CN107754840A - 一步法制备用于乙醇催化氧化的氮掺杂铂镍/碳电化学催化剂 - Google Patents

一步法制备用于乙醇催化氧化的氮掺杂铂镍/碳电化学催化剂 Download PDF

Info

Publication number
CN107754840A
CN107754840A CN201711005493.8A CN201711005493A CN107754840A CN 107754840 A CN107754840 A CN 107754840A CN 201711005493 A CN201711005493 A CN 201711005493A CN 107754840 A CN107754840 A CN 107754840A
Authority
CN
China
Prior art keywords
ethanol
catalyst
oxidation
mixed
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711005493.8A
Other languages
English (en)
Inventor
王丽丽
秦皓
李艳婷
王兵
吴晓芬
卢艺丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201711005493.8A priority Critical patent/CN107754840A/zh
Publication of CN107754840A publication Critical patent/CN107754840A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J35/23
    • B01J35/33
    • B01J35/393
    • B01J35/399
    • B01J35/51
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam

Abstract

本发明公开了一种利用糖类、尿素为原料制备载体并用一步法与金属盐溶液水热合成一种高性能的用于乙醇氧化的Pt‑Ni/NC催化剂的制备方法。具体涉及利用蔗糖(葡萄糖)合成碳载体,加入尿素实现氮的掺杂,经过水热反应与金属盐溶液合成催化剂,再经过碳化制备出所述乙醇氧化电催化剂。本发明包括主要步骤如下:首先将蔗糖(葡萄糖)与尿素加入去离子水中进行混合,再将氯化镍水溶液与氯铂酸水溶液按质量比进行混合,然后加入上述混合溶液中,用氢氧化钠水溶液调节pH,再进行超声,使其混合均匀,最后放入聚四氟乙烯高温高压反应釜内进行水热反应。冷却到室温后,将反应后的溶液进行抽滤洗涤,所得产物在真空干燥箱内干燥,得到的粉末在管式炉内进行高温碳化,所得到的具有球状的Pt‑Ni/NC催化剂。本发明制备的Pt‑Ni/C催化剂在酸性条件下,对乙醇具有很强的电催化氧化活性和稳定性,其电流密度可以达到500mA·mg‑1Pt,且环保无污染,成本相对较低,是一种可用于直接乙醇燃料电池阳极的高性能催化剂。

Description

一步法制备用于乙醇催化氧化的氮掺杂铂镍/碳电化学催 化剂
技术领域
本发明涉及一种乙醇氧化催化剂的制备方法,具体涉及一种将蔗糖、葡萄糖为碳源,以尿素为氮源,将金属盐氯铂酸(H2PtCl6)和氯化镍(NiCl2)一步法合成制备具有高性能的乙醇氧化催化剂的新方法。
背景技术
世界各地研究人员对可再生能源和清洁能源的持续期望并不止于此,面对石油衍生物燃烧产生的高水平污染,日益萎缩。最有趣的清洁电源是直接碱性酒精燃料电池。这种电池使用液体醇作为燃料(如甲醇,乙醇和乙二醇)。酒精替代氢作为燃料,面临生产,处理,储存和分配方面的问题。直接酒精燃料电池(DAFC)代表直接进入电能的醇的化学能的理想能量转换器。乙醇是醇类燃料电池的最理想燃料,因为与甲醇相比,其毒性水平较低。此外,它很容易从诸如甘蔗,玉米和其他谷物的生物质以及农业废弃物中产生。因为使用Pt作为电催化剂,在催化过程中,醇氧化释放的CO中间体会使得Pt中毒,也就是催化剂中毒,因此电催化剂活性随后降低。Pt与另一种过渡金属形成合金,通过一种有效的途径将较低电位值下将CO氧化为CO2,因为OH物质的形成能够提高其性能并且消除强吸附分子。因此,制备具有过渡金属的许多Pt合金用于乙醇电氧化,如Pt-Sn,Pt-Re,Pt-Ru,Pt-Au,Pt-Pd和Pt-Cu。因此,我们可以通过引入过渡金属与铂或其他贵金属形成合金,来提高催化剂性能。
近年来,为了提高对醇类的催化性能,人们通过在载体上负载金属来合成更高性能的催化剂,这些载体包括:石墨烯、碳纳米管、中空碳纤维球。为了进一步改善碳材料在这些方面的应用,通常还会引入一些杂原子(例如N、B、P、S等),将这些杂原子掺杂到碳载体中,使载体的各方面的性能得到改进和提高。在这些杂原子中,氮原子掺杂的碳材料被广泛应用于乙醇催化氧化反应中。因为氮掺杂碳材料可以改善活性物质的分散度,利于材料的导电,从而提高催化剂的活性和稳定性。石墨烯虽然具有超高的理论比表面积(2630m2/g),优异的导电性、足够的孔隙度以及优良的机械性能。然而,该方法制备石墨烯需要使用浓硫酸及浓硝酸,对于环境危害大,并且实验操作不安全,而且反应条件苛刻。对于碳纳米管来说,同样需要使用强酸来处理,因为,如果在碳纳米管上负载金属,需要对碳纳米管进行清洗,出去里面的杂质及其它金属,实验操作起来同样繁琐。上述两种碳载体均是为了增加载体的比表面积,因为这样可以增加催化剂的活性位点。因此,我们所使用的一步合成法简单快捷,并且能够合成出球状碳载体。通过一步合成所得催化剂,并且合成过程中溶剂只有水,对环境没有污染。故目前一步法合成球状碳载体负载金属催化剂有很重要的研究意义。
本专利将蔗糖(葡萄糖)、尿素与氯铂酸和氯化镍金属盐溶液按不同比例在去离子水中进行混合,然后在聚四氟乙烯高温高压反应釜中进行一步法合成,最后通过高温煅烧去除载体表面氧化性物质,制备具有高性能的负载型乙醇氧化催化剂。
发明内容
本发明目的是提供一种以具有球状结构并且一步法合成碳载体上负载金属Pt-Ni,制备具有高性能的乙醇氧化催化剂的新方法。
本发明首先将蔗糖(葡萄糖)100mg与尿素30mg加入40ml去离子水中进行混合,再将氯化镍水溶液(20mg/ml)与氯铂酸水溶液(20mg/ml)按质量比进行混合,比例为1∶1~7(mg/mg)然后加入上述混合溶液中,用0.25mol/L氢氧化钠水溶液调节PH:4~7,再超声20分钟,使其混合均匀,最后放入100ml聚四氟乙烯高温高压反应釜内,在180℃水热条件下反应12h。冷却到室温后,将反应后的溶液进行抽滤,在此过程中并用去离子水洗涤多次,所得产物在80℃真空干燥箱内干燥过夜,最后得到的粉末在600~800℃管式炉内进行高温碳化,所得到的具有球状的Pt-Ni/NC催化剂进行电化学性能测试。
本发明的特征在于:利用一步法合成具有球状碳载体,并且引入氮源,氮的掺杂为金属粒子的沉积提供了更多的活性位点,并且能够使金属粒子更容易沉积在球状碳载体上,利于获得分散性好,尺寸均匀的金属颗粒。这些结构特征都有利于提高乙醇的电催化性能,包括获得相对较高的电流密度,较低的起始电位和良好的循环稳定性。
具体实施方式
实施例1:将蔗糖(葡萄糖)100mg与尿素30mg加入40ml去离子水中进行混合,再将氯铂酸水溶液(20mg/ml)与氯化镍水溶液(20mg/ml)按质量比进行混合,比例为1∶1(mg/mg),然后加入上述混合溶液中,用0.25mol/L氢氧化钠水溶液调节PH=4,再超声20分钟,使其混合均匀,最后放入100ml聚四氟乙烯高温高压反应釜内,在180℃水热条件下反应12h。冷却到室温后,将反应后的溶液进行抽滤,在此过程中并用去离子水洗涤多次,所得产物在80℃真空干燥箱内干燥过夜,最后得到的粉末在700℃管式炉内进行高温碳化,所得到的具有球状的Pt-Ni/NC催化剂进行电化学性能测试。以1mol/L的乙醇和0.5mol/L的硫酸为电解液,在-0.2~1.0v电压范围内,测得电流密度为380mA·mg-1Pt,金属粒子尺寸为4.9nm左右。
实施例2:改变氯铂酸水溶液(20mg/ml)与氯化镍水溶液(20mg/ml),比例为3∶1,其他条件同实施例1,得到具有球状的Pt-Ni/NC催化剂进行电化学性能测试,以1mol/L的乙醇和0.5mol/L的硫酸为电解液,在-0.2~1.0v电压范围内,测得电流密度为300mA·mg-1Pt,金属粒子尺寸为5.1nm左右。
实施例3:改变氯铂酸水溶液(20mg/ml)与氯化镍水溶液(20mg/ml),比例为5∶1,其他条件同实施例1,得到具有球状的Pt-Ni/NC催化剂进行电化学性能测试,以1mol/L的乙醇和0.5mol/L的硫酸为电解液,在-0.2~1.0v电压范围内,测得电流密度为275mA·mg-1Pt,金属粒子尺寸为5.5nm左右。
实施例4:改变碳源为葡萄糖,其他条件同实施例1,得到具有更规则球状的Pt-Ni/NC催化剂进行电化学性能测试,以1mol/L的乙醇和0.5mol/L的硫酸为电解液,在-0.2~1.0V电压范围内,测得电流密度为410mA·mg-1Pt,金属粒子尺寸为4.5nm左右。
实施例5:改变温度为600℃,其他条件同实施例1,得到具有球状的Pt-Ni/NC催化剂进行电化学性能测试,以1mol/L的乙醇和0.5mol/L的硫酸为电解液,在-0.2~1.0V电压范围内,测得电流密度为400mA·mg-1Pt,金属粒子尺寸为4.2nm左右。
实施例6:改变碳源为葡萄糖,温度为600℃,其他条件同实施例1,得到具有更规则球状的Pt-Ni/NC催化剂进行电化学性能测试,以1mol/L的乙醇和0.5mol/L的硫酸为电解液,在-0.2~1.0v电压范围内,测得电流密度为420mA·mg-1Pt,金属粒子尺寸为4.1nm左右。
实施例7:改变Ph=5,其他条件同实施例1,得到具有球状的Pt-Ni/NC催化剂进行电化学性能测试,以1mol/L的乙醇和0.5mol/L的硫酸为电解液,在-0.2~1.0v电压范围内,测得电流密度为500mA·mg-1Pt,金属粒子尺寸为5.0nm左右。
实施例8:改变pH=7,其他条件同实施例1,得到具有球状的Pt-Ni/NC催化剂进行电化学性能测试,以1mol/L的乙醇和0.5mol/L的硫酸为电解液,在-0.2~1.0v电压范围内,测得电流密度为200mA·mg-1Pt,金属粒子尺寸为5.8nm左右。

Claims (5)

1.一种用于乙醇催化氧化的氮掺杂铂镍/碳催化剂的制备方法,其特征在于:包括主要步骤如下:首先将蔗糖(葡萄糖)与尿素加入去离子水中进行混合,再将氯化镍水溶液与氯铂酸水溶液按质量比进行混合,然后加入上述混合溶液中,用氢氧化钠水溶液调节pH,再进行超声,使其混合均匀,最后放入聚四氟乙烯高温高压反应釜内进行水热反应。冷却到室温后,将反应后的溶液进行抽滤,在此过程中并用去离子水洗涤多次,所得产物在真空干燥箱内干燥过夜,最后得到的粉末在管式炉内进行高温碳化,所得到的具有球状的Pt-Ni/NC催化剂。
2.一种如权利要求1所述的乙醇氧化电催剂的制备方法,其特征在于:所述氯化镍水溶液和氯铂酸水溶液的质量比为1∶1~1∶5。
3.一种如权利要求1所述的乙醇氧化电催剂的制备方法,其特征在于:混合溶液在160~180℃下水热反应12h。
4.一种如权利要求1所述的乙醇氧化电催剂的制备方法,其特征在于:pH值为4~7。
5.一种如权利要求1所述的乙醇氧化电催剂的制备方法,其特征在于:在氮气氛围下以5℃/min的升温速率升温到600~800℃保温1~2h;然后降至室温。
CN201711005493.8A 2017-10-20 2017-10-20 一步法制备用于乙醇催化氧化的氮掺杂铂镍/碳电化学催化剂 Pending CN107754840A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711005493.8A CN107754840A (zh) 2017-10-20 2017-10-20 一步法制备用于乙醇催化氧化的氮掺杂铂镍/碳电化学催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711005493.8A CN107754840A (zh) 2017-10-20 2017-10-20 一步法制备用于乙醇催化氧化的氮掺杂铂镍/碳电化学催化剂

Publications (1)

Publication Number Publication Date
CN107754840A true CN107754840A (zh) 2018-03-06

Family

ID=61269987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711005493.8A Pending CN107754840A (zh) 2017-10-20 2017-10-20 一步法制备用于乙醇催化氧化的氮掺杂铂镍/碳电化学催化剂

Country Status (1)

Country Link
CN (1) CN107754840A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065893A (zh) * 2018-06-21 2018-12-21 华南理工大学 一种复合电催化材料及其制备方法和应用
CN109999880A (zh) * 2019-04-19 2019-07-12 中国科学院青岛生物能源与过程研究所 氮掺杂多孔碳负载双金属催化剂及其制备方法及用途
CN110227513A (zh) * 2019-06-26 2019-09-13 浙江工业大学 一种碳基负载金属磷化物催化剂及其制备方法和应用
CN113745544A (zh) * 2021-08-18 2021-12-03 江西理工大学 一种电催化剂、制备方法及应用
CN113903927A (zh) * 2021-09-16 2022-01-07 昆明贵研新材料科技有限公司 一种制备N-rGO负载PtCu合金纳米催化剂的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030232235A1 (en) * 2002-02-12 2003-12-18 Symyx Technologies, Inc. Fuel cell electrocatalyst of Pt-Rh-Mo-Ni/Fe
CN102039121A (zh) * 2009-10-21 2011-05-04 中国科学院大连化学物理研究所 一种铂/碳纳米管催化剂及制法和应用
CN102806093A (zh) * 2012-08-31 2012-12-05 重庆大学 一种高效低铂直接甲醇燃料电池催化剂的制备方法
CN106410214A (zh) * 2016-09-12 2017-02-15 天津工业大学 一种高比表面积的NiS2催化剂的制备方法
CN106423242A (zh) * 2016-09-12 2017-02-22 天津工业大学 一种氮掺杂的镍/碳高性能乙醇氧化催化剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030232235A1 (en) * 2002-02-12 2003-12-18 Symyx Technologies, Inc. Fuel cell electrocatalyst of Pt-Rh-Mo-Ni/Fe
CN102039121A (zh) * 2009-10-21 2011-05-04 中国科学院大连化学物理研究所 一种铂/碳纳米管催化剂及制法和应用
CN102806093A (zh) * 2012-08-31 2012-12-05 重庆大学 一种高效低铂直接甲醇燃料电池催化剂的制备方法
CN106410214A (zh) * 2016-09-12 2017-02-15 天津工业大学 一种高比表面积的NiS2催化剂的制备方法
CN106423242A (zh) * 2016-09-12 2017-02-22 天津工业大学 一种氮掺杂的镍/碳高性能乙醇氧化催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王星砾等: "Pt修饰的Ni/C催化剂电催化氧化乙醇性能", 《催化学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065893A (zh) * 2018-06-21 2018-12-21 华南理工大学 一种复合电催化材料及其制备方法和应用
CN109065893B (zh) * 2018-06-21 2021-03-30 华南理工大学 一种复合电催化材料及其制备方法和应用
CN109999880A (zh) * 2019-04-19 2019-07-12 中国科学院青岛生物能源与过程研究所 氮掺杂多孔碳负载双金属催化剂及其制备方法及用途
CN109999880B (zh) * 2019-04-19 2022-02-25 中国科学院青岛生物能源与过程研究所 氮掺杂多孔碳负载双金属催化剂及其制备方法及用途
CN110227513A (zh) * 2019-06-26 2019-09-13 浙江工业大学 一种碳基负载金属磷化物催化剂及其制备方法和应用
CN110227513B (zh) * 2019-06-26 2021-11-09 浙江工业大学 一种碳基负载金属磷化物催化剂及其制备方法和应用
CN113745544A (zh) * 2021-08-18 2021-12-03 江西理工大学 一种电催化剂、制备方法及应用
CN113903927A (zh) * 2021-09-16 2022-01-07 昆明贵研新材料科技有限公司 一种制备N-rGO负载PtCu合金纳米催化剂的方法

Similar Documents

Publication Publication Date Title
Wang et al. Engineering NiF3/Ni2P heterojunction as efficient electrocatalysts for urea oxidation and splitting
Zhang et al. N-doped carbon nanotubes supported CoSe2 nanoparticles: A highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media
Cazetta et al. Bone char-derived metal-free N-and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation
Sciarria et al. Metal-free activated biochar as an oxygen reduction reaction catalyst in single chamber microbial fuel cells
Alonso-Lemus et al. Novel self-nitrogen-doped porous carbon from waste leather as highly active metal-free electrocatalyst for the ORR
Li et al. Facile Cu3P-C hybrid supported strategy to improve Pt nanoparticle electrocatalytic performance toward methanol, ethanol, glycol and formic acid electro-oxidation
CN107754840A (zh) 一步法制备用于乙醇催化氧化的氮掺杂铂镍/碳电化学催化剂
CN107658474B (zh) 一种氮硫共掺杂多孔碳微球及制备方法、用途和氧还原电极
Maya-Cornejo et al. Electrooxidation of crude glycerol as waste from biodiesel in a nanofluidic fuel cell using Cu@ Pd/C and Cu@ Pt/C
Zhou et al. An effective Pt–CoTe/NC catalyst of bifunctional methanol electrolysis for hydrogen generation
Qin et al. TiO2 nanotube arrays supported Pd nanoparticles for ethanol electrooxidation in alkaline media
Tran et al. Mesoporous silica template-derived nickel-cobalt bimetallic catalyst for urea oxidation and its application in a direct urea/H2O2 fuel cell
Corona-Guinto et al. Performance of a PEM electrolyzer using RuIrCoOx electrocatalysts for the oxygen evolution electrode
Yu et al. Metal-organic frameworks derived bundled N-doped carbon nanowires confined cobalt phosphide nanocrystals as a robust electrocatalyst for hydrogen production
Silva et al. Nanoporous heteroatom-doped carbons derived from cotton waste: efficient hydrazine oxidation electrocatalysts
CN111054408A (zh) 一种多孔镍钼基纳米片双功能电催化剂的制备方法
Calcerrada et al. Influence of the carbon support on the Pt–Sn anodic catalyst for the electrochemical reforming of ethanol
CN105932310A (zh) 硼氮掺杂石墨烯载钯催化剂
Wang et al. Nitrogen-doped mesoporous carbon nanosheet network entrapped nickel nanoparticles as an efficient catalyst for electro-oxidation of glycerol
Lin et al. Cyanogel and its derived-materials: properties, preparation methods, and electrochemical applications
Zhou et al. Efficient synthesis of H2O2 via oxygen reduction over PANI driven by kinetics regulation of carbon dots
Chanda et al. Electroreduction of CO2 to ethanol by electrochemically deposited Cu-lignin complexes on Ni foam electrodes
Sun et al. In-situ phosphating Co@ Nitrogen-doping graphene boosts overall water splitting under alkaline condition
Habibi et al. Ni@ Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
KR102108907B1 (ko) 나노스폰지 구조의 그래핀닷-팔라듐 하이브리드의 제조방법 및 그에 의해 제조된 그래핀닷-팔라듐 하이브리드 촉매

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180306