CN107777842B - 一种清洁高效矿化偶氮染料的方法 - Google Patents

一种清洁高效矿化偶氮染料的方法 Download PDF

Info

Publication number
CN107777842B
CN107777842B CN201711156132.3A CN201711156132A CN107777842B CN 107777842 B CN107777842 B CN 107777842B CN 201711156132 A CN201711156132 A CN 201711156132A CN 107777842 B CN107777842 B CN 107777842B
Authority
CN
China
Prior art keywords
carbon
catholyte
vitamin
mfcs
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711156132.3A
Other languages
English (en)
Other versions
CN107777842A (zh
Inventor
黄丽萍
王强
潘玉珍
全燮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201711156132.3A priority Critical patent/CN107777842B/zh
Publication of CN107777842A publication Critical patent/CN107777842A/zh
Application granted granted Critical
Publication of CN107777842B publication Critical patent/CN107777842B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明属于废水处理技术领域,一种清洁高效矿化偶氮染料的方法,包括可见光光源和MFCs,MFCs包括阳极室、阳极电极、阴极室、阴极电极、离子交换膜以及外电阻,阳极室避光。阴极电极为担载钨和/或钼氧化物、CdS或MoS2的碳棒、碳布、碳粒、碳毡等的碳材料。阳极电极为碳材料;阳极电极附着电化学活性生物膜。阴极液组成为含偶氮染料的废水;阳极液为含有有机碳源的废水。阴极液持续曝氮气条件下光照,当光照下的阴极液变为无色后,持续通入的氮气转换为空气,然后向阴极液中加入Fe(III)后继续运行,从而实现偶氮染料的清洁高效矿化。本发明为一种同时矿化偶氮染料废水和市政等有机污水的新方法,过程副产电能,清洁环保。

Description

一种清洁高效矿化偶氮染料的方法
技术领域
本发明属于废水处理领域,具体的说是一种清洁的在微生物燃料电池中结合光催化还原与原位电芬顿氧化高效矿化偶氮染料的方法。
背景技术
偶氮染料产量占全球人工合成染料的50-70%,应用领域广泛。偶氮染料具有化学和生物稳定性、以及致癌、致畸、致突变的“三致”效应。伴随着偶氮染料的生产和使用,每年约有15%偶氮染料在染色过程中流失并最终进入废水(Rochkind et al.,Molecules2015,20:88-110)。因此,偶氮染料废水的处理引起了广泛关注。常用的偶氮染料废水处理方法有吸附法、膜过滤法和絮凝法等。这些方法只是对偶氮染料进行了相间的转移,并未实现矿化。生物法虽然能够实现偶氮染料的彻底矿化,但其矿化速率较低,且受到高浓度偶氮染料的毒性限制。不同于生物法,高级氧化法(芬顿法、电芬顿法和光催化法等)克服了偶氮染料的浓度限制,利用强氧化性的·OH将偶氮染料彻底矿化为CO2和无机盐。其中的芬顿法是利用Fe(II)在酸性条件下催化H2O2生成·OH,但Fe(II)被氧化成Fe(III)后产生的大量污泥、H2O2的高成本以及运输和存储过程中的安全问题限制了其实际应用;电芬顿法克服了芬顿法的上述缺点,利用O2发生二电子反应原位生成H2O2,并将Fe(III)还原成Fe(II),实现循环利用,但存在着过程耗电量高、处理成本高等缺点。与高能耗的电芬顿法不同,光催化法利用半导体光催化材料(如TiO2,ZnO,Fe2O3,ZnS和CdS)在自然光照射下产生·OH,具有清洁节能的优点,但存在着光能利用效率低等缺点。因此,寻找清洁、高效且无/低能耗的方法矿化偶氮染料,是人们关注的热点之一。
微生物燃料电池(Microbial fuel cells,MFCs)是近年来兴起的新技术,主要由阳极室、阳极电极、阴极室、阴极电极和质子交换膜组成。如果能利用MFCs阳极微生物从有机废水中提取能量,用于阴极的偶氮染料矿化,则能实现同时处理阳极有机废水和阴极矿化偶氮染料并产生电能,具有成本低、清洁和节能等诸多优点。目前,关于MFCs处理偶氮染料废水的研究或发明多集中于MFCs阴极(如专利CN201010220362、CN201410647626等)或MFCs阴阳极切换(如专利CN201310390750等),偶氮染料最终均被还原脱色,生成仍具有“三致”效应的芳香胺类产物,不能得到完全矿化。专利(CN201210069597)先利用TiO2光催化偶氮染料后与易生化处理废水混合作为MFCs阳极碳源,实现偶氮染料脱色。多个专利或文章(CN201210096563、CN201410665810,Zhuang et al.,Chem Eng J 2010,163:160-163;Linget al.,Bioresour Technol 2016,203:89-95)报道将电芬顿与MFCs结合,在不需要输入外加电能的条件下,MFCs阴极原位生成H2O2并循环利用铁离子,形成电芬顿体系,使偶氮染料脱色。但由于MFCs的H2O2和·OH产量很低,致使偶氮染料难以矿化。类似地,Ding等将光催化与MFCs结合,使用只能吸收紫外光的TiO2担载在碳毡上,在MFCs阴极实现偶氮染料甲基橙的还原脱色(Bioresour Technol 2010,101:3500-3505)。但产物是具有“三致”效应的芳香胺类,反而降低了光催化对甲基橙的矿化作用。综上,清洁、高效地实现偶氮染料的彻底矿化仍是偶氮染料废水处理面临的技术瓶颈。实际上,在MFCs电芬顿降解偶氮染料过程中,·OH既攻击偶氮双键使染料还原脱色,又可攻击非偶氮双键使染料矿化。对有限·OH产量的MFCs而言,如果先利用光催化作用使偶氮染料脱色,然后通过原位电芬顿过程生成的·OH使偶氮染料脱色后的小分子中间产物矿化,则能实现偶氮染料的清洁高效矿化。基于此,本发明提出光催化耦合MFCs原位电芬顿过程,实现偶氮染料的清洁高效矿化。
发明内容
本发明在MFCs阴极先利用可见光在无氧条件下催化偶氮染料还原脱色;然后通入O2并加入Fe(III)利用阴极电子还原,原位生成的H2O2和Fe(II)组成的芬顿体系将光催化阶段的还原脱色产物彻底矿化。在芬顿矿化阶段,阴极基底材料是控制原位生成H2O2产量的关键,碳基材料更有利于O2发生两电子反应生成H2O2。因此,本发明使用碳基材料作为MFCs阴极。而光催化阶段,需要使用吸收可见光的光催化材料如钨钼氧化物、CdS、MoS2等担载的电极材料。因此,本发明中选用光催化材料如钨和/或钼氧化物、CdS、MoS2等担载的碳基材料作为MFCs阴极。其既提高光催化阶段的光能利用效率,又保证芬顿阶段的H2O2产量,从而实现偶氮染料的清洁高效矿化。
本发明的技术方案:
一种清洁高效矿化偶氮染料的方法,即利用光催化耦合MFCs原位电芬顿过程,实现偶氮染料的清洁高效矿化,包括可见光光源和MFCs两部分;
所述的可见光光源强度大于5.0mW/cm2
所述的MFCs包括阳极室、阳极电极、阴极室、阴极电极、离子交换膜以及外电阻;阳极室用锡箔纸包裹以避免光照对阳极微生物的影响;阴极液的偶氮染料浓度为0.001~30g/L,其pH为2.0~3.0,电导率为0.5~20mS/cm;阴极液持续曝氮气条件下进行光照,当光照下的阴极液变为无色后,持续通入的氮气转换为空气,然后向阴极液中加入1.0~10.0mg/L Fe(III)后继续运行,从而实现偶氮染料的清洁高效矿化。
所述的阴极电极为担载钨和/或钼氧化物、CdS或MoS2等具有光催化作用的碳棒、碳布、碳粒、碳毡等的碳材料,光催化剂的担载量为0.1~50mg/cm2
所述的阳极电极为碳棒、碳布、碳粒、碳毡等的碳材料。
所述的外电阻为1~1000Ω。
所述的持续通入氮气的速率为1~100mL/min。
所述的持续通入空气的速率为1~100mL/min。
MFCs阳极液成分为:12.0mM乙酸钠;5.8mM NH4Cl;1.7mM KCl;17.8mM NaH2PO4·H2O;32.3mM Na2HPO4;矿质元素:12.5mL/L(组成为MgSO4:3.0g/L;MnSO4·H2O:0.5g/L;NaCl:1.0g/L;FeSO4·7H2O:0.1g/L;CaCl2·2H2O:0.1g/L;CoCl2·6H2O:0.1g/L;ZnCl2:0.13g/L;CuSO4·5H2O:0.01g/L;KAl(SO4)2·12H2O:0.01g/L;H3BO3:0.01g/L;Na2MoO4:0.025g/L;NiCl2·6H2O:0.024g/L;Na2WO4·2H2O:0.024g/L);维生素:12.5mL/L(组成为维生素B1:5.0g/L;维生素B2:5.0g/L;维生素B3:5.0g/L;维生素B5:5.0g/L;维生素B6:10.0g/L;维生素B11:2.0g/L;维生素H:2.0g/L;对氨基苯甲酸:5.0g/L;硫辛酸:5.0g/L;氨基三乙酸:1.5g/L)。
本发明的MFCs的阳极室在运行过程中需保持无氧环境,可通过通入氮气以实现厌氧条件。
本发明的偶氮染料光催化还原脱色阶段的运行流程为:阳极液中的有机物在阳极室内被微生物氧化,过程产生的质子穿过质子透过膜进入阴极室,电子通过外电路导入阴电极,同时,在光照下阴极上的钨钼沉积物产生光生电子和空穴,空穴由阳极过来的电子填充,从而促进阳极电子到达阴极。在阴电极表面,溶液中的偶氮染料接受阴极电极上的电子以及溶液中的质子氢,偶氮双键被破坏,染料还原脱色生成小分子中间体。本发明的偶氮染料原位电芬顿矿化中间体阶段的运行流程为:阳极液中的有机物在阳极室内被微生物氧化,过程产生的质子穿过质子透过膜进入阴极室,电子通过外电路导入阴电极,在阴电极表面,O2与Fe(III)离子与阴极上的电子反应生成H2O2和Fe(II),形成原位芬顿体系产生·OH氧化中间体为CO2等无机物,实现偶氮染料在MFCs中清洁高效的矿化。反应器阳极室是含有有机物的市政污水,在阴极室矿化偶氮染料的同时还可处理市政等有机污水并产生电能,具有环境和生态、社会和经济等多重效益。
附图说明
图1是矿化偶氮染料装置的结构示意图。
图2是实施例1的偶氮染料-甲基橙的脱色率随时间的变化。
图3是实施例1的甲基橙矿化率随时间的变化。
图4是实施例1的甲基橙矿化后的全波段谱图。
图5是实施例1的MFCs的输出功率密度。
图中:1外电阻;2进出样口;3碳毡;4光源;5进气口;6阴极室;7阳极室;8阳离子交换膜。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例1
步骤一:构建反应器,如图1所示:反应器阴极室6和阳极室7为有机玻璃材质,阳极室用锡箔纸包裹以避免光照对阳极微生物的影响;阴极室和阳极室溶液体积均为13mL,以离子交换膜(CMI-7000)8隔开。外电阻设置为10Ω。
步骤二:分别将反应器阳极电极(碳棒和碳毡)和阴极电极(碳毡)置于反应器阳极室7和阴极室6中。碳棒(北京三业碳材料公司)表观尺寸为
Figure BDA0001474301680000051
Figure BDA0001474301680000052
碳毡(北京三业碳材料公司)表观尺寸为2.0cm×2.0cm×0.5cm)。
步骤三:在反应器阳极室中加入13mL培养液,其组成为12.0mM乙酸钠;5.8mMNH4Cl;1.7mM KCl;17.8mM NaH2PO4·H2O;32.3mM Na2HPO4;矿质元素:12.5mL/L(MgSO4:3.0g/L;MnSO4·H2O:0.5g/L;NaCl:1.0g/L;FeSO4·7H2O:0.1g/L;CaCl2·2H2O:0.1g/L;CoCl2·6H2O:0.1g/L;ZnCl2:0.13g/L;CuSO4·5H2O:0.01g/L;KAl(SO4)2·12H2O:0.01g/L;H3BO3:0.01g/L;Na2MoO4:0.025g/L;NiCl2·6H2O:0.024g/L;Na2WO4·2H2O:0.024g/L);维生素:12.5mL/L(维生素B1:5.0g/L;维生素B2:5.0g/L;维生素B3:5.0g/L;维生素B5:5.0g/L;维生素B6:10.0g/L;维生素B11:2.0g/L;维生素H:2.0g/L;对氨基苯甲酸:5.0g/L;硫辛酸:5.0g/L;氨基三乙酸:1.5g/L)。阳极室接种污水处理厂澄清池污泥10g(大连凌水河污水处理厂)。阳极液曝氮气20min后密封。
步骤四:在反应器阴极室加入13mL的去离子水。
步骤五:闭路条件下,将装置置于室温(20–25℃)下驯化和运行。当电流下降至0.02mA以下时,即完成一个周期,并补加上述培养基成分。待连续三个周期输出电压稳定在相似值时,表明阳极电化学活性菌驯化和启动成功。
步骤六:将步骤四中阴极去离子水换成13mL的200mg/L W(VI)和200mg/L Mo(VI)(pH=1.5)。反应过程持续曝空气80mL/min,反应2h。排空阴极液,取出阴极电极在马弗炉(天津市华北实验仪器有限公司)中450℃下煅烧2h,待电极冷却后,安装回反应器。
步骤七:在反应器阴极室加入13mL的20mg/L甲基橙,0.1M H3BO3作为缓冲(pH=3.0)。光催化阶段:在离阴极电极15cm处放置100W碘钨灯作为光源,光照强度为24.3mW/m2,反应过程持续曝氮气80mL/min,反应20min。电芬顿阶段:在阴极液中加入Fe(III),使其浓度为5mg/L,同时关闭碘钨灯并将通入气体改为空气(80mL/min),反应持续100min。整个过程中,每隔半个小时往阴极液中加入H2SO4,使pH维持在2.0~3.0。定期取样,分析液相中甲基橙和CODMn含量,并测定末样的全波段谱图。
步骤八:同步骤七,设置对照实验,即仅有光催化阶段或电芬顿阶段,反应时间均为120min。
计算与说明:
甲基橙脱色率是基于甲基橙处理前后在465nm波段下的吸光度(ABS)变化,即:
Figure BDA0001474301680000071
CODMn是测定水体中低浓度有机物的国家标准方法,检测下限为0.4mg/L。因此,以处理前后样品CODMn的变化值计算出该技术处理甲基橙的矿化度,即:
Figure BDA0001474301680000072
结果:反应20min后,光催化下甲基橙的脱色率为100.0±0.0%,高于电芬顿下的79.9±1.3%(图2),说明在MFCs中光催化比电芬顿更有利于甲基橙脱色;但是光催化下阴极甲基橙的矿化率仅为9.8±1.2%,远低于电芬顿下的29.3±2.1%(图3),说明在MFCs中电芬顿比光催化更有利于甲基橙的矿化。因此,利用MFCs的光催化先使甲基橙脱色、再利用MFCs的电芬顿使甲基橙脱色后的小分子有机物进一步矿化,二者的有效耦合用于处理甲基橙,2h后既获得了和光催化下同样高效的脱色效果(图2),又使阴极甲基橙的矿化率达到89.2±1.8%。单纯的电芬顿或光催化下的矿化率分别仅为63.1±2.3%和33.7±2.2%(图3)。前者分别是后者的1.4和2.6倍。全波段分析表明,光催化和电芬顿耦合下,在248nm处甲基橙脱色生成的对氨基苯磺酸的吸收峰最低(图4)。这些结果表明耦合光催化和电芬顿可高效矿化偶氮染料。此外,光催化和电芬顿下MFCs产电的最大输出功率密度分别为43.3mW/m2和54.2mW/m2(图5)。综上,在MFCs中耦合光催化和电芬顿可实现偶氮染料的高效矿化,同时转化有机废水中的化学能为电能。过程清洁无污染,兼具环境效益和经济效益。

Claims (7)

1.一种清洁高效矿化偶氮染料的方法,即利用光催化耦合MFCs原位电芬顿过程,实现偶氮染料的清洁高效矿化,其特征在于,包括可见光光源和MFCs两部分;
所述的MFCs包括阳极室、阳极电极、阴极室、阴极电极、离子交换膜以及外电阻;阳极室用锡箔纸包裹以避免光照对阳极微生物的影响;阴极液的偶氮染料浓度为0.001~30 g/L,其pH为2.0~3.0,电导率为0.5~20 mS/cm;阴极液持续曝氮气条件下进行光照,当光照下的阴极液变为无色后,持续通入的氮气转换为空气,然后向阴极液中加入1.0~10.0 mg/LFe(III)后继续运行,从而实现偶氮染料的清洁高效矿化;
所述的阴极电极为担载钨氧化物、钼氧化物、钨和钼氧化物、CdS或MoS2具有光催化作用的碳棒、碳布、碳粒或碳毡,担载量为0.1~50 mg/cm2;所述的阳极电极为碳棒、碳布、碳粒或碳毡。
2.根据权利要求1所述的方法,其特征在于,所述的可见光光源强度大于5.0 mW/cm2
3.根据权利要求1或2所述的方法,其特征在于,所述的外电阻为1~1000 Ω。
4.根据权利要求1或2所述的方法,其特征在于,所述的持续通入氮气的速率为1~100mL/min;所述的持续通入空气的速率为1~100 mL/min。
5.根据权利要求3所述的方法,其特征在于,所述的持续通入氮气的速率为1~100 mL/min;所述的持续通入空气的速率为1~100 mL/min。
6.根据权利要求1、2或5所述的方法,其特征在于,所述的MFCs阳极液成分为:12.0 mM乙酸钠;5.8 mM NH4Cl;1.7 mM KCl;17.8 mM NaH2PO4·H2O;32.3 mM Na2HPO4;矿质元素:12.5 mL/L ,组成为MgSO4:3.0 g/L;MnSO4·H2O:0.5 g/L;NaCl:1.0 g/L;FeSO4·7H2O:0.1g/L;CaCl2·2H2O:0.1 g/L;CoCl2·6H2O:0.1 g/L;ZnCl2:0.13 g/L;CuSO4·5H2O:0.01 g/L;KAl(SO4)2·12H2O:0.01 g/L;H3BO3:0.01 g/L;Na2MoO4:0.025 g/L;NiCl2·6H2O:0.024g/L;Na2WO4·2H2O:0.024 g/L;维生素:12.5 mL/L,组成为维生素B1:5.0 g/L;维生素B2:5.0g/L;维生素B3:5.0 g/L;维生素B5:5.0 g/L;维生素B6:10.0 g/L;维生素B11:2.0 g/L;维生素H:2.0 g/L;对氨基苯甲酸:5.0 g/L;硫辛酸:5.0 g/L;氨基三乙酸:1.5 g/L。
7.根据权利要求6所述的方法,其特征在于,所述的MFCs的阳极室在运行过程中需保持无氧环境,通入氮气以实现厌氧条件。
CN201711156132.3A 2017-11-20 2017-11-20 一种清洁高效矿化偶氮染料的方法 Expired - Fee Related CN107777842B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711156132.3A CN107777842B (zh) 2017-11-20 2017-11-20 一种清洁高效矿化偶氮染料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711156132.3A CN107777842B (zh) 2017-11-20 2017-11-20 一种清洁高效矿化偶氮染料的方法

Publications (2)

Publication Number Publication Date
CN107777842A CN107777842A (zh) 2018-03-09
CN107777842B true CN107777842B (zh) 2021-06-08

Family

ID=61429580

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711156132.3A Expired - Fee Related CN107777842B (zh) 2017-11-20 2017-11-20 一种清洁高效矿化偶氮染料的方法

Country Status (1)

Country Link
CN (1) CN107777842B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108640255B (zh) * 2018-05-09 2021-01-08 南开大学 一种炭黑羟基氧化铁阴极生物电芬顿处理典型芳烃类废水并同步产电的方法
CN112573748A (zh) * 2018-09-15 2021-03-30 南京霄祥工程技术有限公司 一种印染废水的集成处理工艺
CN110112449B (zh) * 2019-06-06 2022-01-18 哈尔滨工业大学 一种高效还原二氧化碳的光催化阴极型微生物燃料电池及利用其还原二氧化碳的方法
CN110729487B (zh) * 2019-10-14 2022-05-27 东莞理工学院城市学院 一种基于二硫化钼复合材料作为阳极的微生物燃料电池
WO2022168121A1 (en) * 2021-02-08 2022-08-11 Council Of Scientific & Industrial Research Earthen membrane based two chambered constructed wetland cum micriobial fuel cell for treatment and detoxification of waste water containing azo dye
CN114477649A (zh) * 2022-02-21 2022-05-13 昆明理工大学 一种腐殖酸强化光-生物电芬顿法处理持久性有机污染物的装置和处理方法
CN114628707B (zh) * 2022-04-01 2024-06-18 河南师范大学 一种微生物电芬顿燃料电池用改性碳刷阴极材料及其制备方法和应用
CN116408107B (zh) * 2023-05-24 2024-09-06 广东工业大学 一种碳布负载硫化镉复合光催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315469A (zh) * 2010-07-07 2012-01-11 广东省微生物研究所 微生物燃料电池及其在降解偶氮染料污染物上的应用
CN103359824A (zh) * 2012-04-05 2013-10-23 北京大学深圳研究生院 一种应用铁矿石催化生物电芬顿处理染料废水的方法
CN103708648A (zh) * 2013-12-26 2014-04-09 清华大学 还原-Fenton氧化耦合处理偶氮印染废水的方法
CN104310573A (zh) * 2014-11-19 2015-01-28 江南大学 一种复合电极的制备及其在生物电芬顿系统中的应用
CN105140550A (zh) * 2015-07-29 2015-12-09 大连理工大学 一种用于处理难降解污染物的光电催化与微生物燃料电池耦合系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315469A (zh) * 2010-07-07 2012-01-11 广东省微生物研究所 微生物燃料电池及其在降解偶氮染料污染物上的应用
CN103359824A (zh) * 2012-04-05 2013-10-23 北京大学深圳研究生院 一种应用铁矿石催化生物电芬顿处理染料废水的方法
CN103708648A (zh) * 2013-12-26 2014-04-09 清华大学 还原-Fenton氧化耦合处理偶氮印染废水的方法
CN104310573A (zh) * 2014-11-19 2015-01-28 江南大学 一种复合电极的制备及其在生物电芬顿系统中的应用
CN105140550A (zh) * 2015-07-29 2015-12-09 大连理工大学 一种用于处理难降解污染物的光电催化与微生物燃料电池耦合系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode;Hongrui Ding等;《Bioresource Technology》;20100125;第3500-3505页 *
光催化型微生物燃料电池产电特性及对污染物去除研究;孙哲;《中国博士学位论文全文数据库 工程科技Ⅱ辑(月刊)》;20170215(第02期);第68页图3-1、第82-86页第4.1、4.2.1、4.2.2节、第90页第4.3.3节、第95页第4.3.9节、第104-106页第4.3.16及4.4节 *

Also Published As

Publication number Publication date
CN107777842A (zh) 2018-03-09

Similar Documents

Publication Publication Date Title
CN107777842B (zh) 一种清洁高效矿化偶氮染料的方法
Li et al. Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell
Zhu et al. Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment
Niu et al. Decolorization of an azo dye Orange G in microbial fuel cells using Fe (II)-EDTA catalyzed persulfate
Xu et al. The mechanism and oxidation efficiency of bio-electro-Fenton system with Fe@ Fe2O3/ACF composite cathode
Liu et al. Emerging high-ammonia‑nitrogen wastewater remediation by biological treatment and photocatalysis techniques
Wang et al. Utilization of single-chamber microbial fuel cells as renewable power sources for electrochemical degradation of nitrogen-containing organic compounds
WO2022021532A1 (zh) 一种微生物燃料电池废水脱氮装置及方法
Nordin et al. Hybrid system of photocatalytic fuel cell and Fenton process for electricity generation and degradation of Reactive Black 5
CN108275753B (zh) 一种垃圾渗滤液膜滤浓缩液的处理方法及其专用装置
CN102092820A (zh) 一种双池双效可见光响应光电芬顿去除水中有机物的方法及装置
Nie et al. An efficient strategy for full mineralization of an azo dye in wastewater: a synergistic combination of solar thermo-and electrochemistry plus photocatalysis
CN106630177B (zh) 一种利用微生物电解池处理焦化废水并产氢的方法及装置
CN103073114A (zh) 一种低处理成本的废水脱色方法
Xu et al. The feasibility and mechanism of reverse electrodialysis enhanced photocatalytic fuel cell-Fenton system on advanced treatment of coal gasification wastewater
Liang et al. Improved decolorization of dye wastewater in an electrochemical system powered by microbial fuel cells and intensified by micro-electrolysis
CN103094597A (zh) 高效同步脱氮除碳微生物燃料电池
CN110776086A (zh) 用于降解有机污染物的光电催化-生物耦合装置及其工艺
Liu et al. Multi-functional photocatalytic fuel cell for simultaneous removal of organic pollutant and chromium (VI) accompanied with electricity production
Thor et al. Discovering the roles of electrode distance and configuration in dye degradation and electricity generation in photocatalytic fuel cell integrated electro-Fenton process
Miran et al. Simultaneous electricity production and Direct Red 80 degradation using a dual chamber microbial fuel cell
Varjani Prospective review on bioelectrochemical systems for wastewater treatment: achievements, hindrances and role in sustainable environment
Siddiqui et al. Wastewater treatment and energy production by microbial fuel cells
CN111689571A (zh) 控制过氧化氢生成和消除的微生物电化学系统及方法
CN104787949A (zh) 一种基于改性气体扩散电极的光电芬顿氧化反应处理垃圾渗滤液的方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210608