CN107827874B - 一种双极性主体材料及制备方法和应用 - Google Patents
一种双极性主体材料及制备方法和应用 Download PDFInfo
- Publication number
- CN107827874B CN107827874B CN201711119239.0A CN201711119239A CN107827874B CN 107827874 B CN107827874 B CN 107827874B CN 201711119239 A CN201711119239 A CN 201711119239A CN 107827874 B CN107827874 B CN 107827874B
- Authority
- CN
- China
- Prior art keywords
- czcnpyca
- host material
- carbazole
- bipolar host
- bipolar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Indole Compounds (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
技术领域
本发明属于有机材料技术领域,具体涉及一种双极性主体材料及制备方法和应用。
背景技术
有机发光二极管(OLEDs)作为一种新型的平板显示和固态照明器件,由于具有主动发光、视角宽、厚度薄、能耗低、响应速度快及能实现全色显示和柔性显示等优点,近几年来备受人们的关注。1997年,美国普林斯顿大学的Forrest等人首先发现了三重态电致磷光现象,突破了有机电致发光器件内量子效率(IQE)为25%的极限,从此欣起了研究开发新型磷光材料的热潮。但重金属磷光寿命相对较长,容易引起浓度淬灭和三重态-三重态湮灭,所以通常将重金属原子与主体材料进行掺杂。由于客体材料种类繁多,发光颜色覆盖整个可见光区域,因此能够满足客体材料要求的高性能主体材料显得尤为重要。
目前绿色和红色电致磷光器件无论在主体还是客体材料中取得了很大进展,因为绿光、红光材料具有较低的三重态能量,可容易选择与之适合发主体材料从而得到性能优良的器件。与之相比蓝色磷光材料,如FIrpic因为具有较高的三线态能级(2.65eV),主体材料的选择范围较小,因此,研发性能优良的蓝光主体材料,对于有机电致发光器件(OLED)的产业化发展有着深远意义。
研究表明,空穴在大多数有机材料中的传输速率通常比电子要快得多,因此,绝大多数由阳极注入的空穴很容易穿过发光层到达电子传输层并在阴极处猝灭,这是导致器件发光效率降低和寿命减少的一个重要原因。针对上述问题,双极性主体材料可以很好的平衡电子和空穴的注入以及在发光层中的传输。
发明内容
本发明的目的是提供一种双极性主体材料及制备方法和应用,该材料由苯并吲哚及咔唑衍生物构成,可应用于磷光OLED主体材料,提高磷光器件的性能。
为了实现本发明的上述目的,采用的技术方案如下:
一种双极性主体材料,其结构式为:
其中,R1、R2、R3相同或不同,选自H或咔唑基。
一种双极性主体材料,其结构式为:
其中,R1为咔唑,R2为H,R3为H。
一种双极性主体材料,其结构式为:
其中,R1为H,R2为咔唑,R3为H。
一种双极性主体材料,其结构式为:
其中,R1为H,R2为H,R3为咔唑。
上述双极性主体材料的制备方法,是用4'-(5-溴-3-乙基-2-(吡啶-4-基)-3H-苯并[e]吲哚-1-基)-4-(9H-咔唑-9-基)-[1,1'-联苯]-3-腈与苯基咔唑衍生物在避光条件下反应得到;
所述苯基咔唑衍生物为以下三种:
进一步地,反应采用四(三苯基膦)钯(0)作催化剂、体积比为3:1的DMF和2M K2CO3的混合液作反应溶剂,反应条件为95℃、12h。
上述双极性主体材料在磷光器件中的应用。
本发明设计的分子结构以苯并吲哚为核心基团,引入咔唑一方面提升材料的空穴传输性能,另一方面可以提高单线态能级;吲哚核和咔唑间的联二苯分子具有一定的空间扭曲结构;分子中引入具有吸电子性的吡啶基团和氰基基团,以此提升材料的电子传输性能,另外,氰基与咔唑处于邻位,使得咔唑和苯环连接扭曲,有效抑制分子间的聚集,降低共轭程度,有利于提高单线态能级,以使得材料的发光波长在蓝光区域。
本发明提供了一种简易制备有机电致发光材料的方法,该方法工艺简单,制造成本低,反应产率高。
本发明的优点在于:
1.分子中包含给电子和吸电子基团,有利于平衡电子和空穴的注入及在发光层中的传输,显著提升器件的效率。
2.产物中引入多个咔唑基团,通过联苯结构将咔唑与苯并吲哚基团相连,使得分子高度扭曲,有利于提高材料的单线态能级,可作为双极性主体材料。
3.材料的玻璃化转化温度均大于100℃,较高的玻璃化转化温度可保证材料在制备OLED的过程中不会出现结晶的现象。
附图说明
图1化合物CzCNPyCa-1的核磁共振氢谱图。
图2化合物CzCNPyCa-1的核磁共振碳谱图。
图3化合物CzCNPyCa-2的核磁共振氢谱图。
图4化合物CzCNPyCa-2的核磁共振碳谱图。
图5化合物CzCNPyCa-3的核磁共振氢谱图。
图6化合物CzCNPyCa-3的核磁共振碳谱图。
图7化合物CzCNPyCa-1在不同溶剂中(1×10-5mol L-1)状态下的紫外吸收光谱图和荧光发射光谱图。
图8化合物CzCNPyCa-2在不同溶剂中(1×10-5mol L-1)状态下的紫外吸收光谱图和荧光发射光谱图。
图9化合物CzCNPyCa-3在不同溶剂中(1×10-5mol L-1)状态下的紫外吸收光谱图和荧光发射光谱图。
图10化合物CzCNPyCa-1、CzCNPyCa-1、CzCNPyCa-1在薄膜状态时的荧光衰减寿命光谱。
图11化合物CzCNPyCa-1、CzCNPyCa-1、CzCNPyCa-1的DSC曲线。
图12化合物CzCNPyCa-1、CzCNPyCa-1、CzCNPyCa-1的循环伏安分析曲线。
具体实施方式
下面结合附图,进一步阐述本发明的实施方式。
本发明设计合成了一类具有高效率荧光发射的双极性主体材料,其基本构建骨架为苯并吲哚基团,在该基团上引入具有吸电子性的吡啶基团和氰基基团及给电子性的咔唑基团较好的平衡了电子和空穴的注入,以及在发光层的传输。用质谱(MALDI-TOF)、核磁共振氢谱、核磁共振碳谱等表征了该系列材料的分子结构及构型。用紫外吸收光谱研究了化合物的光物理性质。用循环伏安法研究了化合物的电化学性质。用差热-差重分析(DTA-TGA)研究了化合物的热力学性质。
实施例1:化合物CzCNPyCa-1的合成
具体实施方法如下:
步骤1,向250mL反应瓶中加入2-萘酚(14.71g,100mmol)、对溴苯甲醛(18.5g,100mmol)、4-(氨基甲基)吡啶(10.81g,100mmol),抽放氮气三次,开启加热搅拌器升温至120℃,反应12h后,降温至90℃,加入42mL乙醇超声,冷却后抽滤得黄色固体,柱层析提纯(淋洗剂为乙酸乙酯:石油醚=5:1)得淡黄色粉末30.15g(产率为75%)。
步骤2,向100mL反应瓶中加入化合物a 1-(4-溴苯基)-2-(吡啶-4-基)-2,3-二氢-1H-苯并[e]吲哚(1.1603g,2.89mmol)、NBS(1.0814g,6.08mmol),抽放氮气3次,在避光下加入6mL DMF为溶剂,开启搅拌器搅拌过夜。反应结束后,用乙酸乙酯和去离子水多次萃取,有机相用无水硫酸镁干燥,旋干,层析柱提纯(淋洗剂为乙酸乙酯:石油醚=3:1),得固体0.9863g(产率为85%)。
步骤3,向50mL反应瓶中加入化合物b 1-(4-溴苯基)-2-(吡啶-4-基)-3H-苯并[e]吲哚(0.8099g,2.03mmol)、(3-氰基-4-氟苯基)硼酸(0.4029g,2.442mmol)、K2CO3(2mol/L)3.01mL、四(三苯基膦)钯(0)(0.149g,0.129mmol),在氮气氛围下溶解在DMF中。在97℃反应条件下,反应12h后,冷却至室温,用乙酸乙酯和去离子水萃取2-3次,有机相用无水硫酸镁干燥,抽滤,旋干。柱层析提纯(淋洗剂为乙酸乙酯:石油醚=3:1),得固体粉末0.7366g(产率为70.5%)。
步骤4,向50mL反应瓶中加入化合物c 4-氟-4'-(2-(吡啶-4-基)-3H-苯并[e]吲哚-1-基)-[1,1'-联苯]-3-甲腈(0.5182g,1.002mmol)、咔唑(0.640g,3.789mmol)、Cs2CO3(0.986g,2.96mmol)在氮气氛围下溶于DMF 5mL中。将该反应混合物在97℃反应条件下搅拌12h。粗产物通过层析柱提纯(淋洗剂为乙酸乙酯:石油醚=2:1),得固体0.4g(产率为60%)。
步骤5,向50mL反应瓶中加入化合物d 4'-(5-溴-2-(吡啶-4-基)-3H-苯并[e]吲哚-1-基)-4-(9H-咔唑-9-基)-[1,1'-联苯]-3-甲腈(0.1423g,0.214mmol)、溴乙烷(0.041g,0.369mmol)、NaH(0.021g,0.525mmol),在室温下溶解在无水DMF中搅拌10min后,加入溴乙烷(0.031g,0.285mmol)。混合物在室温下搅拌10h,停止反应,用乙酸乙酯和去离子水多次萃取,上层有机相用无水硫酸镁干燥,旋干。柱层析提纯(淋洗剂为乙酸乙酯:石油醚=1:2),得到白色粉末状的产物0.104g(产率为69.8%)。
步骤6,向反应瓶中加入化合物e 4'-(5-溴-3-乙基-2-(吡啶-4-基)-3H-苯并[e]吲哚-1-基)-4-(9H-咔唑-9-基)-[1,1'-联苯]-3-腈(0.08069g,0.1163mmol),9-(2-(4,4,5,5-四甲基-1,3,2-二氧硼杂环戊烷-2-基)苯基)-9H-咔唑(0.04296g,0.1170mmol),在避光条件下加入四(三苯基膦)钯(0)(0.0010g,0.007mmol)抽放氮气3次,将体积比为3:1的DMF和(2M)K2CO3溶液加入反应瓶中进行反应,反应温度为95℃,12h停止反应,用乙酸乙酯和去离子水萃取2-3次,上层有机相用无水硫酸镁干燥,旋干。柱层析提纯(淋洗剂为乙酸乙酯:石油醚=1:2),得黄色粉末CzCNPyCa-1 0.024g(产率24.1%)。
1H NMR(400MHz,CDCl3)δ8.51(s,12H),8.20(s,8H),8.11(dd,J=44.8,7.5Hz,29H),7.91(s,12H),7.79(d,J=8.3Hz,6H),7.58(ddd,J=31.6,13.7,9.7Hz,57H),7.46–7.13(m,74H),7.05(d,J=3.7Hz,11H),6.98(s,21H),3.79–3.56(m,8H),3.56–3.50(m,3H),1.77–1.34(m,22H).
13C NMR(101MHz,CDCl3)δ149.55(s,31H),142.94(s,7H),141.24(d,J=12.6Hz,27H),140.79(s,17H),139.96(s,6H),139.23(s,7H),136.96(s,8H),136.23(s,17H),133.92(s,15H),133.44(s,8H),132.69(s,31H),132.22(d,J=12.4Hz,52H),131.21(s,7H),130.82(s,16H),129.99(s,17H),129.03(d,J=6.3Hz,25H),128.33(d,J=19.6Hz,26H),126.95(s,37H),126.62(s,21H),126.30(s,32H),126.19–125.96(m,2H),125.54(dd,J=36.8,17.4Hz,87H),124.52(s,2H),123.98(s,21H),123.48(d,J=6.0Hz,35H),123.20(s,10H),122.69(s,7H),121.20–120.98(m,2H),120.75(d,J=24.1Hz,79H),120.38(s,18H),119.61(d,J=15.1Hz,33H),119.14(s,20H),118.24(s,5H),116.16(s,5H),113.12(s,8H),111.81(s,15H),110.32(s,16H),109.83(s,52H),77.41(s,71H),77.10(s,67H),76.78(s,71H),38.99(s,21H),14.99(s,23H).
MALDI-TOF,m/z cacld for C62H41N5:855.34,found:855.31.
实施例2:化合物CzCNPyCa-2的合成
具体实施方法如下:
化合物CzCNPyCa-2的合成方法与CzCNPyCa-1的合成合成方法类似,不同的是,在实施例1步骤6中,将反应物9-(2-(4,4,5,5-四甲基-1,3,2-二氧硼杂环戊烷-2-基)苯基)-9H-咔唑替换为3-(9H-咔唑-9-基)苯硼酸,其余操作一致,最终得黄色固体粉末CzCNPyCa-20.042g(产率为29.8%)。
1H NMR(400MHz,CDCl3)δ8.62(s,11H),8.26(s,3H),8.26–8.17(m,18H),8.13(s,6H),8.20–7.85(m,36H),7.85–7.65(m,40H),7.61(s,7H),7.59–7.42(m,35H),7.38–7.10(m,55H),4.27(t,J=41.2Hz,13H),1.09–1.04(m,2H).
13C NMR(101MHz,CDCl3)δ149.72(s,25H),143.58(s,4H),141.29(s,3H),140.80(s,26H),140.12(s,3H),139.34(s,4H),137.88(s,5H),136.98(s,4H),136.52(s,3H),135.64(s,4H),133.89(s,3H),132.76(s,38H),132.37(s,27H),130.04(s,14H),129.79(s,13H),129.35(s,11H),129.05(s,5H),128.71(s,12H),128.40(s,5H),127.11(d,J=12.7Hz,40H),126.31(s,27H),126.28–126.15(m,4H),126.15–125.27(m,88H),123.97(d,J=6.5Hz,27H),123.56(d,J=5.5Hz,27H),120.93(s,3H),120.63(dd,J=25.8,20.0Hz,94H),120.13(s,29H),118.82(s,3H),116.16(s,3H),113.19(s,3H),112.53(s,9H),109.86(d,J=4.6Hz,57H),77.38(s,99H),77.06(s,99H),76.74(s,98H),39.39(s,10H),16.09(s,16H).MALDI-TOF,m/z cacld for C62H41N5:855.34,found:855.62.
实施例3:化合物CzCNPyCa-3的合成
具体实施方法如下:
化合物CzCNPyCa-3的合成方法与实施例1中CzCNPyCa-1的合成合成方法类似,不同的是,在实施例1步骤6中,将反应物9-(2-(4,4,5,5-四甲基-1,3,2-二氧硼杂环戊烷-2-基)苯基)-9H-咔唑替换为4-(9H-咔唑-9-基)苯硼酸,其余操作一致,最终得黄色固体粉末CzCNPyCa-2 0.12(产率为49.3%)。
1H NMR(400MHz,DMSO)δ8.63(dd,J=14.4,3.6Hz,15H),8.40(d,J=8.5Hz,6H),8.29(d,J=7.7Hz,19H),8.10–7.92(m,21H),7.92–7.75(m,30H),7.59(s,3H),7.59–7.22(m,89H),4.40(d,J=7.0Hz,12H),1.61–0.67(m,49H).
13C NMR(101MHz,CDCl3)δ149.87(s,21H),141.30(s,5H),140.86(d,J=13.2Hz,25H),140.04(s,4H),139.34(s,5H),136.95(d,J=16.6Hz,10H),136.51(s,4H),135.85(s,4H),133.90(s,4H),132.78(d,J=7.5Hz,28H),132.39(s,20H),131.82(s,18H),130.05(s,10H),129.09(s,5H),128.55(s,4H),127.37–126.73(m,48H),126.32(s,22H),126.18–125.58(m,32H),125.54(s,19H),123.94(d,J=12.3Hz,20H),123.56(d,J=4.9Hz,19H),120.90(s,22H),120.74–120.26(m,41H),120.11(s,18H),118.82(s,4H),116.17(s,3H),113.19(s,4H),112.55(s,7H),109.88(d,J=9.5Hz,35H),77.33(d,J=11.6Hz,62H),77.07(s,53H),76.75(s,58H),39.41(s,4H),16.13(s,11H).
MALDI-TOF,m/z cacld for C62H41N5:855.34,found:855.57.
结合图1-图6化合物的核磁氢谱及碳谱图可知,合成的化合物CzCNPyCa-1、CzCNPyCa-2、CzCNPyCa-3都是本发明所设计的结构。
图7给出了化合物CzCNPyCa-1在不同溶剂中状态下的紫外吸收光谱图和荧光发射光谱图。图中290nm周围的吸收带可能归因于以咔唑为中心的n-π*跃迁,336nm附近的较长波长吸收带是由供电子基咔唑向受电子吡啶和氰基的π-π*跃迁引起的。通过改变溶剂,化合物具有相似吸收最大波长λmax,表明不同的溶剂对吸收没有影响。由图7还可以看出,随着溶剂极性的增大,材料的荧光发射光谱有明显的红移现象。
图8、图9分别给出了化合物CzCNPyCa-2、CzCNPyCa-3在不同溶剂中状态下的紫外吸收光谱图和荧光发射光谱图。图中的吸收光谱与化合物CzCNPyCa-1有相似现象,290nm周围的吸收带可能归因于以咔唑为中心的n-π*跃迁,336nm附近较长波长吸收带是由供电子基咔唑向受电子吡啶和氰基的π-π*跃迁引起的。在不同溶剂中的荧光发射光谱也有相同的规律,由以上结果可以看出,咔唑的位置改变对光谱性质影响不大。
图10给出了化合物CzCNPyCa-1、CzCNPyCa-1、CzCNPyCa-1在薄膜状态时的荧光衰减寿命光谱。由图中可以看出,三种化合物薄膜拟合寿命都是单指数的,一个寿命衰减曲线表明三种材料LE态和CT状态是高度混合的。
图11的DSC曲线可以看出,CzCNPyCa-1,CzCNPyCa-2和CzCNPyCa-3在第二次加热扫描期间显示出133℃,144℃,184℃的高玻璃化转化温度。CzCNPyCa-1的玻璃化转化温度最高,这表明咔唑在苯环上的取代位置变化提高了分子刚性,导致了高的Tg值。总之,这些化合物显示出良好的热稳定性,而不会因为材料在制备OLED器件的过程中出现结晶薄膜影响器件性能。
图12给出了化合物CzCNPyCa-1、CzCNPyCa-2、CzCNPyCa-3的循环伏安分析曲线。测试中采用已知的二茂铁为标定物,结合循环伏安曲线中的第一个氧化峰,再结合二茂铁的氧化和还原电压来测定化合物的HOMO和LUMO能级。由于Ag/Ag+的电极,因此化合物的能级计算公式如下所示:
HOMO=-[Eox-E(fc/fc+)+4.8]ev (1)
LUMO=-[Ered-E(fc/fc+)+4.8]ev (2)
其中,Eox为化合物的开始氧化电压,E(fc/fc+)为二茂铁的氧化还原电压
结合公式(1)、(2)可以分别计算得到三种材料的HOMO和LUMO值,具体数据见下表:
E<sub>ox</sub>(eV) | E<sub>red</sub><sup>cv</sup>(eV) | E<sub>HOMO</sub><sup>cv</sup>(eV) | E<sub>LOMO</sub><sup>cv</sup>(eV) | Eg<sup>opt</sup>(eV) | |
CzCNPyCa-1 | 1.170 | -2.263 | -5.967 | -2.336 | 3.631 |
CzCNPyCa-2 | 0.751 | -2.327 | -5.548 | -2.272 | 3.276 |
CzCNPyCa-3 | 0.813 | -2.329 | -5.610 | -2.270 | 3.34 |
从上表中的数据可知,三种材料的HOMO和LUMO能级几乎相同,这表明咔唑在苯环上的取代位置对能级的影很小;CzCNPyCa-1的HOMO值为-5.967ev,这表明扭曲的结构有利于降低材料的共轭程度。
Claims (7)
6.根据权利要求5所述的双极性主体材料的制备方法,其特征在于:反应采用四(三苯基膦)钯(0)作催化剂、体积比为3:1的DMF和2M K2CO3的混合液作反应溶剂,反应条件为95℃、12h。
7.权利要求1至4任一项所述的双极性主体材料在磷光器件中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711119239.0A CN107827874B (zh) | 2017-11-14 | 2017-11-14 | 一种双极性主体材料及制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711119239.0A CN107827874B (zh) | 2017-11-14 | 2017-11-14 | 一种双极性主体材料及制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107827874A CN107827874A (zh) | 2018-03-23 |
CN107827874B true CN107827874B (zh) | 2020-03-31 |
Family
ID=61655208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711119239.0A Active CN107827874B (zh) | 2017-11-14 | 2017-11-14 | 一种双极性主体材料及制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107827874B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103539818A (zh) * | 2013-06-21 | 2014-01-29 | Tcl集团股份有限公司 | 双极性磷光主体化合物、制备方法和应用及电致发光器件 |
KR20150014286A (ko) * | 2013-07-29 | 2015-02-06 | 덕산하이메탈(주) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 |
CN104725296A (zh) * | 2013-12-24 | 2015-06-24 | 北京鼎材科技有限公司 | 吲哚类衍生物及其在有机电致发光领域中的应用 |
KR20150121626A (ko) * | 2014-04-21 | 2015-10-29 | (주)피엔에이치테크 | 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자 |
KR20160149879A (ko) * | 2015-06-19 | 2016-12-28 | 덕산네오룩스 주식회사 | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 |
-
2017
- 2017-11-14 CN CN201711119239.0A patent/CN107827874B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103539818A (zh) * | 2013-06-21 | 2014-01-29 | Tcl集团股份有限公司 | 双极性磷光主体化合物、制备方法和应用及电致发光器件 |
KR20150014286A (ko) * | 2013-07-29 | 2015-02-06 | 덕산하이메탈(주) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 |
CN104725296A (zh) * | 2013-12-24 | 2015-06-24 | 北京鼎材科技有限公司 | 吲哚类衍生物及其在有机电致发光领域中的应用 |
KR20150121626A (ko) * | 2014-04-21 | 2015-10-29 | (주)피엔에이치테크 | 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자 |
KR20160149879A (ko) * | 2015-06-19 | 2016-12-28 | 덕산네오룩스 주식회사 | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 |
Also Published As
Publication number | Publication date |
---|---|
CN107827874A (zh) | 2018-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2020125295A (ja) | フルオレンおよびそれらを含む有機電子素子 | |
He et al. | Asymmetrically twisted anthracene derivatives as highly efficient deep-blue emitters for organic light-emitting diodes | |
Ye et al. | Asymmetric anthracene derivatives as multifunctional electronic materials for constructing simplified and efficient non-doped homogeneous deep blue fluorescent OLEDs | |
Wang et al. | Molecular engineering of anthracene-based emitters for highly efficient nondoped deep-blue fluorescent OLEDs | |
Chen et al. | Constructing high-performance blue, yellow and red electroluminescent devices based on a class of multifunctional organic materials | |
CN110467606B (zh) | 一种以氧杂蒽酮为核心的杂环化合物、制备方法及其应用 | |
Abdurahman et al. | Efficient deep blue fluorescent oleds with ultra-low efficiency roll-off based on 4h-1, 2, 4-triazole cored DA and DAD type emitters | |
Wang et al. | The selective regulation of borylation site based on one-shot electrophilic C–H borylation reaction, achieving highly efficient narrowband organic light-emitting diodes | |
CN110590642A (zh) | 一类以三聚茚酮为电子受体的电致发光材料及其应用 | |
CN111943961B (zh) | 基于吩嗪-噻吩-二氰基的有机电致发光化合物及应用 | |
Liu et al. | Highly efficient near-infrared thermally activated delayed fluorescence material based on a spirobifluorene decorated donor | |
Wu et al. | Two thermally stable and AIE active 1, 8-naphthalimide derivatives with red efficient thermally activated delayed fluorescence | |
CN111995562A (zh) | 三蝶烯类d-a型热活化延迟荧光材料、电子器件及应用 | |
Ma et al. | Adjusting the photophysical properties of AIE-active TADF emitters from through-bond to through-space charge transfer for high-performance solution-processed OLEDs | |
Sun et al. | Multi-substituted dibenzo [a, c] phenazine derivatives as solution-processable thermally activated delayed fluorescence materials for orange–red organic light-emitting diodes | |
He et al. | Orange-red and saturated red thermally activated delayed fluorescent dendrimers for non-doped solution-processed OLEDs | |
Zhu et al. | Molecular design of blue thermally activated delayed fluorescent emitters for high efficiency solution processable OLED via an intramolecular locking strategy | |
Guo et al. | Donor engineering for diphenylsulfone derivatives with both thermally activated delayed fluorescence and aggregation-induced emission properties | |
Chen et al. | Molecular engineering by σ-linkers enables delayed fluorescence emitters for high-efficiency sky-blue solution-processed OLEDs | |
Wang et al. | 3-Benzoyl-4H-chromen-4-one: A novel twisted acceptor for highly efficient thermally activated delayed fluorescence emitters | |
CN111825618A (zh) | 一类含菲并咪唑的蓝色有机半导体材料及其制备方法与应用 | |
Song et al. | Conformation-dependent mechanochromic delayed fluorescence of AIE-active tetra-coordinated B–N complexes | |
Yu et al. | Novel electro-fluorescent materials with hybridized local and charge transfer (HLCT) excited state for highly efficient deep red to near-infrared OLEDs | |
Yang et al. | Deep-red thermally activated delayed fluorescence emitters based on a phenanthroline-containing planar acceptor | |
Di et al. | Achieving high-performance narrowband blue MR-TADF emitters by suppressing isomer formation and extending π-conjugate skeletons |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |