CN107827453A - 一种低介电损耗钛酸锶陶瓷的制备方法 - Google Patents

一种低介电损耗钛酸锶陶瓷的制备方法 Download PDF

Info

Publication number
CN107827453A
CN107827453A CN201710038502.7A CN201710038502A CN107827453A CN 107827453 A CN107827453 A CN 107827453A CN 201710038502 A CN201710038502 A CN 201710038502A CN 107827453 A CN107827453 A CN 107827453A
Authority
CN
China
Prior art keywords
strontium titanate
dielectric loss
low
preparation
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710038502.7A
Other languages
English (en)
Inventor
李蔚
韩蕊
严嵩
刘会娇
彭华庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201710038502.7A priority Critical patent/CN107827453A/zh
Publication of CN107827453A publication Critical patent/CN107827453A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种低介电损耗钛酸锶陶瓷的制备方法。其制备过程如下:以高纯(99.9%)SrTiO3粉体为原料,以CaO、MgO、Al2O3、ZrO2、Nb2O5中的一种或多种作为添加剂,经湿法球磨与SrTiO3粉料混合,然后通过无压烧结制备钛酸锶陶瓷。据大量数据统计表明:掺杂一定量的添加剂得到的SrTiO3陶瓷样品,介电损耗低,介电性能得到了大幅度地提高。典型地,当添加2wt%Nb2O5时,其Q×f值可达6,281GHZ,大约是纯SrTiO3(1,145GHz)陶瓷样品的5.5倍。此外,本发明制备工艺简单,可控性强,具有良好的工业化前景。

Description

一种低介电损耗钛酸锶陶瓷的制备方法
技术领域
本发明涉及一种低介电损耗钛酸锶陶瓷材料,属于环境友好型的微波介电陶瓷领域,可用于微波通讯等领域。
背景技术
近年来,随着信息处理技术和电子信息数字化技术的快速发展,微波通讯技术占据着越来越重要的地位,这就要求微波介质材料具有高的介电常数(εr),高的Q×f值和近零频率温度系数(τ f )。SrTiO3陶瓷,室温下具有很高的介电常数εr(~230)和很大的正温度系数τf≈+1100ppm/℃,可与低介电常数,负温度系数的材料复合,获得一些性能优良的微波介质材料。例如Yuan-Bin Chen 等指出在0.55La(Mg1/2Ti1/2) O3-0.45SrTiO3陶瓷体系中加入0.25wt% B2O3,得到的样品介电常数为46.32,Q×f值为34,000(GHz), 温度系数τ f 为-0.12ppm/℃。Cheng-Shing 等人的研究表明,掺杂0.25wt% CuO于0.5LaAlO3-0.5SrTiO3体系中,样品的介电性能良好:εr =35.2,Q×f= 24,000GHz,τ f =-13.5ppm/℃。Won Woo等报道了把2wt% 的 B2O3掺杂到0.96MgTiO3-0.036SrTiO3陶瓷体系中,样品的介电性能为:εr=19,Q×f=75,300GHz,τ f =-8.9ppm/℃。但是由于晶格中各阶非谐振振荡,衰减的存在,以及材料内部缺陷,杂质以及气孔的影响,SrTiO3陶瓷介电损耗较大,Q×f值并不高(~1000GHz),这将影响所形成的复合材料的性能。因此降低钛酸锶材料的介电损耗,从而进一步提高复合材料的Q×f值是一项紧迫且有重大意义的课题。
钙钛矿(ABO3)结构对外来离子有着较强的相容能力,只要满足电中性和离子配合半径的要求,A位和B位均可被外来离子占据而变成复合钙钛矿结构,并由此引发各种新的性能。因此,在这里我们可以通过掺杂来降低材料的介电损耗,进而提高钛酸锶材料的微波介电性能。
发明内容
本发明目的在于提供一种低介电损耗钛酸锶陶瓷材料,解决现有技术中钛酸锶材料介电损耗(tanδ)较高、Q ×f值较低的问题。
为了实现上述发明目的,本发明采用的技术方案如下:首先以SrTiO3作为原料,选用CaO、MgO、Al2O3、 ZrO2、Nb2O5中的一种或多种作为掺杂物,湿法球磨(为了有助于干粉的成型,可在球磨过程中加入少许粘结剂)干燥后,经研磨、过筛得到混合干粉。
优选的,上述氧化物的掺杂量为0.5~5wt%;其中,当掺杂量为0时,即钛酸锶陶瓷粉体材料中未掺杂氧化物,最后所得的SrTiO3陶瓷样品Q ×f值为1,145GHz;当Nb2O5的掺杂量为2wt%时,最后所得的SrTiO3陶瓷材料的Q ×f值达到最高为6,281GHz,大约是纯钛酸锶陶瓷材料的5.5倍,介电性能得到了很大的改善。
优选的,球磨时间为24h,球磨介质为去离子水。
前述的一种低介电损耗钛酸锶陶瓷的制备方法,将前述的混合干粉在50~200MPa的压强下干压成型,压制成直径约16mm,高度约12mm的柱形样品,然后将样品放置于马弗炉中升温至1300~1500℃烧结2~6h, 得到致密的SrTiO3陶瓷样品。
优选的,干压成型的压强为100MPa,样品的烧结温度为1450℃,保温时间为4h。
本发明的有益效果:本发明选用氧化物掺杂来调节SrTiO3陶瓷样品的介电性能,降低其介电损耗,其操作方法简单,生产流程短,所需要的工艺设备也很简单。另外,在本发明中,成型方法为普通干压成型,所需的成型压力为50~200MPa,在很短的时间内加压就可获得介电性能良好的SrTiO3陶瓷样品,可大量节约时间成本。此外,由于本发明采用价格低廉易于供应的CaO、MgO、Al2O3、 ZrO2、Nb2O5中的一种或多种用为掺杂物,大大节约了生产成本,适合规模化生产。在本发明中,掺杂量适中的SrTiO3陶瓷样品,介电损耗大大降低,介电性能得到了大幅度地改善,其Q×f值大约是纯SrTiO3陶瓷样品的5~6倍。
附图说明
图1 是本发明优选实施例1 ~实施例4中95瓷样品的配方以及Q × f 值。
下面结合图表和具体实施方式对本发明作进一步的说明。
具体实施方式
实施例1:一种低介电损耗钛酸锶陶瓷,它是通过以下方法制备而成的:取高纯钛酸锶粉体20g,放置于球磨罐中,以去离子水为研磨介质(为了助于干粉的成型,可在研磨过程中加入少许粘结剂),球磨24h后在80℃的烘箱中干燥。然后将干燥后的块体进行研磨,过筛,最后在100MPa的压强下将粉末干压成直径约16mm、高度约12mm的柱行样品,置于马弗炉中1450℃下保温4h。
将烧制好的样品放置若干小时后,进行介电性能测试,结果显示:所得的纯钛酸锶陶瓷样品介电常数为295,Q ×f值为1,145GHz。
实施例2:一种低介电损耗钛酸锶陶瓷,它是通过以下方法制备而成的:取6份高纯SrTiO3粉末,每份20g,放置于6个球磨罐中,选用ZrO2作为掺杂物,其掺杂含量为0.5~5wt%,随后将混合料进行湿法球磨,以去离子水作为研磨介质。球磨24h后在80℃的烘箱中干燥。然后将干燥后的块体进行研磨、过筛,最后在100MPa的压强下将粉末干压成直径约16mm、高度约12mm的柱行样品,置于马弗炉中1450℃下保温4h。
将烧制好的样品放置若干小时后,进行介电性能测试,结果显示如图1所示:当ZrO2的掺杂量达到2wt%时,其Q ×f值达到最高,为6,170GHz,介电常数为278。
实施例3:一种低介电损耗钛酸锶陶瓷,它是通过以下方法制备而成的:取6份高纯SrTiO3粉末,每份20g,放置于6个球磨罐中,Nb2O5的掺杂量为0.5~5wt%,随后将混合料进行湿法球磨,以去离子水作为研磨介质,球磨24h后在80℃的烘箱中干燥。然后将干燥后的块体进行研磨,过筛,最后在100MPa的压强下将粉末干压成直径约16mm、高度约12mm的柱行样品,置于马弗炉中1450℃下保温4h。
将烧制好的样品放置若干小时后,进行介电性能测试,结果显示:当Nb2O5的掺杂量达到2wt%时,其Q ×f值最高为6,281GHz,介电常数为286。
实施例4:一种低介电损耗钛酸锶陶瓷,它是通过以下方法制备而成的:取6份高纯SrTiO3粉末,每份20g,放置于6个球磨罐中,选用Al2O3、Nb2O5作为掺杂剂,总的掺杂含量为0.5~5wt%,随后将混合料进行湿法球磨,以去离子水作为研磨介质,球磨24h后在80℃的烘箱中干燥。然后将干燥后的块体进行研磨,过筛,最后在100MPa的压强下将粉末干压成直径约16mm、高度约12mm的柱行样品,置于马弗炉中1450℃下保温4h。
将烧制好的样品放置若干小时后,进行介电性能测试,结果显示:当Al2O3和Nb2O5的掺杂量各为1wt%,其Q ×f值最高为5,781GHz,介电常数为283。
实施例5:一种低介电损耗钛酸锶陶瓷,它是通过以下方法制备而成的:取6份高纯SrTiO3粉末,每份20g,放置于6个球磨罐中,CaO、ZrO2、Nb2O5作为掺杂物,总的掺杂含量为0.5~5wt%,随后将混合料进行湿法球磨,以去离子水作为研磨介质,球磨24h后在80℃的烘箱中干燥。然后将干燥后的块体进行研磨,过筛,最后在100MPa的压强下将粉末干压成直径约16mm、高度约12mm的柱行样品,置于马弗炉中1450℃下保温4h。
将烧制好的样品放置若干小时后,进行介电性能测试,结果显示:当CaO、ZrO2、Nb2O5的掺杂量分别为0.4wt%、1wt%、0.6wt%时,其Q ×f值最高为5,821GHz,介电常数为279。
实施例6:一种低介电损耗钛酸锶陶瓷,它是通过以下方法制备而成的:取6份高纯SrTiO3粉末,每份20g,放置于6个球磨罐中,选用MgO、Al2O3、ZrO2、Nb2O5作为掺杂物,总的掺杂含量为0.5~5wt%,随后将混合料进行湿法球磨,以去离子水作为研磨介质,球磨24h后于80℃的烘箱中干燥。然后将干燥后的块体进行研磨,过筛,最后在100MPa的压强下将粉末干压成直径约16mm、高度约12mm的柱行样品,置于马弗炉中1450℃下保温4h。
将烧制好的样品放置若干小时后,进行介电性能测试,结果显示:当MgO、Al2O3、ZrO2、Nb2O5的掺杂量分别为0.2wt%、0.2wt%、1wt%、0.6wt%时,其Q ×f值最高为5,636GHz,介电常数为280。

Claims (5)

1.一种低介电损耗钛酸锶陶瓷的制备方法,其特征在于该方法的具体步骤为:(1) 以高纯SrTiO3粉体为原料,放置于球磨罐中,然后分别加入CaO、MgO、Al2O3、 ZrO2、Nb2O5 等掺杂物中的一种或多种,湿法球磨干燥后经研磨,过筛得到混合干粉;(2)将步骤 (1) 得到的混合干粉压制成型,烧制,即可得到不同掺杂的钛酸锶陶瓷样品。
2.根据权利要求1所述一种低介电损耗钛酸锶陶瓷制备方法,其特征在于:步骤 (1)中,所述掺杂物的含量为0.5~5wt%;所述的球磨时间为12~24h,所述的球磨介质为去离子水。
3.根据权利要求1所述一种低介电损耗钛酸锶陶瓷制备方法,其特征在于:步骤 (2)中,所述样品的烧结温度为1300~1500 ℃,保温时间为2~6h,升温速度为2~5 ℃/min。
4.根据权利要求3所述的一种低介电损耗钛酸锶陶瓷的制备方法,其特征在于,取权利要求1步骤 (1) 所述的混合干粉,将粉末干压成直径约16mm,高度约12mm的柱形样品,然后将样品放置于马弗炉中升温至1450 ℃烧结4h,得到致密的钛酸锶陶瓷样品。
5.烧结过程中,炉子的升温速度为2 ℃/min。
CN201710038502.7A 2017-01-19 2017-01-19 一种低介电损耗钛酸锶陶瓷的制备方法 Pending CN107827453A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710038502.7A CN107827453A (zh) 2017-01-19 2017-01-19 一种低介电损耗钛酸锶陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710038502.7A CN107827453A (zh) 2017-01-19 2017-01-19 一种低介电损耗钛酸锶陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN107827453A true CN107827453A (zh) 2018-03-23

Family

ID=61643061

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710038502.7A Pending CN107827453A (zh) 2017-01-19 2017-01-19 一种低介电损耗钛酸锶陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN107827453A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112876229A (zh) * 2021-03-22 2021-06-01 南宁国人射频通信有限公司 一种微波陶瓷及其制备方法
CN114644519A (zh) * 2022-02-28 2022-06-21 华南理工大学 一种介电陶瓷材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112876229A (zh) * 2021-03-22 2021-06-01 南宁国人射频通信有限公司 一种微波陶瓷及其制备方法
CN114644519A (zh) * 2022-02-28 2022-06-21 华南理工大学 一种介电陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
JP2001508753A (ja) 低い焼結温度で銀とともに焼成し得る低損失pztセラミック組成物およびそれを製造するための方法
CN101648807A (zh) 锆钛酸钡钙基压电陶瓷及其制备方法
CN106747415A (zh) 一种低介电损耗钛酸钙陶瓷的制备
CN116082034B (zh) 一种高储能特性的钛酸铋钠基高熵陶瓷材料及其制备方法和应用
CN113716957B (zh) 陶瓷及其制备方法、陶瓷粉体、压电陶瓷和雾化装置
CN101885607A (zh) 锆钛酸钡-铌酸钾钠基压电陶瓷及其制备方法
CN103214238A (zh) 一种钛酸锶钡基介电温度稳定型陶瓷电容器材料的制备方法
CN102659399A (zh) 一种微波介质陶瓷及其制备方法
CN107827453A (zh) 一种低介电损耗钛酸锶陶瓷的制备方法
CN105669195B (zh) 低介电常数高q值微波介质陶瓷材料及其制备方法
CN101774803A (zh) 一种(Ba,Sr)TiO3基陶瓷介质及其制备方法
CN107311643B (zh) 宽工作温区高介电性能的无铅电子陶瓷材料及制备方法
CN105669193A (zh) 铌酸钾钠锂钛酸钡基无铅压电陶瓷及其低温烧结制备方法
CN111807838B (zh) 一种Na0.25K0.25Bi2.5Nb2O9陶瓷的制备方法及其产品
CN109231983A (zh) 一种双层锆钛酸钡基陶瓷的制备方法
CN114031402A (zh) 一种低温烧结微波介质材料MgZrNb2O8及其制备方法
KR20030039572A (ko) 유전체 세라믹 조성물
CN111732430B (zh) 一种Sm和Eu共掺杂CaBi8Ti7O27陶瓷的制备方法及其产品及应用
CN103693957A (zh) 一种微波介质陶瓷的制备方法
CN110171962A (zh) 一种低温共烧陶瓷微波与毫米波材料
CN101531512B (zh) 一种温度稳定型钨青铜结构介电陶瓷及其制备方法
CN100363301C (zh) 一种低损耗高耐压陶瓷电容器介质及其制备方法
KR20210114671A (ko) 우수한 물성을 가지는 비스무스 페라이트-티탄산 바륨계 친환경 무연 압전 세라믹스 및 그 제조방법
CN1331803C (zh) (Ba1-x-ySrxYy)TiO3基电介质陶瓷材料及其制备方法
CN101302099A (zh) 低温烧结低频mlcc瓷料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180323