求1~3任一项所述的叠氮化钠污水处理方法的污水处理专用系统,包括储罐、处理装置和反应釜(15),其特征在于:所述储罐包括酸性废水储罐(10)、碱性废水储罐(12)、乙醇储罐(11)、碱性废水处理液储罐(14)、酸性废水滤液储罐(8)和次氯酸钠水溶液储罐(5),所述处理装置包括连续离心机(9)、蒸馏塔(13)和板式过滤器(1),所述碱性废水储罐(12)通过管道与蒸馏塔(13)相连,所述蒸馏塔(13)的顶部与乙醇储罐(11)相连,蒸馏塔(13)的底部与碱性废水处理液储罐(14)相连,所述碱性废水处理液储罐(14)通过管道与反应釜(15)相连,所述酸性废水储罐(10)通过管道与连续离心机(9)相连,所述连续离心机(9)设置有固相出口和液相出口,液相出口通过管道与酸性废水滤液储罐(8)相连,所述酸性废水滤液储罐(8)底部通过管道与反应釜(15)相连,酸性废水滤液储罐(8)一侧设置有微量进样器Ⅰ(7),所述次氯酸钠水溶液储罐(5)一侧设置有微量进样器Ⅱ(6),微量进样器Ⅰ(7)与微量进样器Ⅱ(6)分别与反应釜(15)相连,所述反应釜(15)底部通过管道与板式过滤器(1)相连,所述反应釜(15)顶部通过管道设置有尾气处理装置(2),所述尾气处理装置(2)内设置有亚硝酸钠和次氯酸钠水溶液。
5.根据权利要求4所述的污水处理专用系统,其特征在于:所述蒸馏塔(13)设置成三层。
6.根据权利要求4所述的污水处理专用系统,其特征在于:所述酸性废水储罐(10)和反应釜(15)内均设置有搅拌装置,所述搅拌装置包括搅拌电机、搅拌杆和搅拌浆。
7.根据权利要求4所述的污水处理专用系统,其特征在于:所述反应釜(15)顶部和尾气处理装置(2)均设置有安全阀(3),尾气处理装置(2)设置有排空阀(4)。
CN201711339479.1A 2017-12-14 2017-12-14 一种叠氮化钠污水的处理方法及污水处理专用系统 Active CN107840519B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711339479.1A CN107840519B (zh) 2017-12-14 2017-12-14 一种叠氮化钠污水的处理方法及污水处理专用系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711339479.1A CN107840519B (zh) 2017-12-14 2017-12-14 一种叠氮化钠污水的处理方法及污水处理专用系统

Publications (2)

Publication Number Publication Date
CN107840519A CN107840519A (zh) 2018-03-27
CN107840519B true CN107840519B (zh) 2023-06-16

Family

ID=61665005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711339479.1A Active CN107840519B (zh) 2017-12-14 2017-12-14 一种叠氮化钠污水的处理方法及污水处理专用系统

Country Status (1)

Country Link
CN (1) CN107840519B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111701184A (zh) * 2020-05-11 2020-09-25 湖南瀚洋环保科技有限公司 一种废弃叠氮化钠的安全处置工艺
CN116099148A (zh) * 2021-11-10 2023-05-12 盐城淇岸环境科技有限公司 剧毒化学试剂预处理工艺

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ301150B6 (cs) * 2007-06-13 2009-11-18 Austin Detonator S.R.O. Zpusob likvidace odpadních vod z výroby traskavin
RU2542310C2 (ru) * 2013-06-25 2015-02-20 Открытое акционерное общество "Новосибирский механический завод "Искра" Способ очистки маточных вод синтеза азида натрия
CN106145509A (zh) * 2015-04-13 2016-11-23 安徽兴东化工有限公司 一种废水预处理工艺
CN207748980U (zh) * 2017-12-14 2018-08-21 山东省溯源绿色化工研究院 一种叠氮化钠污水处理专用系统

Also Published As

Publication number Publication date
CN107840519A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
CN105254084B (zh) 一种脱硫废水的双极膜电渗析处理方法及装置
CN102464415B (zh) 煤气化废水的深度处理工艺
CN104355443B (zh) 一种含偏二甲肼的废水的处理方法
CN103787537B (zh) 一种污水的处理方法及其应用
US20150076070A1 (en) Advanced treatment method for biochemical tail water of coking wastewater
CN106976949A (zh) 一种渗沥液生物处理出水的氧化处理方法
CN107840519B (zh) 一种叠氮化钠污水的处理方法及污水处理专用系统
CN105084589A (zh) 湿式镁法脱硫废水的处理方法及系统
CN109264845A (zh) 一种反渗透浓水有机物和氨氮同时去除的装置及方法
CN105036425B (zh) 含盐有机废水的资源化处理方法
CN104787828B (zh) 一种利用单线态氧溶气气浮除污染的水处理方法
CN207748980U (zh) 一种叠氮化钠污水处理专用系统
CN100343187C (zh) 生产vb12的工业废水的资源化处理工艺及其专用废水处理机
CN105152433A (zh) 一种铜、钼萃余液混合废水去除cod的方法
CN106809939B (zh) 保持铁锰氧化物催化氧化去除地表水中氨氮活性的方法
CN106986434A (zh) 一种抗生素生产废水的预处理方法
CN112759195A (zh) 一种高氨氮废水的处理装置及处理工艺
CN101870505B (zh) 一种粉体树脂用于印染废水深度处理及回用的方法
CN102515385B (zh) 高钠盐废水除钠处理工艺及其装置
CN102372378A (zh) 一种蓖麻油制备癸二酸产生的废水的处理方法
CN102249475B (zh) 一种膜滤浓缩液的处理方法
CN210480893U (zh) 一种利用社会废酸的干法脱硫灰制备脱硫石膏系统
CN209128117U (zh) 一种反渗透浓水有机物和氨氮同时去除的装置
CN109607945B (zh) 一种提高光伏、电子行业废水生化效率的方法
CN112979095A (zh) 一种酮连氮法合成水合肼废水的处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20230518

Address after: 8899 Xinggang Road, Taiping Town, Zoucheng City, Jining City, Shandong Province

Applicant after: SHANDONG SUYUAN GREEN CHEMICAL Research Institute

Applicant after: SHANDONG IFT SCIENCE & TECHNOLOGY CO.,LTD.

Address before: 8899 Xinggang Road, Taiping Town, Zoucheng City, Jining City, Shandong Province

Applicant before: SHANDONG SUYUAN GREEN CHEMICAL Research Institute

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant