CN107744829A - 一种金属磷化物催化剂的制备及其在加氢脱氧催化反应中的应用 - Google Patents

一种金属磷化物催化剂的制备及其在加氢脱氧催化反应中的应用 Download PDF

Info

Publication number
CN107744829A
CN107744829A CN201711148304.2A CN201711148304A CN107744829A CN 107744829 A CN107744829 A CN 107744829A CN 201711148304 A CN201711148304 A CN 201711148304A CN 107744829 A CN107744829 A CN 107744829A
Authority
CN
China
Prior art keywords
catalyst
metal phosphide
usy
reaction
catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711148304.2A
Other languages
English (en)
Inventor
郑玉婴
张祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201711148304.2A priority Critical patent/CN107744829A/zh
Publication of CN107744829A publication Critical patent/CN107744829A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明属于纳米材料和催化领域,具体涉及一种金属磷化物催化剂的制备及其在加氢脱氧催化反应中的应用。以硝酸镍为镍源,钨酸铵为钨源,磷酸为磷源,通过等体积浸渍法在钾离子交换后的超稳定Y型沸石上负载含有不同金属元素配比的磷化物前驱体,并通过程序控温还原在氢气气氛下将其还原为相应金属磷化物。在本发明中,钾离子交换后的超稳定Y型沸石相比于未处理之前,在保证较高比表面积的同时,降低了载体表面Brönsted酸浓度,使2‑甲基呋喃在加氢脱氧过程中不发生碳链的裂解;所得Ni2P/K(0.5)USY催化剂展现出较高的催化活性,而WP/(0.5)USY催化剂展现出较高的酸产物催化选择活性。

Description

一种金属磷化物催化剂的制备及其在加氢脱氧催化反应中的 应用
技术领域
本发明属于纳米材料和催化领域,具体涉及一种金属磷化物催化剂的制备及其在加氢脱氧催化反应中的应用。
背景技术
生物质油是一种由纤维素、木质素等物质组成的能源来源,因其来源广泛、二氧化碳排放量低、可转化为液态燃料,方便储存及运输等优势,逐渐受到了能源领域的广泛关注。然而,由于生物质油的含氧量较高(40-60 wt%),导致生物质油具有热值低,稳定性差等缺点。为了提高生物质油的能量密度和热效率,降低氧含量并且提高氢含量是一种高效的加工方式,由此,生物质油加氢脱氧技术及相关催化剂孕育而生。2-甲基呋喃是一种在生物质油精炼过程中含量较高的含氧化合物,可用此种化合物评价加氢脱氧催化剂的催化性能。
金属磷化物如Ni2P,WP等,是一种新型的加氢处理催化剂,由于其对石油原料的加氢脱硫和加氢脱氮的活性较高,因此引起了石油工业的广泛关注。在加氢脱氧领域,Ni2P的研究以接近完善,但WP催化剂在加氢脱氧方面的研究还比较少见,因此以WP为催化剂对2-甲基呋喃进行加氢脱氧具有一定意义。除了单金属磷化物催化剂,双金属磷化物如NiFeP,NiMoP等在含氧有机物加氢脱氧催化过程中也能展现一定催化作用。通过改变过渡金属组成或配比,例如制备新颖的镍和钨的双过渡金属磷化物,探究双金属磷化物对含氧有机物的催化活性和催化选择性,能够进一步丰富双金属磷化物在加氢脱氧催化领域的研究。
为了充分提高金属磷化物催化剂的活性,在合适载体上均匀负载金属磷化物是一种有效的方式。载体的比表面积,孔隙结构等因素活性组分的分散和形态,从而对催化剂活性产生影响。超稳定Y型沸石(Ultra Stable Y Zeolite, USY) 是一种具有高比表面积,高孔隙率,耐热性强的分子筛,由于其含有以铝元素为中心的酸性点,在催化过程中容易将碳长链裂解为若干短的碳链,因此广泛作为柴油裂解催化剂载体。但是,现如今绝大部分的催化剂仅仅以商业化的USY作为载体,并未对其进行改性,导致长链化合物发生碳裂反应,致使发生积碳等副反应,这对催化剂寿命及产物热值产生一定影响。因此,对USY载体的表面酸性进行改性,使其在具备高表面积的同时不发生碳链的断裂具有一定实际意义。对USY进行离子交换改性,将其表面的氢离子替换为其他金属离子,可以降低超稳定Y型沸石表面酸性,从而避免碳链的裂解以及催化剂表面的积碳现象,提高含氧化合物的热值以及加氢脱氧催化剂的催化寿命。因此,将金属磷化物催化剂均匀负载于离子交换改性后的USY表面及孔隙中,能够得到催化性能优异且稳定的加氢脱氧催化剂。
发明内容
本发明的目的在于提供一种金属磷化物催化剂的制备及其在加氢脱氧催化反应中的应用。通过在改性后的超稳定Y型沸石上均匀负载不同金属磷化物,得到催化性能较高的加氢脱氧催化剂。
为实现上述目的,本发明采用如下技术方案:
所述金属磷化物催化剂的制备方法,包括以下步骤:
(1) USY载体的离子交换改性:将20 g 的USY在400 ml,0.1-0.5 mol/L 的硝酸钾溶液中进行离子交换,反应温度为70 ℃,反应时间为6 小时,再经过滤、洗涤、干燥后得到钾离子交换改性的USY。
(2) 金属磷化物前驱体的负载:通过等体积浸渍法,在室温下将4 mL溶有不同金属离子的混合液逐滴滴入2.5 g 钾离子改性的USY载体中,边滴加边搅拌,滴加时间为1小时,直至载体均匀吸附混合溶液。
(3) 金属磷化物前驱体的还原及钝化:将负载有金属磷化物前驱体的载体进行压片,并筛分为650-1180 μm 大小的颗粒,至于连续性固定床反应器中;通过程序控温还原法,在1500 mL/min/g(其中g为载体质量)的氢气气氛下对其进行还原,从室温升至800 ℃,升温速度为3 ℃/min,还原反应持续2小时,并用质谱仪检测产物中水分含量;将还原后的金属磷化物催化剂在0.5 vol% O2/N2的混合气中钝化。
以2-甲基呋喃为标准化合物对所制备的金属磷化物催化剂进行催化性能评价,在连续固定床反应器中进行催化反应,反应条件为:2-甲基呋喃气体的流速为24 μmol/min,H2流速为100 mL/min,压力为0.5 MPa,催化反应温度为450 ℃,接触时间为0.8秒,活性测试时间持续2小时,用在线气相色谱分析产物组分。
本发明的有益效果在于:
(1) 离子交换改性后的KUSY载体表面酸性得到了进一步降低,有利于减少催化剂对含氧化合物的裂解作用,并且提高催化剂稳定性和寿命;另外,KUSY的比表面积并未出现明显下降,介孔孔容得到提升,有利于催化剂的均匀分布,从而提升催化剂活性;
(2) 等体积浸渍法能够保证所有金属离子被吸附于载体的孔隙中,避免活性组分团聚,而孔隙结构对催化剂在工作过程中起到了支撑作用,避免了催化剂工作时发生结构变化或者脱落,对催化剂活性产生积极影响;
(3) 通过改变金属离子组成,探究了Ni2P,NiWP以及WP在KUSY载体上的不同催化性能,得出一系列结论,例如Ni2P/K(0.5)USY催化剂的催化活性最高,WP/K(0.5)USY催化剂的催化对酸类产物的选择性最高等,对今后催化剂的生产应用给予一些指导和启示。
附图说明
图1为本发明制备的不同浓度钾离子交换后得到的KUSY载体氮气吸附脱附图。
图2为本发明制备的Ni2P/K(0.5)USY,NiWP/K(0.5)USY以及WP/K(0.5)USY催化剂的不同还原温度。
具体实施方式
以下结合具体实施例对本发明做进一步说明,但本发明不仅仅限于这些实施例。
实施例1
一种金属磷化物加氢脱氧催化剂的制备方法,具体过程如下:
(1) USY载体的离子交换改性
将20 g 的USY在400 mL,0.1 mol/L 的硝酸钾溶液中进行离子交换,反应温度为70℃,反应时间为6 小时,再经过滤、洗涤、干燥后得到钾离子交换改性的USY载体,记为K(0.1)USY。
(2) 金属磷化物前驱体的负载
通过等体积浸渍法,在室温下将4 mL溶有2.9 mmol硝酸镍、5.8 mmol磷酸(摩尔比Ni:W:P=1:0:2)的混合液逐滴滴入2.5 g K(0.1)USY载体中,边滴加边搅拌,滴加时间为1小时,直至载体均匀吸附混合溶液。
(3) 金属磷化物前驱体的还原及钝化
将负载有金属磷化物前驱体的载体进行压片,并筛分为650-1180 μm 大小的颗粒,至于还原反应器中;通过程序控温还原法,在1500 mL/min/g(载体)的氢气气氛下对其进行还原,从室温升至800 ℃,升温速度为3 ℃/min,还原反应持续2小时,并用质谱仪检测产物中水分含量;将还原后的金属磷化物催化剂在0.5 vol% O2/N2的混合气中钝化。
(4) 催化活性测试
在连续性固定床反应器中进行对2-甲基呋喃的加氢脱氧催化反应。在35 ℃下蒸发含有95 %体积的2-甲基呋喃和5%体积的甲苯混合液,使用100 mL/min的氢气将混合气带入反应器中,控制2-甲基呋喃气体的流速为24 μmol/min,催化剂质量为0.35 g,反应温度为450℃,接触时间为0.8秒,活性测试时间持续2小时,用在线气相色谱分析产物组分。
经测试,所制得的Ni2P/K(0.1)USY对2-甲基呋喃的转化率为97.6 %,酸类产物选择性为1.7 mol%。
实施例2
(1) USY载体的离子交换改性
将20 g 的USY在400 mL,0.3 mol/L 的硝酸钾溶液中进行离子交换,反应温度为70℃,反应时间为6 小时,再经过滤、洗涤、干燥后得到钾离子交换改性的USY载体,记为K(0.3)USY。
(2) 金属磷化物前驱体的负载
通过等体积浸渍法,在室温下将4 mL溶有2.9 mmol硝酸镍、5.8 mmol磷酸(摩尔比Ni:W:P=1:0:2)的混合液逐滴滴入2.5 g K(0.3)USY载体中,边滴加边搅拌,滴加时间为1小时,直至载体均匀吸附混合溶液。
(3) 金属磷化物前驱体的还原及钝化
将负载有金属磷化物前驱体的载体进行压片,并筛分为650-1180 μm 大小的颗粒,至于还原反应器中;通过程序控温还原法,在1500 mL/min/g(载体)的氢气气氛下对其进行还原,从室温升至800 ℃,升温速度为3 ℃/min,还原反应持续2小时,并用质谱仪检测产物中水分含量;将还原后的金属磷化物催化剂在0.5 vol% O2/N2的混合气中钝化。
(4) 催化活性测试
在连续性固定床反应器中进行对2-甲基呋喃的加氢脱氧催化反应。在35 ℃下蒸发含有95 %体积的2-甲基呋喃和5 %体积的甲苯混合液,使用100 mL/min的氢气将混合气带入反应器中,控制2-甲基呋喃气体的流速为24 μmol/min,催化剂质量为0.35 g,反应温度为450 ℃,接触时间为0.8秒,活性测试时间持续2小时,用在线气相色谱分析产物组分。
经测试,所制得的Ni2P/K(0.3)USY对2-甲基呋喃的转化率为99.1 %,酸类产物选择性为2.0 mol%。
实施例3
(1) USY载体的离子交换改性
将20 g 的USY在400 mL,0.5 mol/L 的硝酸钾溶液中进行离子交换,反应温度为70℃,反应时间为6小时,再经过滤、洗涤、干燥后得到钾离子交换改性的USY载体,记为K(0.5)USY。
(2) 金属磷化物前驱体的负载
通过等体积浸渍法,在室温下将4 mL溶有2.9 mmol硝酸镍、5.8 mmol磷酸(摩尔比Ni:W:P=1:0:2)的混合液逐滴滴入2.5 g K(0.5)USY载体中,边滴加边搅拌,滴加时间为1小时,直至载体均匀吸附混合溶液。
(3) 金属磷化物前驱体的还原及钝化
将负载有金属磷化物前驱体的载体进行压片,并筛分为650-1180 μm 大小的颗粒,至于还原反应器中;通过程序控温还原法,在1500 mL/min/g(载体)的氢气气氛下对其进行还原,从室温升至800 ℃,升温速度为3 ℃/min,还原反应持续2小时,并用质谱仪检测产物中水分含量;将还原后的金属磷化物催化剂在0.5 vol% O2/N2的混合气中钝化。
(4) 催化活性测试
在连续性固定床反应器中进行对2-甲基呋喃的加氢脱氧催化反应。在35 ℃下蒸发含有95 %体积的2-甲基呋喃和5 %体积的甲苯混合液,使用100 mL/min的氢气将混合气带入反应器中,控制2-甲基呋喃气体的流速为24 μmol/min,催化剂质量为0.35 g,反应温度为450 ℃,接触时间为0.8秒,活性测试时间持续2小时,用在线气相色谱分析产物组分。
经测试,所制得的Ni2P/K(0.5)USY的还原温度为577 ℃,对2-甲基呋喃的转化率为100 %,酸类产物选择性为2.6 mol%。
实施例4
(1) USY载体的离子交换改性
将20 g 的USY在400 mL,0.5 mol/L 的硝酸钾溶液中进行离子交换,反应温度为70℃,反应时间为6小时,再经过滤、洗涤、干燥后得到K(0.5)USY。
(2) 金属磷化物前驱体的负载
通过等体积浸渍法,在室温下将4 mL溶有1.45 mmol硝酸镍、0.12 mmol钨酸铵、5.8mmol磷酸(摩尔比Ni:W:P=1:1:2)的混合液逐滴滴入2.5 g K(0.5)USY载体中,边滴加边搅拌,滴加时间为1小时,直至载体均匀吸附混合溶液。
(3) 金属磷化物前驱体的还原及钝化
将负载有金属磷化物前驱体的载体进行压片,并筛分为650-1180 μm 大小的颗粒,至于还原反应器中;通过程序控温还原法,在1500 mL/min/g(载体)的氢气气氛下对其进行还原,从室温升至800 ℃,升温速度为3 ℃/min,还原反应持续2小时,并用质谱仪检测产物中水分含量;将还原后的金属磷化物催化剂在0.5 vol% O2/N2的混合气中钝化。
(4) 催化活性测试
在连续性固定床反应器中进行对2-甲基呋喃的加氢脱氧催化反应。在35 ℃下蒸发含有95 %体积的2-甲基呋喃和5 %体积的甲苯混合液,使用100 mL/min的氢气将混合气带入反应器中,控制2-甲基呋喃气体的流速为24 μmol/min,催化剂质量为0.35 g,反应温度为450 ℃,接触时间为0.8秒,活性测试时间持续2小时,用在线气相色谱分析产物组分。
经测试,所制得的NiWP/K(0.5)USY的还原温度为609 ℃,对2-甲基呋喃的转化率为76.4 %,酸类产物选择性为30.3 mol%。
实施例5
(1) USY载体的离子交换改性
将20 g 的USY在400 mL,0.5 mol/L 的硝酸钾溶液中进行离子交换,反应温度为70℃,反应时间为6 h,再经过滤、洗涤、干燥后得到K(0.5)USY。
(2) 金属磷化物前驱体的负载
通过等体积浸渍法,在室温下将4 mL溶有0.24 mmol钨酸铵、5.8 mmol磷酸(摩尔比Ni:W:P=0:1:2)的混合液逐滴滴入2.5 g K(0.5)USY载体中,边滴加边搅拌,滴加时间为1小时,直至载体均匀吸附混合溶液。
(3) 金属磷化物前驱体的还原及钝化
将负载有金属磷化物前驱体的载体进行压片,并筛分为650-1180 μm 大小的颗粒,至于还原反应器中;通过程序控温还原法,在1500 mL/min/g(载体)的氢气气氛下对其进行还原,从室温升至800 ℃,升温速度为3 ℃/min,还原反应持续2小时,并用质谱仪检测产物中水分含量;将还原后的金属磷化物催化剂在0.5 vol% O2/N2的混合气中钝化。
(4) 催化活性测试
在连续性固定床反应器中进行对2-甲基呋喃的加氢脱氧催化反应。在35 ℃下蒸发含有95 %体积的2-甲基呋喃和5 %体积的甲苯混合液,使用100 mL/min的氢气将混合气带入反应器中,控制2-甲基呋喃气体的流速为24 μmol/min,催化剂质量为0.35 g,反应温度为450 ℃,接触时间为0.8秒,活性测试时间持续2小时,用在线气相色谱分析产物组分。
经测试,所制得的WP/K(0.5)USY的还原温度为601 ℃,对2-甲基呋喃的转化率为38.2 %,酸类产物选择性为43.7 mol%。
表1为本发明制备的钾离子交换KUSY载体、Ni2P/K(0.5)USY,NiWP/K(0.5)USY以及WP/K(0.5)USY催化剂的比表面积及孔隙情况。
表2为本发明制备的Ni2P/K(0.5)USY,NiWP/K(0.5)USY以及WP/K(0.5)USY催化剂对2-甲基呋喃的转化率及对酸性产物的选择性。
通过表1的比表面积数据可以看出,USY载体在多次钾离子交换后仍可以保持较高的比表面积,并且介孔孔容得到了逐步提高,这对吸附活性相以及催化还原反应都具有积极的影响。以K(0.5)USY为载体,负载金属磷化物后发现比表面积发生较明显的下降,介孔和微孔孔容也发生了一定减少,说明金属磷化物通过等体积浸渍法均匀负载到了载体的孔结构中以及载体表面;另外,NiWP/K(0.5)USY的比表面积最小,可能是因为生成了Ni-W-P合金,导致了一定程度的团聚。表2为所制备催化剂对2-甲基呋喃的转化率及对酸性产物的选择性。从表中可知,无论载体的种类为何,负载Ni2P后催化剂都对2-甲基呋喃展现出了显著的加氢脱氧催化性能,尤其是Ni2P/K(0.5)USY对2-甲基呋喃的转换率更是达到了100%,这是由于磷化镍本身具有高催化活性。另外,虽然NiWP/K(0.5)USY和WP/K(0.5)USY催化剂无法实现对2-甲基呋喃的完全转换,但是它们对酸性产物的选择性相较Ni2P/K(0.5)USY得到了提高,说明在NiWP催化剂中,Ni金属影响着催化转化率,而W金属决定了催化选择性。
图1表示了不同浓度钾离子交换后得到的KUSY载体氮气吸附脱附图。可以看出,载体在离子交换前后都展现出了Ⅳ型等温线,说明了微孔和介孔的存在。图2表示了Ni2P/K(0.5)USY,NiWP/K(0.5)USY以及WP/K(0.5)USY催化剂的程序控温还原峰。Ni2P/K(0.5)USY催化剂的还原温度为577℃,NiWP/K(0.5)USY催化剂的还原温度为609℃,WP/K(0.5)USY催化剂的还原温度为601℃。可以看出,通过改变催化剂中W的含量,不同催化剂显现出不同的还原温度。相比于单一金属磷化物,NiWP/K(0.5)USY双金属磷化物展现出最高的还原温度,这是由于催化剂中含有Ni-W-P合金,Ni和W之间存在的化学反应使得还原更难进行。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (3)

1.一种金属磷化物催化剂,其特征在于:载体为钾离子交换后的超稳定Y型沸石,活性组分为Ni2P、WP,或者NiWP,金属元素的负载量为1.16 mmol/g。
2.一种如权利要求1所述的金属磷化物催化剂的制备方法,其特征在于:按照以下流程制备:
(1) 以硝酸钾为钾源,将超稳定Y型沸石在硝酸钾溶液中进行离子交换,将所得载体进行过滤、干燥,得到钾离子交换的超稳定Y型沸石KUSY,反应条件为:离子交换反应温度为70℃,硝酸钾溶液浓度为0.1-0.5 mol/L,搅拌转速为500 rpm/min,反应时间为6小时,干燥温度为60 ℃,压力为一个标准大气压;
(2) 以硝酸镍为镍源,钨酸铵为钨源,磷酸为磷源,在步骤1所得的载体上通过等体积浸渍法负载相应金属磷化物前驱体,将所得催化剂进行干燥,压片,并筛分成650–1180 μm大小的颗粒,反应条件为:2.5 g载体,4 ml金属离子混合溶液,混合液的摩尔配比分别为:Ni:W:P=1:0:2, 1:1:2以及0:1:2,干燥温度为60 ℃;
(3) 将步骤2所制得的负载有前驱体的催化剂通过程序控温还原法在氢气中进行还原,并且在氧气和氮气的混合气中钝化,反应条件为:所述氢气的流速为1500 mL/min/g,从室温升至800 ℃,升温速度为3 ℃/min,还原反应持续2小时,并用质谱仪检测产物中水分含量;钝化时混合气的组成为0.5 vol% O2/N2,钝化反应持续2小时。
3.一种权利要求1所述的金属磷化物催化剂在加氢脱氧催化反应中的应用,其特征在于:以2-甲基呋喃为标准化合物,在连续固定床反应器中进行催化反应,反应条件为:2-甲基呋喃气体的流速为24 μmol/min,H2流速为100 mL/min,压力为0.5 MPa,催化反应温度为450 ℃,接触时间为0.8秒,活性测试时间持续2小时,用在线气相色谱分析产物组分。
CN201711148304.2A 2017-11-17 2017-11-17 一种金属磷化物催化剂的制备及其在加氢脱氧催化反应中的应用 Pending CN107744829A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711148304.2A CN107744829A (zh) 2017-11-17 2017-11-17 一种金属磷化物催化剂的制备及其在加氢脱氧催化反应中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711148304.2A CN107744829A (zh) 2017-11-17 2017-11-17 一种金属磷化物催化剂的制备及其在加氢脱氧催化反应中的应用

Publications (1)

Publication Number Publication Date
CN107744829A true CN107744829A (zh) 2018-03-02

Family

ID=61251404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711148304.2A Pending CN107744829A (zh) 2017-11-17 2017-11-17 一种金属磷化物催化剂的制备及其在加氢脱氧催化反应中的应用

Country Status (1)

Country Link
CN (1) CN107744829A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116408114A (zh) * 2023-03-17 2023-07-11 大连理工大学 一种负载型Ni3P/M-γ-Al2O3催化剂、制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427880A (zh) * 2009-04-01 2012-04-25 Sk新技术株式会社 用于制备生物柴油的金属磷化合物以及使用该金属磷化合物制备生物柴油的方法
CN102585876A (zh) * 2012-03-07 2012-07-18 天津大学 以金属磷化物催化剂由高级脂肪酸酯制烃的方法
CN104841466A (zh) * 2015-04-09 2015-08-19 厦门大学 一种生物油基含氧化合物加氢脱氧催化剂及其制备方法
CN106179434A (zh) * 2016-07-05 2016-12-07 济南大学 一种多孔Ni–P系化合物及其制备方法
CN106276830A (zh) * 2015-05-20 2017-01-04 南开大学 一种微波合成金属磷化物的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427880A (zh) * 2009-04-01 2012-04-25 Sk新技术株式会社 用于制备生物柴油的金属磷化合物以及使用该金属磷化合物制备生物柴油的方法
CN102585876A (zh) * 2012-03-07 2012-07-18 天津大学 以金属磷化物催化剂由高级脂肪酸酯制烃的方法
CN104841466A (zh) * 2015-04-09 2015-08-19 厦门大学 一种生物油基含氧化合物加氢脱氧催化剂及其制备方法
CN106276830A (zh) * 2015-05-20 2017-01-04 南开大学 一种微波合成金属磷化物的制备方法
CN106179434A (zh) * 2016-07-05 2016-12-07 济南大学 一种多孔Ni–P系化合物及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ARA CHO ET AL.: "Active Sites in Ni2P/USY Catalysts for the Hydrodeoxygenation of 2-Methyltetrahydrofuran", 《TOP CATAL.》 *
KYOKO K. BANDO ET AL.: "Quick X-ray Absorption Fine Structure Studies on the Activation Process of Ni2P Supported on K-USY", 《J. PHYS. CHEM. C 》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116408114A (zh) * 2023-03-17 2023-07-11 大连理工大学 一种负载型Ni3P/M-γ-Al2O3催化剂、制备方法及应用

Similar Documents

Publication Publication Date Title
Yang et al. Promoting ethylene selectivity from CO2 electroreduction on CuO supported onto CO2 capture materials
Ma et al. Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction
CN101116816B (zh) 用于高碳烯烃氢甲酰化制高碳醛的负载型铑催化剂的制备方法
CN105728020B (zh) 一种核壳型碳化铁催化剂制备方法
CN106000405B (zh) 一种多级孔负载型镍基催化剂、制备方法及应用
Marco et al. Support‐Induced Oxidation State of Catalytic Ru Nanoparticles on Carbon Nanofibers that were Doped with Heteroatoms (O, N) for the Decomposition of NH3
CN109248700B (zh) 一种氮掺杂碳材料催化剂的制备方法及用途
CN111215127B (zh) 铁单原子催化剂及其制备和应用
Yang et al. Superior selectivity and tolerance towards metal‐ion impurities of a Fe/N/C catalyst for CO2 reduction
Ouyang et al. Boosting the ORR performance of modified carbon black via C–O bonds
Li et al. Homogenous Meets Heterogenous and Electro‐Catalysis: Iron‐Nitrogen Molecular Complexes within Carbon Materials for Catalytic Applications
CN103691429B (zh) 用于生物质快速热裂解液化的催化剂及其制备方法和应用
CN112553646A (zh) 一种MXene负载纳米合金催化剂、制备方法及其应用
CN107456988A (zh) 一种氮化钼加氢脱氧催化剂及其制备方法和应用
CN104437578B (zh) 一种加氢脱硫催化剂、制备方法及其应用
CN105148930A (zh) 一种一氧化碳低温氧化的改性钴-铈核壳结构催化剂
CN109731597A (zh) 一种氮掺杂生物质基碳材料负载催化剂及其制备和应用
Wang et al. Tuning Metal‐Support Interaction and Surface Acidic Sites of Ni/Al2O3 by Dopamine Modification for Glycerol Steam Reforming
CN103191744A (zh) 一种改性蛭石负载镍催化剂及其制备方法
CN106883089A (zh) 一种4-甲基-3-环己烯甲醛合成甲苯的方法
CN107744829A (zh) 一种金属磷化物催化剂的制备及其在加氢脱氧催化反应中的应用
Miah et al. Orange peel biomass‐derived carbon supported Cu electrocatalysts active in the CO2‐reduction to formic acid
CN113976167A (zh) 一种Pd/HY分子筛的制备方法及其应用和在多级孔分子筛上选择性负载金属的方法
RU2496574C1 (ru) Катализатор гидроочистки дизельных фракций
CN106890665A (zh) 一种二甲醚羰基化生产乙酸甲酯的催化剂及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180302