CN107768692B - 一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池 - Google Patents

一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池 Download PDF

Info

Publication number
CN107768692B
CN107768692B CN201710770306.9A CN201710770306A CN107768692B CN 107768692 B CN107768692 B CN 107768692B CN 201710770306 A CN201710770306 A CN 201710770306A CN 107768692 B CN107768692 B CN 107768692B
Authority
CN
China
Prior art keywords
fuel cell
glucose
ascorbic acid
polydopamine
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710770306.9A
Other languages
English (en)
Other versions
CN107768692A (zh
Inventor
李晓丹
李红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN201710770306.9A priority Critical patent/CN107768692B/zh
Publication of CN107768692A publication Critical patent/CN107768692A/zh
Application granted granted Critical
Publication of CN107768692B publication Critical patent/CN107768692B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8853Electrodeposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • H01M8/225Fuel cells in which the fuel is based on materials comprising particulate active material in the form of a suspension, a dispersion, a fluidised bed or a paste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明属于燃料电池的技术领域,公开了一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池。本发明运用连续微分脉冲伏安法在碳纳米管电极上电聚合多巴胺,并制备得到有序的聚多巴胺/碳纳米管电极,再以聚多巴胺/碳纳米管作为阴、阳极的电催化剂,实现了廉价非酶催化剂在中性环境中对抗坏血酸和葡萄糖的电催化氧化,并研制了一款高性能的抗坏血酸/葡萄糖燃料电池。所构建的燃料电池具有成本低、环保安全、生物相容性好、功率密度大等优势。

Description

一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池
技术领域
本发明属于燃料电池的技术领域,具体涉及一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池。
背景技术
葡萄糖是一种理想的可再生燃料,理论上,它的能量密度达到了4.43kWh kg–1,然而葡萄糖的氧化能力较弱,常需要使用一定的催化剂对其进行催化氧化。目前用于葡萄糖催化氧化的物质主要包括酶及非酶催化剂。酶催化氧化法具有选择性高、反应条件温和等优点,但是酶催化剂容易失活、生产成本高。非酶催化剂主要包括金属、金属氧化物和金属配合物,但其价格昂贵,易被毒化,因此难以实现大规模商业化应用。所以我们的目标是想寻找一种廉价高效的电极实现葡萄糖的催化氧化。
碳纳米管具有高导电性、大的比表面积、生物相容性好,易于在修饰电极中引入多种官能团。研究表明,碳纳米管与含有π电子的导电聚合物通过π-π相结合而得到的复合材料能够功能化碳纳米管。目前已有导电聚合物聚苯胺、聚噻吩功能化碳纳米管用于葡萄糖的催化氧化。但还尚未有多巴胺电聚合膜功能化碳纳米管电极,并用于葡萄糖催化氧化的报道。多巴胺具有共轭结构,能够与碳纳米管的π电子通过π-π结合形成一种复合材料。另外,多巴胺与抗坏血酸、葡萄糖都具有多羟基的环状结构,其氧化产物可能作为氧化剂介导葡萄糖的催化氧化,因此本发明以聚多巴胺/碳纳米管复合电极作为阴、阳极的电催化剂,实现了廉价非酶催化剂在中性环境中对抗坏血酸和葡萄糖的电催化氧化,并研制了一款高性能的抗坏血酸/葡萄糖燃料电池。
发明内容
为了克服现有技术中存在的缺点和不足,实现中性环境中对葡萄糖的催化氧化,本发明的目的在于提供一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池。该电池以聚多巴胺/碳纳米管复合电极作为阴、阳极的电催化剂,葡萄糖作燃料,抗坏血酸作燃料及葡萄糖氧化介导剂,氯化钠作电解质,三羟甲基氨基甲烷作缓冲剂,氧气作氧化剂,构建形成燃料电池。
本发明目的通过以下技术方案实现:
一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池,该燃料电池是以聚多巴胺/碳纳米管电极作为阴极和阳极的电催化剂,在阳极池中加入氯化钠电解质溶液和三羟甲基氨基甲烷缓冲液、加入葡萄糖作燃料、加入抗坏血酸作燃料及葡萄糖氧化介导剂,持续通氮以除去阳极中的氧气;阴极池中加入氯化钠溶液和三羟甲基氨基甲烷缓冲液,并持续通氧以保持在饱和氧气氛围下,构建形成燃料电池。
所述聚多巴胺/碳纳米管电极是按照以下步骤制备得到:
(1)在石墨上滴加分散均匀的碳纳米管分散液,然后于烘箱中恒温干燥,蒸发掉溶剂得到碳纳米管/石墨电极;
(2)以步骤(1)所得碳纳米管/石墨电极作为阳极、以钛电极作为对电极,饱和甘汞电极作为参比电极,分别与电化学工作站的3个电极接头连接,阳极池中加入氯化钠溶液作为电解液,同时也加入多巴胺和三羟甲基氨基甲烷,沉积的电位范围为-0.6V~0.5V,制备所得的电极于烘箱中恒温干燥,得到聚多巴胺/碳纳米管电极。
步骤(2)所述多巴胺在电解液中的浓度为0.001~10mmol/L。
步骤(1)和步骤(2)所述恒温干燥是在35~45℃条件下进行干燥。
所得燃料电池实现了廉价非酶催化剂在中性环境中对抗坏血酸和葡萄糖的电催化氧化,其开路电压为0.29V,短路电流密度为2.05m A/cm2,最大功率达131μW·cm-2,较无聚多巴胺包覆存在时分别增大了60.1%,460.2%和120.3%,进一步证实聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池。
所述阴极池和阳极池中均使用三羟甲基氨基甲烷缓冲液,使溶液pH维持在7.2。
所述抗坏血酸在电解质溶液中的浓度为0.001~0.4mol/L;所述葡萄糖在电解质溶液中浓度为0.001~0.4mol/L。
所述燃料电池中含葡萄糖和抗坏血酸的电解质溶液的添加量为2~100mL。
与现有技术相比,本发明具有以下优点及有益效果:
(1)构成复合材料的组分之间的结合力强,具有高的催化活性;
(2)本发明以生物体内物质作燃料,氧气作氧化剂;
(3)葡萄糖的氧化能力较弱,常需要使用昂贵的酶、贵金属等催化剂对其进行催化氧化,本发明实现了中性环境中抗坏血酸/葡萄糖的催化氧化,而在中性条件下不要使用酶、铂金属而实现葡萄糖的氧化目前是没有文献做到;
(4)本发明所研制的燃料电池在常温常压下正常工作;
(5)本发明构建的燃料电池最大功率达131μW·cm-2
附图说明
图1为黑暗条件下运用微分脉冲法在碳纳米管/石墨电极上电聚合多巴胺;
图2为本发明实施例1中所制作的聚多巴胺/碳纳米管电极的SEM图。
图3为本发明实施例1中所构建的燃料电池的功率密度随电池电压的变化曲线,其中曲线1对应于碳纳米管电极在抗坏血酸/葡萄糖中的测量结果,曲线2则对应聚多巴胺/碳纳米管电极在抗坏血酸/葡萄糖中的测量结果。
具体实施方法
下面结合具体实施例进一步详细说明本发明。根据本发明设计目的,同类物质的简单替代以及尺寸形状的变化,例如改变本发明燃料电池的尺寸大小(如改变工作电极或对电极大小),改变电极外观(如改为正方形或其它形状),简单改变多巴胺、抗坏血酸或葡萄糖用量、浓度等均应属于本发明的范围;下述实施例中所使用的试验方法如无特殊说明,均为本技术领域现有的常规方法;所使用的材料、试剂等,如无特殊说明,均为可从商业途径得到的试剂和材料。
实施例1聚多巴胺/碳纳米管电极的制备
本实施例中的聚多巴胺/碳纳米管电极,通过以下方法制备得到:
(1)SWCNTs/C电极的制备:取单壁碳纳米管(SWCNTs)溶解在二次蒸馏水中,加入十二烷基硫酸钠(SDS),超声分散至得到黑色均匀的碳纳米管分散液;滴加碳纳米管分散液于干燥的石墨电极表面,再于烘箱中干燥,蒸发掉溶剂便得到SWCNTs/C电极;
(2)PDA/SWCNTs/C电极的制备:采用微分脉冲伏安法电聚合技术,如图1所示,在三电极体系中,工作电极为SWCNTS/C电极,对电极为钛片,参比电极为饱和甘汞电极,阳极池中加入0.1mol/L氯化钠溶液作为电解液,同时加入了0.1mmol/L多巴胺和0.01mol/L三羟甲基氨基甲烷(pH=7.20;缓冲液),沉积的电位范围为-0.6V~0.5V,扫描圈数为10圈,脉冲宽度为0.05s,阶跃电位为8mV,调制幅度为50mV,将电聚合好的电极于去离子水中浸泡去除表面未聚合的多巴胺,然后放入烘箱中干燥,便得到PDA/SWCNTs/C电极(聚多巴胺/碳纳米管电极)。
实施例2聚多巴胺/碳纳米管电极的表征
实施例1中所制作的聚多巴胺/碳纳米管电极的SEM图如图2所示,SWCNTs@PDA在电极上呈现出排列有序的结构。
实施例3构建聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池
(1)本实施例燃料电池的构建,具体操作步骤如下:
以实施例1制得的聚多巴胺/碳纳米管电极作为阴极和阳极的电催化剂,阴极持续通氧以保持在饱和氧气氛围下(氧化剂),并加入0.1mol/L氯化钠和0.01mol/L三羟甲基氨基甲烷;阳极池中加入0.1mol/L氯化钠(电解质溶液)、0.01mol/L三羟甲基氨基甲烷(pH=7.20;缓冲液)、0.1mol/L葡萄糖(燃料)和0.01mol/L抗坏血酸(燃料及葡萄糖氧化介导剂),两池之间用饱和氯化钾盐桥相连接;构建形成燃料电池,即本发明聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池。
(2)对实施例1构建的燃料电池性能的测试,具体操作步骤如下:
调节连接在燃料电池阳极和阴极间电阻箱的电阻值,测量计算燃料电池的功率密度(图3)随电压的变化曲线,如图3所示。
曲线1显示开路电位为0.18V,在0.07V处达到最大功率10.3μW·cm-2;曲线2显示的开路电位为0.29V,在0.11V处达到最大功率131μW·cm-2,相比于曲线1,最大功率提高了12.72倍,说明聚多巴胺/碳纳米管电极能够增强抗坏血酸催化氧化,说明本发明制作的非酶催化剂实现了中性环境中抗坏血酸/葡萄糖的催化氧化。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池,其特征在于:该燃料电池是以聚多巴胺/碳纳米管电极作为阴极和阳极的电催化剂,在阳极池中加入氯化钠电解质溶液和三羟甲基氨基甲烷缓冲液、加入葡萄糖作燃料、加入抗坏血酸作燃料及葡萄糖氧化介导剂,持续通氮以除去阳极中的氧气;阴极池中加入氯化钠溶液和三羟甲基氨基甲烷缓冲液,并持续通氧以保持在饱和氧气氛围下,构建形成燃料电池;
所述聚多巴胺/碳纳米管电极是按照以下步骤制备得到:
(1)在石墨上滴加分散均匀的碳纳米管分散液,然后于烘箱中恒温干燥,蒸发掉溶剂得到碳纳米管/石墨电极;
(2)以步骤(1)所得碳纳米管/石墨电极作为阳极、以钛电极作为对电极,饱和甘汞电极作为参比电极,分别与电化学工作站的3个电极接头连接,阳极池中加入氯化钠溶液作为电解液,同时也加入多巴胺和三羟甲基氨基甲烷,沉积的电位范围为-0.6V~0.5V,制备所得的电极于烘箱中恒温干燥,得到聚多巴胺/碳纳米管电极。
2.根据权利要求1所述的一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池,其特征在于:步骤(2)所述多巴胺在电解液中的浓度为0.001~10mmol/L。
3.根据权利要求1所述的一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池,其特征在于:步骤(1)和步骤(2)所述恒温干燥是在35~45℃条件下进行干燥。
4.根据权利要求1所述的一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池,其特征在于:所得燃料电池的开路电压为0.29V,短路电流密度为2.05m A/cm2,最大功率达131μW·cm-2
5.根据权利要求1所述的一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池,其特征在于:所述阴极池和阳极池中均使用三羟甲基氨基甲烷缓冲液,使溶液pH维持在7.2。
6.根据权利要求1所述的一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池,其特征在于:所述抗坏血酸在电解质溶液中的浓度为0.001~0.4mol/L;所述葡萄糖在电解质溶液中浓度为0.001~0.4mol/L。
7.根据权利要求1所述的一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池,其特征在于:所述燃料电池中含葡萄糖和抗坏血酸的电解质溶液的添加量为2~100mL。
CN201710770306.9A 2017-08-31 2017-08-31 一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池 Active CN107768692B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710770306.9A CN107768692B (zh) 2017-08-31 2017-08-31 一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710770306.9A CN107768692B (zh) 2017-08-31 2017-08-31 一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池

Publications (2)

Publication Number Publication Date
CN107768692A CN107768692A (zh) 2018-03-06
CN107768692B true CN107768692B (zh) 2020-02-14

Family

ID=61265295

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710770306.9A Active CN107768692B (zh) 2017-08-31 2017-08-31 一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池

Country Status (1)

Country Link
CN (1) CN107768692B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109793594B (zh) * 2019-02-18 2021-04-09 北京科技大学 可自发电刺激的嵌段结构导电神经导管及其制备方法
CN110197903A (zh) * 2019-04-18 2019-09-03 沈阳建筑大学 一种用于全钒液流电池的高性能石墨毡电极及其制备方法
CN110534753B (zh) * 2019-08-22 2021-02-12 浙江大学 具备均相辅助催化的葡萄糖燃料电池
CN110862538B (zh) * 2019-11-28 2022-05-13 南京工业大学 一种基于碳纳米管聚多巴胺复合材料微生物燃料电池的方法
CN112063876A (zh) * 2020-09-22 2020-12-11 昆明理工大学 一种碳纳米管增强铜钛合金及其制备方法
CN116014086A (zh) * 2022-12-28 2023-04-25 蜂巢能源科技(马鞍山)有限公司 一种负极及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012022363A1 (en) * 2010-08-20 2012-02-23 Albert-Ludwigs-Universität Freiburg Method for fabricating electrodes for one-compartment fuel cells based on carbon nanotube buckypaper
CN102976307A (zh) * 2012-12-04 2013-03-20 北京化工大学 一种碳纳米管表面功能化的方法
CN103326037A (zh) * 2013-06-28 2013-09-25 华南理工大学 一种酶生物燃料电池阴极及其制备方法与应用
CN103427102A (zh) * 2013-08-30 2013-12-04 华南理工大学 一种藻菌微生物燃料电池及其制备方法和应用
CN104477881A (zh) * 2014-12-31 2015-04-01 湖北工程学院 一种以多巴胺修饰碳纳米管为载体的杂多酸功能性复合材料的制备方法
CN104789984A (zh) * 2015-03-18 2015-07-22 华南师范大学 一种抗坏血酸促进葡萄糖光电催化氧化制氢的方法
CN104817144A (zh) * 2015-04-13 2015-08-05 东华大学 一种电容去离子用聚多巴胺改性多孔碳电极的制备方法
CN104892937A (zh) * 2015-06-25 2015-09-09 中国科学技术大学 聚多巴胺氮掺杂碳纳米管与功能化聚多巴胺氮掺杂碳纳米管的制备方法
CN106229586A (zh) * 2016-07-29 2016-12-14 华南师范大学 一款牛血清白蛋白增强抗坏血酸/葡萄糖燃料电池及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008144741A1 (en) * 2007-05-21 2008-11-27 Siu-Tung Yau Use of silicon particles as catalyst, electrochemical device comprising the particles and method thereof
WO2010011851A1 (en) * 2008-07-23 2010-01-28 Cleveland State University An electrode, an electrochemical device and method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012022363A1 (en) * 2010-08-20 2012-02-23 Albert-Ludwigs-Universität Freiburg Method for fabricating electrodes for one-compartment fuel cells based on carbon nanotube buckypaper
CN102976307A (zh) * 2012-12-04 2013-03-20 北京化工大学 一种碳纳米管表面功能化的方法
CN103326037A (zh) * 2013-06-28 2013-09-25 华南理工大学 一种酶生物燃料电池阴极及其制备方法与应用
CN103427102A (zh) * 2013-08-30 2013-12-04 华南理工大学 一种藻菌微生物燃料电池及其制备方法和应用
CN104477881A (zh) * 2014-12-31 2015-04-01 湖北工程学院 一种以多巴胺修饰碳纳米管为载体的杂多酸功能性复合材料的制备方法
CN104789984A (zh) * 2015-03-18 2015-07-22 华南师范大学 一种抗坏血酸促进葡萄糖光电催化氧化制氢的方法
CN104817144A (zh) * 2015-04-13 2015-08-05 东华大学 一种电容去离子用聚多巴胺改性多孔碳电极的制备方法
CN104892937A (zh) * 2015-06-25 2015-09-09 中国科学技术大学 聚多巴胺氮掺杂碳纳米管与功能化聚多巴胺氮掺杂碳纳米管的制备方法
CN106229586A (zh) * 2016-07-29 2016-12-14 华南师范大学 一款牛血清白蛋白增强抗坏血酸/葡萄糖燃料电池及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Carbon-Nanotube-Based Glucose/O2 Biofuel Cells;Yiming Yan;《Adv. Mater》;20060519(第18期);附图1,2640页 *
Multifunctional carbon nanotubes for direct electrochemistry of glucose oxidase and glucose bioassay;Diab Khalafallah;《Biosensors and Bioelectronics》;20110906(第30期);摘要,107页右栏-108页左栏 *

Also Published As

Publication number Publication date
CN107768692A (zh) 2018-03-06

Similar Documents

Publication Publication Date Title
CN107768692B (zh) 一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池
Zhang et al. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell
Mehdinia et al. Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells
Liew et al. Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: A review
Singh et al. Enhanced power generation using a novel polymer-coated nanoparticles dispersed-carbon micro-nanofibers-based air-cathode in a membrane-less single chamber microbial fuel cell
Prasad et al. Three-dimensional graphene-carbon nanotube hybrid for high-performance enzymatic biofuel cells
Mishra et al. Electrochemical deposition of MWCNT-MnO2/PPy nano-composite application for microbial fuel cells
Zou et al. A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material
Kalathil et al. Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material
Zhou et al. Highly ordered mesoporous carbons-based glucose/O2 biofuel cell
Liu et al. Nickel oxide/graphene composites: synthesis and applications
Kashmery Ternary graphene@ polyaniline-TiO2 composite for glucose biofuel cell anode application
CN110373685B (zh) NiS2-MoS2/PVEIB/PPy/GO材料及基于其的HER电催化修饰电极
CN102760888A (zh) 石墨烯/基底电极和聚苯胺-石墨烯/基底电极的制备及应用
Savla et al. Utilization of nanomaterials as anode modifiers for improving microbial fuel cells performance
Wu et al. Microbial biofuel cell operating effectively through carbon nanotube blended with gold–titania nanocomposites modified electrode
Kashyap et al. Multi walled carbon nanotube and polyaniline coated pencil graphite based bio-cathode for enzymatic biofuel cell
Ouis et al. Electro-polymerization of pyrrole on graphite electrode: enhancement of electron transfer in bioanode of microbial fuel cell
Senthilkumar et al. Titania/reduced graphene oxide composite nanofibers for the direct extraction of photosynthetic electrons from microalgae for biophotovoltaic cell applications
Zhang et al. Long-term effect of carbon nanotubes on electrochemical properties and microbial community of electrochemically active biofilms in microbial fuel cells
Manesh et al. Electrocatalytic dioxygen reduction at glassy carbon electrode modified with polyaniline grafted multiwall carbon nanotube film
Gong et al. Electrochemical reduction of oxygen on anthraquinone/carbon nanotubes nanohybrid modified glassy carbon electrode in neutral medium
Ramachandran et al. Enhancement of different fabricated electrode materials for microbial fuel cell applications: an overview
Cosnier et al. An easy compartment-less biofuel cell construction based on the physical co-inclusion of enzyme and mediator redox within pressed graphite discs
Wang et al. A glucose bio-battery prototype based on a GDH/poly (methylene blue) bioanode and a graphite cathode with an iodide/tri-iodide redox couple

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant