CN107779851A - 一种碳纤维/非晶合金复合电磁波吸收材料及其制备方法 - Google Patents

一种碳纤维/非晶合金复合电磁波吸收材料及其制备方法 Download PDF

Info

Publication number
CN107779851A
CN107779851A CN201711003099.0A CN201711003099A CN107779851A CN 107779851 A CN107779851 A CN 107779851A CN 201711003099 A CN201711003099 A CN 201711003099A CN 107779851 A CN107779851 A CN 107779851A
Authority
CN
China
Prior art keywords
carbon fiber
solution
preparation
amorphous metal
metal composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711003099.0A
Other languages
English (en)
Other versions
CN107779851B (zh
Inventor
朱曜峰
杨期鑫
李想
廖金龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN201711003099.0A priority Critical patent/CN107779851B/zh
Publication of CN107779851A publication Critical patent/CN107779851A/zh
Application granted granted Critical
Publication of CN107779851B publication Critical patent/CN107779851B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Chemically Coating (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明涉及吸波材料技术领域,具体涉及一种碳纤维/非晶合金复合电磁波吸收材料及其制备方法。所述电磁波吸收材料采用碳纤维与Ni‑Co‑Fe‑P非晶合金层复合而成。该材料将具备电阻损耗,介电损耗、磁损耗三位一体有效结合的电磁损耗特性,同时是一种可实现电磁参数可调、高强及宽频吸收的高性能智能化的电磁吸波材料。

Description

一种碳纤维/非晶合金复合电磁波吸收材料及其制备方法
技术领域
本发明涉及吸波材料技术领域,具体涉及一种碳纤维/非晶合金复合电磁波吸收材料及其制备方法。
背景技术
随着电子信息的不断发展,不管在军事领域还是在民用领域,电磁波给行业带来福音的同时,也产生了诸多问题,如电子信息干扰,安全信息保密问题,以及电磁辐射对人们产生的健康问题。
碳纤维是一种十分优良的材料。碳纤维的物理性能上具有强度大、模量高的特点。化学性能稳定,不燃烧,不受酸、盐等溶液侵蚀。碳纤维的线膨胀系数小,在高温下机械性能变化小;碳纤维有良好的导电,可反射电磁波,电磁波密封性能好,X射线通过性能良好。由于碳纤维具有这些优良的性能,使它的应用范围极为广阔。
而非晶态合金属于非晶态材料中新兴的分支,在非晶合金材料研究领域,除了已较常见的利用非晶材料优良电磁特性的应用之外,还出现了利用非晶合金材料的强度、硬度等特殊性能的新型材料。这些非晶合金材料将来可航空航天领域、军事兵器领域、化学工业、医疗与体育器材等领域发挥重大作用。
但是目前还没有相关的吸波材料及相关的制备方法。
发明内容
本发明的目的是为了解决上述问题,提供一种碳纤维/非晶合金复合电磁波吸收材料及其制备方法。
本实验将探索构建非晶合金/碳纤维复合吸波体系,并通过对复合纤维集合取向结构设计,将电阻损耗,介电损耗、磁损耗三位一体有效结合,实现宽频段强吸收的性能。为推进新型电磁吸波材料的发展提供一种新思路。本项目以化学镀的方法构筑非晶合金/碳纤维磁功能化复合纤维吸波材料,通过对纤维集合的取向结构设计,构筑具备电阻损耗,介电损耗、磁损耗三位一体有效结合,并可实现电磁参数可调、高强及宽频吸收的高性能智能化非晶合金/碳纤维复合吸波体系。探讨研究非晶合金/碳纤维复合吸波体系构建及合成机理,分析复合纤维集合取向结构设计对体系电磁参数的影响,阐释非晶合金/碳纤维复合吸波体系的吸波机理。
本发明的目的设计并构建以碳纤维为构架,采用硼酸为缓冲剂、柠檬酸钠为络合剂,利用化学镀的方法,以钯作为催化剂使Ni-Co-Fe-P非晶合金在碳纤维表面形成层,并使两者的优异性能得到有机结合,得出新型并具有良好物理性能和吸波性能的高性能碳纤维非晶合金复合吸波材料。
为了达到上述发明目的,本发明采用以下技术方案:
一种碳纤维/非晶合金复合电磁波吸收材料,所述电磁波吸收材料采用碳纤维与Ni-Co-Fe-P非晶合金层复合而成。
一种碳纤维/非晶合金复合电磁波吸收材料的制备方法,包括以下步骤:
1)采用Na3C6H5O7.2H2O、H3BO3、Na2H2PO2.H2O与NiSO4.6H2O、CoSO4.7H2O、FeSO4.7H2O配制成镀液;
2)采用硝酸处理碳纤维;
3)配制PdCl2溶液和SnCl2溶液;
4)采用SnCl2溶液处理碳纤维;
5)然后采用PdCl2溶液处理碳纤维;
6)将处理后的碳纤维置于镀液中进行反应,得到产物。
作为优选的方案,制备方法具体为:
1)在1000ml烧杯中加入NiSO4.6H2O 10.54g,并加入50ml去离子水搅拌溶解;
然后加入CoSO4.7H2O 4.22g,并加入50ml去离子水搅拌溶解;
然后加入FeSO4.7H2O 4.78g,并加入50ml去离子水后搅拌溶解;
然后加入Na3C6H5O7. 2H2O 34.2g,并加入100ml去离子水后搅拌溶解;
然后加入H3BO3 15.5g,并加入150ml去离子水搅拌溶解;
然后加入Na2H2PO2.H2O 18.1g,并加入50ml去离子水后搅拌溶解;
搅拌混合均匀后制得镀液;
2)将100ml浓HNO3稀释成300ml的溶液,之后放入碳纤维3g,在60℃水浴下处理碳纤维1-2h;
3)称取0.045gPdCl2,在250ml容量瓶中配制成0.18g/L的PdCl2溶液;称取4gSnCl2,在250ml容量瓶中配制成16g/L的SnCl2溶液;在配制过程中先用1mol/L的HCl溶解再加去离子水配制成溶液;
4)将处理后的碳纤维浸入到16g/L的SnCl2溶液中,时间为10min,然后将碳纤维取出,用去离子水清洗后烘干静置;
5)将SnCl2溶液处理后的碳纤维浸人到0.18g/L的PdCl2溶液中,时间为10min,满10min后将碳纤维取出,用去离子水清洗后烘干静置;
6)将干燥后的碳纤维放入到步骤1)中的镀液中,在60℃水浴下加热镀60min-90min取出,用去离子水清洗烘干,得到产品。
作为优选的方案,在所述步骤2)中,碳纤维的表面进行改性在60℃水浴下处理1h。
作为优选的方案,在所述步骤6)中,化学镀在60℃水浴条件下进行1h。
作为优选的方案,步骤6)中化学镀开始时,调节混合液的pH为7-8。
作为优选的方案,步骤6)中化学镀开始后,0-10min内pH为7.5-8,第10-20min内,将镀液pH调整为6.5-6.8;30min后,将镀液pH调整为7.2-7.5,50min后,将pH调整为8-9。本申请将化学镀过程分为多个过程,每个过程侧重不同,通过多个不同的参数过程,可以使Ni-Co-Fe-P的镀层更加致密从而提高吸波性。
作为优选的方案,在步骤6)中的镀液中加入柠檬酸钠3-5g。通过加入柠檬酸钠,可以提高Ni、Co-Fe的均匀性。
本发明与现有技术相比,有益效果是:
该材料将具备电阻损耗,介电损耗、磁损耗三位一体有效结合的电磁损耗特性,同时是一种可实现电磁参数可调、高强及宽频吸收的高性能智能化的电磁吸波材料。
具体实施方式
下面通过具体实施例对本发明的技术方案作进一步描述说明。
如果无特殊说明,本发明的实施例中所采用的原料均为本领域常用的原料,实施例中所采用的方法,均为本领域的常规方法。
一种碳纤维/非晶合金复合电磁波吸收材料,所述电磁波吸收材料采用碳纤维与Ni-Co-Fe-P非晶合金层复合而成,其制备方法,包括以下步骤:
1)采用Na3C6H5O7.2H2O、H3BO3、Na2H2PO2.H2O与NiSO4.6H2O、CoSO4.7H2O、FeSO4.7H2O配制成镀液;
2)采用硝酸处理碳纤维;
3)配制PdCl2溶液和SnCl2溶液;
4)采用SnCl2溶液处理碳纤维;
5)然后采用PdCl2溶液处理碳纤维;
6)将处理后的碳纤维置于镀液中进行反应,得到产物。
实施例1:
一种碳纤维/非晶合金复合电磁波吸收材料的制备方法具体为:
1)在1000ml烧杯中加入NiSO4.6H2O 10.54g,并加入50ml去离子水搅拌溶解;
然后加入CoSO4.7H2O 4.22g,并加入50ml去离子水搅拌溶解;
然后加入FeSO4.7H2O 4.78g,并加入50ml去离子水后搅拌溶解;
然后加入Na3C6H5O7. 2H2O 34.2g,并加入100ml去离子水后搅拌溶解;
然后加入H3BO3 15.5g,并加入150ml去离子水搅拌溶解;
然后加入Na2H2PO2.H2O 18.1g,并加入50ml去离子水后搅拌溶解;
搅拌混合均匀后制得镀液;
2)将100ml浓HNO3稀释成300ml的溶液,之后放入碳纤维3g,在60℃水浴下处理碳纤维1-2h,优选为1h;
3)称取0.045gPdCl2,在250ml容量瓶中配制成0.18g/L的PdCl2溶液;称取4gSnCl2,在250ml容量瓶中配制成16g/L的SnCl2溶液;在配制过程中先用1mol/L的HCl溶解再加去离子水配制成溶液;
4)将处理后的碳纤维浸入到16g/L的SnCl2溶液中,时间为10min,然后将碳纤维取出,用去离子水清洗后烘干静置;
5)将SnCl2溶液处理后的碳纤维浸人到0.18g/L的PdCl2溶液中,时间为10min,满10min后将碳纤维取出,用去离子水清洗后烘干静置;
6)将干燥后的碳纤维放入到步骤1)中的镀液中,在60℃水浴下加热镀,化学镀开始后,0-10min内pH为7.5-8,第10-20min内,将镀液pH调整为6.5-6.8;30min后,将镀液pH调整为7.2-7.5,50min后,将pH调整为8-9,化学镀时间为60min-90min,优选的镀的时间为1h,最后用去离子水清洗烘干,得到产品。
实施例2:
一种碳纤维/非晶合金复合电磁波吸收材料的制备方法具体为:
1)在1000ml烧杯中加入NiSO4.6H2O 10.54g,并加入50ml去离子水搅拌溶解;
然后加入CoSO4.7H2O 4.22g,并加入50ml去离子水搅拌溶解;
然后加入FeSO4.7H2O 4.78g,并加入50ml去离子水后搅拌溶解;
然后加入Na3C6H5O7. 2H2O 34.2g,并加入100ml去离子水后搅拌溶解;
然后加入H3BO3 15.5g,并加入150ml去离子水搅拌溶解;
然后加入Na2H2PO2.H2O 18.1g,并加入50ml去离子水后搅拌溶解;
搅拌混合均匀后制得镀液;
2)将100ml浓HNO3稀释成300ml的溶液,之后放入碳纤维3g,在60℃水浴下处理碳纤维1-2h,优选为1h;
3)称取0.045gPdCl2,在250ml容量瓶中配制成0.18g/L的PdCl2溶液;称取4gSnCl2,在250ml容量瓶中配制成16g/L的SnCl2溶液;在配制过程中先用1mol/L的HCl溶解再加去离子水配制成溶液;
4)将处理后的碳纤维浸入到16g/L的SnCl2溶液中,时间为10min,然后将碳纤维取出,用去离子水清洗后烘干静置;
5)将SnCl2溶液处理后的碳纤维浸人到0.18g/L的PdCl2溶液中,时间为10min,满10min后将碳纤维取出,用去离子水清洗后烘干静置;
6)将干燥后的碳纤维放入到步骤1)中的镀液中,调节混合液的pH为7-8,在60℃水浴下加热镀60min-90min取出,优选的镀的时间为1h,最后用去离子水清洗烘干,得到产品。
实施例1:
一种碳纤维/非晶合金复合电磁波吸收材料的制备方法具体为:
1)在1000ml烧杯中加入NiSO4.6H2O 10.54g,并加入50ml去离子水搅拌溶解;
然后加入CoSO4.7H2O 4.22g,并加入50ml去离子水搅拌溶解;
然后加入FeSO4.7H2O 4.78g,并加入50ml去离子水后搅拌溶解;
然后加入Na3C6H5O7. 2H2O 34.2g,并加入100ml去离子水后搅拌溶解;
然后加入H3BO3 15.5g,并加入150ml去离子水搅拌溶解;
然后加入Na2H2PO2.H2O 18.1g,并加入50ml去离子水后搅拌溶解;
搅拌混合均匀后制得镀液;
2)将100ml浓HNO3稀释成300ml的溶液,之后放入碳纤维3g,在60℃水浴下处理碳纤维1-2h,优选为1h;
3)称取0.045gPdCl2,在250ml容量瓶中配制成0.18g/L的PdCl2溶液;称取4gSnCl2,在250ml容量瓶中配制成16g/L的SnCl2溶液;在配制过程中先用1mol/L的HCl溶解再加去离子水配制成溶液;
4)将处理后的碳纤维浸入到16g/L的SnCl2溶液中,时间为10min,然后将碳纤维取出,用去离子水清洗后烘干静置;
5)将SnCl2溶液处理后的碳纤维浸人到0.18g/L的PdCl2溶液中,时间为10min,满10min后将碳纤维取出,用去离子水清洗后烘干静置;
6)将干燥后的碳纤维放入到步骤1)中的镀液中,并在镀液中加入柠檬酸钠3-5g,在60℃水浴下加热镀,化学镀开始后,0-10min内pH为7.5-8,第10-20min内,将镀液pH调整为6.5-6.8;30min后,将镀液pH调整为7.2-7.5,50min后,将pH调整为8-9,化学镀时间为60min-90min,优选的镀的时间为1h,最后用去离子水清洗烘干,得到产品。
最后测试,实施例2和3制备的材料的吸波性能比实施例制备的吸波性能提高了10-15%,其中实施例3制备的材料的吸波性能更好。
这是因为,实施例2和3的化学镀工艺,能够使碳纤维负载更加均匀和致密的非晶合金层,从而提高材料的吸波性能。

Claims (8)

1.一种碳纤维/非晶合金复合电磁波吸收材料,其特征在于,所述电磁波吸收材料采用碳纤维与Ni-Co-Fe-P非晶合金层复合而成。
2.一种碳纤维/非晶合金复合电磁波吸收材料的制备方法,其特征在于,包括以下步骤:
1)采用Na3C6H5O7.2H2O、H3BO3、Na2H2PO2.H2O与NiSO4.6H2O、CoSO4.7H2O、FeSO4.7H2O配制成镀液;
2)采用硝酸处理碳纤维;
3)配制PdCl2溶液和SnCl2溶液;
4)采用SnCl2溶液处理碳纤维;
5)然后采用PdCl2溶液处理碳纤维;
6)将处理后的碳纤维置于镀液中进行反应,得到产物。
3.根据权利要求2的一种碳纤维/非晶合金复合电磁波吸收材料的制备方法,其特征在于,制备方法具体为:
1)在1000ml烧杯中加入NiSO4.6H2O 10.54g,并加入50ml去离子水搅拌溶解;
然后加入CoSO4.7H2O 4.22g,并加入50ml去离子水搅拌溶解;
然后加入FeSO4.7H2O 4.78g,并加入50ml去离子水后搅拌溶解;
然后加入Na3C6H5O7. 2H2O 34.2g,并加入100ml去离子水后搅拌溶解;
然后加入H3BO3 15.5g,并加入150ml去离子水搅拌溶解;
然后加入Na2H2PO2.H2O 18.1g,并加入50ml去离子水后搅拌溶解;
搅拌混合均匀后制得镀液;
2)将100ml浓HNO3稀释成300ml的溶液,之后放入碳纤维3g,在60℃水浴下处理碳纤维1-2h;
3)称取0.045gPdCl2,在250ml容量瓶中配制成0.18g/L的PdCl2溶液;称取4gSnCl2,在250ml容量瓶中配制成16g/L的SnCl2溶液;在配制过程中先用1mol/L的HCl溶解再加去离子水配制成溶液;
4)将处理后的碳纤维浸入到16g/L的SnCl2溶液中,时间为10min,然后将碳纤维取出,用去离子水清洗后烘干静置;
5)将SnCl2溶液处理后的碳纤维浸人到0.18g/L的PdCl2溶液中,时间为10min,满10min后将碳纤维取出,用去离子水清洗后烘干静置;
6)将干燥后的碳纤维放入到步骤1)中的镀液中,在60℃水浴下加热镀60min-90min取出,用去离子水清洗烘干,得到产品。
4.根据权利要求2或3所述的一种碳纤维/非晶合金复合电磁波吸收材料的制备方法,其特征在于,在所述步骤2)中,碳纤维的表面进行改性在60℃水浴下处理1h。
5.根据权利要求2或3所述的一种碳纤维/非晶合金复合电磁波吸收材料的制备方法,其特征在于,在所述步骤6)中,化学镀在60℃水浴条件下进行1h。
6.根据权利要求2或3所述的一种碳纤维/非晶合金复合电磁波吸收材料的制备方法,其特征在于,步骤6)中化学镀开始时,调节混合液的pH为7-8。
7.根据权利要求6所述的一种碳纤维/非晶合金复合电磁波吸收材料的制备方法,其特征在于,步骤6)中化学镀开始后,0-10min内pH为7.5-8,第10-20min内,将镀液pH调整为6.5-6.8;30min后,将镀液pH调整为7.2-7.5,50min后,将pH调整为8-9。
8.根据权利要求6所述的一种碳纤维/非晶合金复合电磁波吸收材料的制备方法,其特征在于,在步骤6)中的镀液中加入柠檬酸钠,3-5g。
CN201711003099.0A 2017-10-24 2017-10-24 一种碳纤维/非晶合金复合电磁波吸收材料及其制备方法 Active CN107779851B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711003099.0A CN107779851B (zh) 2017-10-24 2017-10-24 一种碳纤维/非晶合金复合电磁波吸收材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711003099.0A CN107779851B (zh) 2017-10-24 2017-10-24 一种碳纤维/非晶合金复合电磁波吸收材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107779851A true CN107779851A (zh) 2018-03-09
CN107779851B CN107779851B (zh) 2020-03-27

Family

ID=61434900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711003099.0A Active CN107779851B (zh) 2017-10-24 2017-10-24 一种碳纤维/非晶合金复合电磁波吸收材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107779851B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020078302A1 (zh) * 2018-10-19 2020-04-23 洛阳尖端技术研究院 吸波材料及其制备方法
CN112553546A (zh) * 2020-09-18 2021-03-26 河北工业大学 短切碳纤维增强非晶复合材料的制备方法及其装置
CN114641200A (zh) * 2022-04-02 2022-06-17 四川农业大学 一种氮掺杂微波吸收材料及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020078302A1 (zh) * 2018-10-19 2020-04-23 洛阳尖端技术研究院 吸波材料及其制备方法
CN112553546A (zh) * 2020-09-18 2021-03-26 河北工业大学 短切碳纤维增强非晶复合材料的制备方法及其装置
CN112553546B (zh) * 2020-09-18 2022-02-08 河北工业大学 短切碳纤维增强非晶复合材料的制备方法及其装置
CN114641200A (zh) * 2022-04-02 2022-06-17 四川农业大学 一种氮掺杂微波吸收材料及其制备方法
CN114641200B (zh) * 2022-04-02 2023-05-05 四川农业大学 一种氮掺杂微波吸收材料及其制备方法

Also Published As

Publication number Publication date
CN107779851B (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
Sun et al. Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption
Ma et al. Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding
CN107949266B (zh) 一种三维多孔花状结构钴/碳纳米复合电磁波吸收材料及其制备方法
CN108521754A (zh) 一种多孔碳基电磁吸波剂及其制备方法
CN103318973A (zh) 一种碳包覆Fe3O4微球吸波材料的制备方法
CN107779851A (zh) 一种碳纤维/非晶合金复合电磁波吸收材料及其制备方法
CN106028768A (zh) 一种镀铁石墨烯及制备方法
CN105113217A (zh) 可同时吸收低频和高频电磁波的复合纤维及其制备方法
CN108610015B (zh) 一种基于煤矸石的微波吸收材料制备方法
CN101728045B (zh) 氧化钴/碳复合纳米吸波材料及其制备方法
CN101546610A (zh) 陶瓷晶须/铁磁金属复合吸波材料及其制备方法
CN104689798A (zh) 一种复合介孔材料的制备方法
CN108610016B (zh) 一种基于煤矸石的微波吸收材料制备方法
Huang et al. Controllable synthesis and electromagnetic interference shielding properties of magnetic CoNi alloy nanoparticles coated on biocarbon nanofibers
Yang et al. Improved dielectric properties and microwave absorbing properties of SiC Nanorods/Ni core-shell structure
CN101521046A (zh) 石墨薄片表面负载磁性合金粒子吸波材料及其制备方法
Sun et al. Effects of Boron Nitride Coatings at High Temperatures and Electromagnetic Wave Absorption Properties of Carbon Fiber‐Based Magnetic Materials
Zhong et al. Flexible and durable poly para-phenylene terephthalamide fabric constructed by polydopamine and corrugated Co-Ni-P alloy with reflection characteristic for electromagnetic interference shielding
CN108633242A (zh) 一种钛碳/镍复合粉体电磁波吸收剂及制备方法
Zeng et al. Enhanced dielectric loss and magnetic loss properties of copper oxide-nanowire-covered carbon fiber composites by porous nickel film
CN105950111A (zh) 一种石墨烯和沸石的复合吸波材料的制备方法与应用
CN111302324B (zh) 一种磁性微孔碳基吸波复合材料及其制备方法
Qin et al. Enhance the electromagnetic absorption performance of Co&Ni@ GNs by designing appropriate cCo: cNi deposited on GNs surface
Zhao et al. RETRACTED: Fabrication and electromagnetic characteristics of microwave absorbers containing Li0. 35Zn0. 3Fe2. 35O4 micro-belts and nickel-coated carbon fibers
Lu et al. Preparation and low-frequency microwave-absorbing properties of MWCNTs/Co–Ni/Fe3O4 hybrid material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant