CN107820255A - 一种改进的协方差绝对值协作频谱感知方法 - Google Patents

一种改进的协方差绝对值协作频谱感知方法 Download PDF

Info

Publication number
CN107820255A
CN107820255A CN201711175955.0A CN201711175955A CN107820255A CN 107820255 A CN107820255 A CN 107820255A CN 201711175955 A CN201711175955 A CN 201711175955A CN 107820255 A CN107820255 A CN 107820255A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
msqrt
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711175955.0A
Other languages
English (en)
Other versions
CN107820255B (zh
Inventor
许炜阳
谢汇强
甘海华
徐圣博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201711175955.0A priority Critical patent/CN107820255B/zh
Publication of CN107820255A publication Critical patent/CN107820255A/zh
Application granted granted Critical
Publication of CN107820255B publication Critical patent/CN107820255B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明涉及一种改进的协方差绝对值协作频谱感知方法,属于无线电技术领域。该方法为:SU分别进行本地测量,并将测量结果传送给FC;FC对通过所有SU的测量数据构建样本协方差矩阵;分别计算样本协方差矩阵非对角线元素绝对值累和V1与对角线元素绝对值累和V2,并以两者之比作为ICAV感知方法的检验统计量TICAV;根据V1和V2的分布特性,推导TICAV的分布函数以及设定虚警概率下的判决阈值γICAV。本发明方法在协方差绝对值感知算法的基础上,通过互不相关的非对角线元素和对角线元素构建统计判决量,解决了CAV算法的实际分布函数与理论分布函数具有较大差距的缺点,能够克服噪声不确定度的特点,同时该检测算法与其感知算法相比具有更好的检测性能和更低的运算复杂度。

Description

一种改进的协方差绝对值协作频谱感知方法
技术领域
本发明属于无线电技术领域,涉及一种改进的协方差绝对值协作频谱感知方法。
背景技术
认知无线电(CognitiveRadio,CR)技术可以提高频谱资源利用率,是解决频谱资源短缺和提高系统容量的有效方法之一。自认知无线电自被提出之后,就受到了学术界的广泛关注和研究;同时在应用领域,诸如IEEE的无线区域网(WirelessRegionalAreaNetworks,WRANs)标准IEEE 802.22.1和无线革新联盟(WirelessInnovationAlliance,WIA)等均提倡开放电视频段中潜在的空闲频谱。
传统的频谱感知技术主要包括:能量检测(Energy Detection,ED)、循环平稳检测(CycloStationaryDetection,CSD)、匹配滤波检测(MatchedFilteringDetection,MFD)以及协方差检测(CovarianceBasedDetection,CBD)。这些算法各有优缺点和适用条件,如ED算法虽然实现简单,但是存在噪声不确定度问题;CSD算法存在计算复杂度较高且需要主用户信号具有周期平稳性的缺点;MFD算法虽然检测性能好,但是需要信号特征等先验信息,而通常这些信息难以获得。在实际认知环境中,由于无线信道的衰落,噪声不确定性的影响以及信号、信道特征等先验信息往往难以获得,ED、CSD以及MFD算法通常适应性较差,认知系统更倾向于采用对以上不利因素稳健的CBD类的感知算法。
常见的CBD算法主要有:协方差绝对值(CovarianceAbsoluteValue,CAV)感知算法、基于协方差矩阵Cholesky分解(Covariance CholeskyFactorization,CCF)的感知算法以及多天线协方差绝对值(CovarianceAbsoluteValueBasedonMultipleAntennas,CAVBMA)感知算法。在多用户集中式协作感知场景下,尽管以上CBD类感知算法都能克服传感知算法的诸多缺点,但CAV算法的存在实际分布函数与理论分布函数存在较大差距的缺点、CCF算法需要矩阵分解并且感知性能不佳以及CAVBMA等算法存在需要已知天线相关度等先验信息的缺点。由于通常感知算法判决阈值的推导依赖于检验统计量的分布函数,实际分布函数与理论分布函数存在较大差距会导致纽曼-皮尔逊(Neyman-Pearson,NP)准则下的实际虚警概率偏离设定虚警概率,从而可能导致系统不稳定甚至不可控,因此,认知无线电系统中急需判决门限精确、感知算法复杂度低,同时检测性能优异的CBD类感知算法。
发明内容
有鉴于此,本发明的目的在于提供一种改进的协方差绝对值协作频谱感知方法,在协方差绝对值感知算法的基础上,通过互不相关的非对角线元素和对角线元素构建统计判决量,解决了CAV算法的实际分布函数与理论分布函数具有较大差距的缺点。
为达到上述目的,本发明提供如下技术方案:
一种改进的协方差绝对值协作频谱感知方法,包括以下步骤:
S1:假设认知网络中各次级用户(Secondary User,SU)的个数为K,每个SU在感知时间内的采样点数为N,K≤N;各个SU进行本地测量,获得本地测量数据yk(n),然后把该数据通过传输信道发送给FC;其中yk(n)表示第k个感知用户在n时刻的离散基带采样信号;k=1,...,K,n=1,...,N不同检验下,yk(n)的信号模型为:
其中wk(n)表示均值为0,方差为的复高斯白噪声,即s(n)为主用户信号,且hk(n)为主用户与第k个认知用户在n时刻的信道冲激响应;
S2:根据各SU的测量数据,用yn=[y1(n),...,yK(n)]T表示K个SU在n时刻的样点矢量,用Y=[y1,...,yN]表示感知时间段内K个认知用户构成的样本矩阵,则融合中心(FusionCenter,FC)根据构建的采样协方差矩阵其中(·)H表示共轭转置;
S3:分别计算样本协方差矩阵非对角线元素绝对值累和V1与对角线元素绝对值累和V2,并计算检验统计量TICAV,V1、V2以及TICAV分别为
S4:求解TICAV的分布函数
在H0检验下,令L=K(K-1)/2,则当L充分大时,根据中心极限定理,得到V1服从正态分布,即其中
其中表示噪声方差,随机变量V1的概率密度函数和累积分布函数分别为
在H0检验下,根据V2的定义容易得到V2服从自由度为KN的中心卡方分布,则随机变量V2的k阶距表示为
其中χ(q)为伽马函数,定义为
根据上面对V1和V2的分布特性的分析结果,TICAV的分布函数FICAV(t)和概率密度函数fICAV(t)表示为
其中分别为标准正态分布的概率密度函数和累积分布函数;为了公式的简洁,根据通常KN较大的这一事实,这里将KN=2m+1时卡方分布的期望近似计算为KN=2m的期望;
S5:求解ICAV算法的判决阈值γICAV
在H0检验下,假设系统所需虚警概率为Pfa,则根据纽曼-皮尔逊(Neyman-Pearson,NP)准则推导
其中Q(t)为标准正态分布的右尾概率分布,定义为
推导ICAV算法的判决阈值为
其中Q-1(t)为Q(t)的反函数;
S6:判断主用户信号是否存在;如果统计判决量TICAV大于判决阈值γICAV,则主用户信号存在;否则,主用户不存在。
本发明的有益效果在于:
(1)本发明的ICAV感知方法具有不依赖信号、信道特征等先验信息,对噪声不确定度稳健的特点。
(2)本发明在CAV感知算法的基础上,通过互不相关的非对角线元素和对角线元素构建统计判决量,解决了CAV算法的实际分布函数与理论分布函数具有较大差距的缺点。此外,相较于CCF算法,由于ICAV算法不需要做矩阵分解,因此相较于CCF具有更低的计算复杂度。同时相较于CAVBMA算法,ICAV算法不需要天线相关度等先验信息。
(3)本发明的ICAV感知方法较传统的ED感知算法、CAV感知算法以及CCF感知算法具有更好的检测性能。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为本发明ICAV算法的实施流程图。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
如图1所示,本发明的目的在于克服现有技术的缺点与不足,提供一种基于样本协方差矩阵的改进协方差绝对值协作频谱感知方法。针对多用户协作感知场景,在样本协方差矩阵统计分布特性的基础上,本发明推导了样本协方差矩阵非对角线元素绝对值之和以及对角线元素绝对值之和的概率密度函数和累积分布函数。然后以样本协方差矩阵非对角线元素累和与对角线元素绝对值累和之比作为统计检验量,提出了改进的协方差矩阵绝对值(Improved Covariance Absolute Value,ICAV)感知算法,其感知步骤如下:
步骤1:假设认知网络中SU的个数为K,每个SU在感知时间内的采样点数为N,K≤N。各个SU进行本地测量,获得本地测量数据yk(n),然后把该数据通过传输信道发送给FC。其中yk(n)表示第k(k=1,...,K)个感知用户在n(n=1,...,N)时刻的离散基带采样信号。不同检验下,yk(n)的信号模型公式(1)所示,
其中wk(n)表示均值为0,方差为的复高斯白噪声,即s(n)为主用户信号,且hk(n)为主用户与第k个认知用户在n时刻的信道冲激响应。
步骤2:根据各SU的测量数据,用yn=[y1(n),...,yK(n)]T表示K个SU在n时刻的样点矢量,用Y=[y1,...,yN]表示感知时间段内K个认知用户构成的样本矩阵,则FC根据构建的采样协方差矩阵可以表示为
其中(·)H表示共轭转置。
步骤3:分别计算样本协方差矩阵非对角线元素绝对值累和(V1)与对角线元素绝对值累和(V2),并计算检验统计量TICAV,V1、V2以及TICAV可以表示为
步骤4:求解TICAV的分布函数
在H0检验下,令L=K(K-1)/2,则当L充分大时,根据中心极限定理,可以得到V1服从正态分布,即其中
其中表示噪声方差,根据式(6)和式(7),随机变量V1的概率密度函数和累积分布函数可以分别表示为
在H0检验下,根据V2的定义容易得到V2服从自由度为KN的中心卡方分布,则随机变量V2的k阶距可以表示为
其中χ(q)为伽马函数,定义为
根据上面对V1和V2的分布特性的分析结果,TICAV的分布函数FICAV(t)和概率密度函数fICAV(t)可以表示为
其中分别为标准正态分布的概率密度函数和累积分布函数。上式中E(V2)可以根据式(10)进行计算,并且为了公式的简洁,根据通常KN较大的这一事实,这里将KN=2m+1时卡方分布的期望近似计算为KN=2m的期望。
步骤5:求解ICAV算法的判决阈值γICAV
在H0检验下,假设系统所需虚警概率为Pfa,则根据纽曼-皮尔逊(Neyman-Pearson,NP)准则可以推导
其中Q(t)为标准正态分布的右尾概率分布,定义为
根据式(13),可以推导ICAV算法的判决阈值为
其中Q-1(t)为Q(t)的反函数。
步骤6:判断主用户信号是否存在。如果统计判决量TICAV大于判决阈值γICAV,则主用户信号存在;否则,主用户不存在。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (1)

1.一种改进的协方差绝对值协作频谱感知方法,其特征在于:该方法包括以下步骤:
S1:假设认知网络中各次级用户(Secondary User,SU)的个数为K,每个SU在感知时间内的采样点数为N,K≤N;各个SU进行本地测量,获得本地测量数据yk(n),然后把该数据通过传输信道发送给FC;其中yk(n)表示第k个感知用户在n时刻的离散基带采样信号;k=1,...,K,n=1,...,N不同检验下,yk(n)的信号模型为:
<mrow> <msub> <mi>y</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>w</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <msub> <mi>H</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>h</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>w</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <msub> <mi>H</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
其中wk(n)表示均值为0,方差为的复高斯白噪声,即s(n)为主用户信号,且hk(n)为主用户与第k个认知用户在n时刻的信道冲激响应;
S2:根据各SU的测量数据,用yn=[y1(n),...,yK(n)]T表示K个SU在n时刻的样点矢量,用Y=[y1,...,yN]表示感知时间段内K个认知用户构成的样本矩阵,则融合中心(FusionCenter,FC)根据构建的采样协方差矩阵其中(·)H表示共轭转置;
S3:分别计算样本协方差矩阵非对角线元素绝对值累和V1与对角线元素绝对值累和V2,并计算检验统计量TICAV,V1、V2以及TICAV分别为
<mrow> <msub> <mi>V</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>K</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </munderover> <mo>|</mo> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mi>i</mi> </mrow> </msub> <mo>|</mo> </mrow>
<mrow> <msub> <mi>T</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>A</mi> <mi>V</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>V</mi> <mn>1</mn> </msub> <msub> <mi>V</mi> <mn>2</mn> </msub> </mfrac> <mo>;</mo> </mrow>
S4:求解TICAV的分布函数
在H0检验下,令L=K(K-1)/2,则当L充分大时,根据中心极限定理,得到V1服从正态分布,即其中
<mrow> <msub> <mi>u</mi> <msup> <mi>Q</mi> <mo>&amp;prime;</mo> </msup> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>K</mi> </mfrac> <msqrt> <mrow> <mn>2</mn> <mo>/</mo> <mrow> <mo>(</mo> <mi>N</mi> <mi>&amp;pi;</mi> <mo>)</mo> </mrow> </mrow> </msqrt> <msubsup> <mi>&amp;sigma;</mi> <mi>w</mi> <mn>2</mn> </msubsup> </mrow>
<mrow> <msubsup> <mi>&amp;sigma;</mi> <msup> <mi>Q</mi> <mo>&amp;prime;</mo> </msup> <mn>2</mn> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msup> <mi>K</mi> <mn>2</mn> </msup> <mi>N</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mn>2</mn> <mi>&amp;pi;</mi> </mfrac> <mo>)</mo> </mrow> <msubsup> <mi>&amp;sigma;</mi> <mi>w</mi> <mn>4</mn> </msubsup> </mrow>
其中表示噪声方差,随机变量V1的概率密度函数和累积分布函数分别为
<mrow> <msub> <mi>f</mi> <msub> <mi>V</mi> <mn>1</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msqrt> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mi>L</mi> </mrow> </msqrt> <msub> <mi>&amp;sigma;</mi> <msub> <mi>V</mi> <mn>1</mn> </msub> </msub> </mrow> </mfrac> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>Lu</mi> <msub> <mi>V</mi> <mn>1</mn> </msub> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msubsup> <mi>L&amp;sigma;</mi> <msub> <mi>V</mi> <mn>1</mn> </msub> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>F</mi> <msub> <mi>V</mi> <mn>1</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msqrt> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mi>L</mi> </mrow> </msqrt> <msub> <mi>&amp;sigma;</mi> <msub> <mi>V</mi> <mn>1</mn> </msub> </msub> </mrow> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>&amp;infin;</mi> </mrow> <mi>t</mi> </msubsup> <mo>|</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>Lu</mi> <msub> <mi>V</mi> <mn>1</mn> </msub> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msubsup> <mi>L&amp;sigma;</mi> <msub> <mi>V</mi> <mn>1</mn> </msub> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>|</mo> </mrow>
在H0检验下,根据V2的定义容易得到V2服从自由度为KN的中心卡方分布,则随机变量V2的k阶距表示为
<mrow> <mi>E</mi> <mo>{</mo> <msubsup> <mi>V</mi> <mn>2</mn> <mi>k</mi> </msubsup> <mo>}</mo> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msup> <mrow> <mo>(</mo> <mn>2</mn> <msubsup> <mi>&amp;sigma;</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mi>k</mi> </msup> <mfrac> <mrow> <mi>&amp;chi;</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <mi>K</mi> <mi>N</mi> <mo>=</mo> <mn>2</mn> <mi>m</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mrow> <mo>(</mo> <mn>2</mn> <msubsup> <mi>&amp;sigma;</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mi>k</mi> </msup> <mfrac> <mrow> <mi>&amp;chi;</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mi>k</mi> <mo>+</mo> <mn>0.5</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>&amp;chi;</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <mi>K</mi> <mi>N</mi> <mo>=</mo> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
其中χ(q)为伽马函数,定义为
根据上面对V1和V2的分布特性的分析结果,TICAV的分布函数FICAV(t)和概率密度函数fICAV(t)表示为
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>A</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>A</mi> <mi>V</mi> </mrow> </msub> <mo>&amp;le;</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>P</mi> <mo>|</mo> <mfrac> <msub> <mi>V</mi> <mn>1</mn> </msub> <msub> <mi>V</mi> <mn>2</mn> </msub> </mfrac> <mo>&amp;le;</mo> <mi>t</mi> <mo>|</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>P</mi> <mo>|</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>Lu</mi> <msup> <mi>Q</mi> <mo>&amp;prime;</mo> </msup> </msub> </mrow> <mrow> <msub> <mi>&amp;sigma;</mi> <msup> <mi>Q</mi> <mo>&amp;prime;</mo> </msup> </msub> <msqrt> <mi>L</mi> </msqrt> </mrow> </mfrac> <mo>&amp;le;</mo> <mfrac> <mrow> <mi>t</mi> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>Lu</mi> <msup> <mi>Q</mi> <mo>&amp;prime;</mo> </msup> </msub> </mrow> <mrow> <msub> <mi>&amp;sigma;</mi> <msup> <mi>Q</mi> <mo>&amp;prime;</mo> </msup> </msub> <msqrt> <mi>L</mi> </msqrt> </mrow> </mfrac> <mo>|</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>F</mi> <mi>N</mi> </msub> <mo>|</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> <mi>K</mi> <mi>N</mi> <mi>t</mi> <mo>-</mo> <mi>K</mi> <mrow> <mo>(</mo> <mi>K</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msqrt> <mfrac> <mi>N</mi> <mi>&amp;pi;</mi> </mfrac> </msqrt> </mrow> <msqrt> <mrow> <mi>K</mi> <mi>N</mi> <mrow> <mo>(</mo> <mi>K</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>|</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mn>2</mn> <mi>&amp;pi;</mi> </mfrac> <mo>|</mo> </mrow> </msqrt> </mfrac> <mo>|</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>A</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>d</mi> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>A</mi> <mi>V</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <msqrt> <mrow> <mn>2</mn> <mi>K</mi> <mi>N</mi> </mrow> </msqrt> <msqrt> <mrow> <mo>(</mo> <mi>K</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mn>2</mn> <mi>&amp;pi;</mi> </mfrac> </mrow> </msqrt> </mfrac> <msub> <mi>f</mi> <mi>N</mi> </msub> <mo>|</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> <mi>K</mi> <mi>N</mi> <mi>t</mi> <mo>-</mo> <mi>K</mi> <mrow> <mo>(</mo> <mi>K</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msqrt> <mfrac> <mi>N</mi> <mi>&amp;pi;</mi> </mfrac> </msqrt> </mrow> <msqrt> <mrow> <mi>K</mi> <mi>N</mi> <mrow> <mo>(</mo> <mi>K</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mn>2</mn> <mi>&amp;pi;</mi> </mfrac> </mrow> </msqrt> </mfrac> <mo>|</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
其中分别为标准正态分布的概率密度函数和累积分布函数;为了公式的简洁,根据通常KN较大的这一事实,这里将KN=2m+1时卡方分布的期望近似计算为KN=2m的期望;
S5:求解ICAV算法的判决阈值γICAV
在H0检验下,假设系统所需虚警概率为Pfa,则根据纽曼-皮尔逊(Neyman-Pearson,NP)准则推导
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>f</mi> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>A</mi> <mi>V</mi> </mrow> </msub> <mo>&gt;</mo> <msub> <mi>&amp;gamma;</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>A</mi> <mi>V</mi> </mrow> </msub> <mo>|</mo> <msub> <mi>H</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>A</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>A</mi> <mi>V</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>Q</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> <msub> <mi>KN&amp;gamma;</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>A</mi> <mi>V</mi> </mrow> </msub> <mo>-</mo> <mi>K</mi> <mrow> <mo>(</mo> <mi>K</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msqrt> <mfrac> <mi>N</mi> <mi>&amp;pi;</mi> </mfrac> </msqrt> </mrow> <msqrt> <mrow> <mi>K</mi> <mi>N</mi> <mrow> <mo>(</mo> <mi>K</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>|</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mn>2</mn> <mi>&amp;pi;</mi> </mfrac> <mo>|</mo> </mrow> </msqrt> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
其中Q(t)为标准正态分布的右尾概率分布,定义为
推导ICAV算法的判决阈值为
<mrow> <msub> <mi>&amp;gamma;</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>A</mi> <mi>V</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msqrt> <mn>2</mn> </msqrt> <mi>K</mi> <mi>N</mi> </mrow> </mfrac> <mo>|</mo> <msup> <mi>Q</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>f</mi> <mi>a</mi> </mrow> </msub> <mo>)</mo> </mrow> <msqrt> <mrow> <mi>N</mi> <mi>K</mi> <mrow> <mo>(</mo> <mi>K</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mn>2</mn> <mi>&amp;pi;</mi> </mfrac> <mo>)</mo> </mrow> </mrow> </msqrt> <mo>+</mo> <mi>K</mi> <mrow> <mo>(</mo> <mi>K</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msqrt> <mfrac> <mrow> <mn>2</mn> <mi>N</mi> </mrow> <mi>&amp;pi;</mi> </mfrac> </msqrt> <mo>|</mo> </mrow>
其中Q-1(t)为Q(t)的反函数;
S6:判断主用户信号是否存在;如果统计判决量TICAV大于判决阈值γICAV,则主用户信号存在;否则,主用户不存在。
CN201711175955.0A 2017-11-22 2017-11-22 一种改进的协方差绝对值协作频谱感知方法 Expired - Fee Related CN107820255B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711175955.0A CN107820255B (zh) 2017-11-22 2017-11-22 一种改进的协方差绝对值协作频谱感知方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711175955.0A CN107820255B (zh) 2017-11-22 2017-11-22 一种改进的协方差绝对值协作频谱感知方法

Publications (2)

Publication Number Publication Date
CN107820255A true CN107820255A (zh) 2018-03-20
CN107820255B CN107820255B (zh) 2021-05-04

Family

ID=61609759

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711175955.0A Expired - Fee Related CN107820255B (zh) 2017-11-22 2017-11-22 一种改进的协方差绝对值协作频谱感知方法

Country Status (1)

Country Link
CN (1) CN107820255B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108900267A (zh) * 2018-07-17 2018-11-27 浙江万胜智能科技股份有限公司 基于特征值的单边右尾拟合优度检验频谱感知方法及装置
CN109004996A (zh) * 2018-08-13 2018-12-14 哈尔滨工业大学 基于多正弦窗功率谱峰值的信号检测方法
CN109379153A (zh) * 2018-12-17 2019-02-22 电子科技大学 一种频谱感知方法
CN112821968A (zh) * 2020-12-30 2021-05-18 杭州电子科技大学 一种基于压缩感知和支持向量机的高效频谱感知方法
CN113353083A (zh) * 2021-08-10 2021-09-07 所托(杭州)汽车智能设备有限公司 车辆行为识别方法
CN113434816A (zh) * 2020-09-21 2021-09-24 重庆工商大学 一种噪声增强奈曼-皮尔逊准则下信号检测的方法
CN114265359A (zh) * 2021-12-15 2022-04-01 昆船智能技术股份有限公司 一种输送设备运行时间异常的智能检测系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150057041A1 (en) * 2013-08-22 2015-02-26 Nokia Corporation Blind Spectrum Sensing Based on Maximum Correlation Coefficients and use Thereof
CN105025583A (zh) * 2015-07-02 2015-11-04 哈尔滨工业大学 基于能量与协方差检测的分步频谱感知方法
CN106341201A (zh) * 2016-08-24 2017-01-18 重庆大学 一种授权用户信号检测方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150057041A1 (en) * 2013-08-22 2015-02-26 Nokia Corporation Blind Spectrum Sensing Based on Maximum Correlation Coefficients and use Thereof
CN105025583A (zh) * 2015-07-02 2015-11-04 哈尔滨工业大学 基于能量与协方差检测的分步频谱感知方法
CN106341201A (zh) * 2016-08-24 2017-01-18 重庆大学 一种授权用户信号检测方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ABHIJEET MATE等: "Spectrum sensing based on time covariance matrix using GNU radio and USRP for cognitive radio", 《 2011 IEEE LONG ISLAND SYSTEMS, APPLICATIONS AND TECHNOLOGY CONFERENCE》 *
李宁等: "利用秩和检验的多天线协作频谱感知", 《电讯技术》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108900267A (zh) * 2018-07-17 2018-11-27 浙江万胜智能科技股份有限公司 基于特征值的单边右尾拟合优度检验频谱感知方法及装置
CN108900267B (zh) * 2018-07-17 2021-10-15 浙江万胜智能科技股份有限公司 基于特征值的单边右尾拟合优度检验频谱感知方法及装置
CN109004996A (zh) * 2018-08-13 2018-12-14 哈尔滨工业大学 基于多正弦窗功率谱峰值的信号检测方法
CN109004996B (zh) * 2018-08-13 2020-11-03 哈尔滨工业大学 基于多正弦窗功率谱峰值的信号检测方法
CN109379153A (zh) * 2018-12-17 2019-02-22 电子科技大学 一种频谱感知方法
CN109379153B (zh) * 2018-12-17 2020-01-17 电子科技大学 一种频谱感知方法
CN113434816A (zh) * 2020-09-21 2021-09-24 重庆工商大学 一种噪声增强奈曼-皮尔逊准则下信号检测的方法
CN112821968A (zh) * 2020-12-30 2021-05-18 杭州电子科技大学 一种基于压缩感知和支持向量机的高效频谱感知方法
CN113353083A (zh) * 2021-08-10 2021-09-07 所托(杭州)汽车智能设备有限公司 车辆行为识别方法
CN114265359A (zh) * 2021-12-15 2022-04-01 昆船智能技术股份有限公司 一种输送设备运行时间异常的智能检测系统及方法
CN114265359B (zh) * 2021-12-15 2023-08-25 昆船智能技术股份有限公司 一种输送设备运行时间异常的智能检测系统及方法

Also Published As

Publication number Publication date
CN107820255B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
CN107820255A (zh) 一种改进的协方差绝对值协作频谱感知方法
Atapattu et al. Energy detection for spectrum sensing in cognitive radio
US20200044899A1 (en) Method for automatically identifying modulation mode for digital communication signal
Hamid et al. Energy and eigenvalue based combined fully blind self adapted spectrum sensing algorithm
CN101507151B (zh) 用于对接收信号进行分类的方法和装置
CN103414527A (zh) 一种基于能量检测的信号检测方法
JP5624847B2 (ja) 信号検出装置及び信号検出方法
CN103391143B (zh) 基于特征值的多天线盲频谱感知方法及系统
CN103338082B (zh) 一种基于“k秩”准则的双门限协作频谱感知方法
CN104038296B (zh) 一种认知无线电网络的协作频谱检测方法
CN103873171B (zh) 基于多用户互协作的协作频谱感知决策融合方法
CN107370521A (zh) 一种认知无线电多用户协作频谱感知方法
CN103220052A (zh) 一种认知无线电中检测频谱空洞的方法
CN106059840A (zh) 一种认知无线系统功率分配方法及装置
CN105933257A (zh) 一种频谱共享方式下时频重叠信号的信噪比估计方法
CN102710345B (zh) 一种基于多天线Friedman检验的认知无线电频谱感知方法
CN104780006A (zh) 基于最小错误概率准则的频谱检测器软融合方法
CN103973383B (zh) 基于Cholesky分解与特征值的协作频谱检测方法
CN104270212B (zh) 一种基于分组数据型序贯能量检测的信道频谱感知方法
CN103841566B (zh) 移动模型下存在恶意用户攻击的基于d‑s证据理论的协作频谱感知方法
CN105959246A (zh) 一种抗干扰方法
Marsalek et al. Kolmogorov-smirnov test for spectrum sensing: From the statistical test to energy detection
CN108494511A (zh) 一种基于绝对值累积的动态到达频谱感知方法
CN105429913B (zh) 基于特征值的多电平检测与识别方法
CN102497239B (zh) 一种基于极化度的频谱感知方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210504

Termination date: 20211122

CF01 Termination of patent right due to non-payment of annual fee