CN107742028B - 一种五缸往复泵曲轴上曲柄初相角优化布置方法 - Google Patents

一种五缸往复泵曲轴上曲柄初相角优化布置方法 Download PDF

Info

Publication number
CN107742028B
CN107742028B CN201710967324.6A CN201710967324A CN107742028B CN 107742028 B CN107742028 B CN 107742028B CN 201710967324 A CN201710967324 A CN 201710967324A CN 107742028 B CN107742028 B CN 107742028B
Authority
CN
China
Prior art keywords
cylinder
crank
initial phase
reciprocating pump
crankshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710967324.6A
Other languages
English (en)
Other versions
CN107742028A (zh
Inventor
冯进
魏俊
马良丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze University
Original Assignee
Yangtze University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze University filed Critical Yangtze University
Priority to CN201710967324.6A priority Critical patent/CN107742028B/zh
Publication of CN107742028A publication Critical patent/CN107742028A/zh
Application granted granted Critical
Publication of CN107742028B publication Critical patent/CN107742028B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Reciprocating Pumps (AREA)

Abstract

本发明涉及一种曲柄初相角优化布置方法,具体涉及一种五缸往复泵曲轴上曲柄初相角优化布置方法。本发明对单缸单作用往复泵柱塞的运动规律进行分析,找出各运动参量与曲轴转角之间的对应关系;并根据据五缸往复泵各缸吸/排液特性及排出压力高的特点,对五缸往复泵曲轴上曲柄初相角优化布置方案进行优化设计,在方案的基础上提高了往复泵设计的可靠性,有效地降低了吸入液体产生的附加惯性水头损失、减轻了管路断流沉沙问题,改善了泵的吸入性能,且降低了曲轴弯曲应力,从而提高了五缸泵的使用寿命。

Description

一种五缸往复泵曲轴上曲柄初相角优化布置方法
技术领域
本发明涉及一种曲柄初相角优化布置方法,具体涉及一种五缸往复泵曲轴上曲柄初相角优化布置方法。
背景技术
石油天然气工业中,往复泵主要用于钻井液的循环、高压注水、注聚合物采油和油气藏地层压裂等生产过程。随着油气开发重点逐渐向深部地层和非常规页岩气的转移,对大功率、高泵压往复泵的需求量日益增大,同时对其工作性能的要求也不断提高。近年来五缸往复泵的研发力度不断加大,已形成系列产品,其额定功率已达到3000马力,现场应用呈逐年增加的趋势。
现行文献报道中对往复泵的研究,主要集中在其关键件、易损件的疲劳寿命仿真、吸入过程气化仿真以及液体滑动密封的摩擦与磨损等方面,都是在现有的曲轴传动方案下开展的,对往复泵的性能改进和可靠性水平的提高起到了积极作用。
但是曲轴传动方案是往复泵工作性能及零部件寿命研究的基础,而不同的曲轴传动方案下,往复泵的工作性能差异较大,故,首先确定出往复泵的最优传动方案是非常有必要的。
发明内容
本发明的目的在于:提供一种能为优化设计提供依据,以提高五缸往复泵设计可靠性的五缸往复泵曲轴上曲柄初相角优化布置方法。
本发明的技术方案是:
一种五缸往复泵曲轴上曲柄初相角优化布置方法;其特征在于:它包括以下步骤:
1)、对单缸单作用往复泵柱塞的运动规律进行分析,找出各运动参量与曲轴转角之间的对应关系;
2)、根据流量与速度及过流截面面积的关系,得出单缸单作用往复泵瞬时流量与曲轴转角的对应关系,并采用无因次方法得到单缸单作用往复泵的无因次瞬时流量计算表达式;
3)、对五缸往复泵的液缸进行1号—5号的顺序标号,并在液缸对应的曲轴曲柄上进行1#—5#的顺序标号,将五缸往复泵曲轴的吸入管划分为5个过流截面,并顺序标注1—1断面、2—2断面、3—3断面、4—4断面;分别记载各过流截面的瞬时流量波动情况数据,主要记载瞬时流量波动幅值及零流量持续时间(亦即断流时间,以曲轴转角度量)数据;
4)、以过流断面4-4断面断流时间和瞬时流量脉动幅值小为选择目标,在五个曲柄初相角中任取二个初相角进行组合分别布置在4#、5#液缸位置,当这两个初相角的组合能使4-4断面的瞬时流量波动幅值及断流时间达到最小时,即为所选择的两初相角组合;
5)、将步骤4中得到的两初相角组合同时置于1#、2#或4#、5#液缸位置,剩下的一个初相角置于3#液缸位置,即可得到一种布置方案,同时要求保证各布置方案中每一初相角仅出现一次;
6)、由排出状态时液缸内压作用力在曲轴上产生的无因次弯矩的计算公式分别计算步骤5得到的各优化布置方案在五个曲柄旋转中心的无因次弯矩,以弯矩小为选择方法,选择出最终五缸泵曲柄初相角布置方案。
本发明的有益效果在于:
本发明根据五缸往复泵各缸吸/排液特性及排出压力高的特点,对五缸往复泵曲轴上曲柄初相角优化布置方案进行优化设计,在方案的基础上提高了往复泵设计的可靠性,有效地降低了吸入液体产生的附加惯性水头损失、减轻了管路断流沉沙问题,改善了泵的吸入性能,且降低了曲轴弯曲应力,从而提高了五缸泵的使用寿命。
附图说明
图1为本发明的流程示意图;
图2为单缸单作用往复泵的工作原理简图;
图3为本发明五缸往复泵布置原理方案图;
图4为本发明曲轴标注示意图;
图5为本发明吸入管标注示意图;
图6为本发明断面1—1无因次瞬时流量波动情况对比图,
图7为本发明断面2—2无因次瞬时流量波动情况对比图,
图8为本发明断面3—3无因次瞬时流量波动情况对比图,
图9为本发明断面4—4无因次瞬时流量波动情况对比图,
图10为本发明曲柄连杆机构的受力简化图;
图11为本发明曲轴的受力简图。
具体实施方式
下面结合附图对本发明的实施例进行详细说明。
首先将五缸往复泵曲轴上曲柄的五个初相角分别为0°、72°、144°、216°和288°,为简化,分别以
Figure 365364DEST_PATH_IMAGE001
Figure 738576DEST_PATH_IMAGE002
标记。
如图2所示,对单缸单作用往复泵柱塞的运动规律进行分析,找出各运动参量与曲轴转角之间的对应关系;这是五缸往复泵各柱塞运动的基本规律,是各缸流量计算的依据。
当曲柄绕曲轴中心
Figure 602627DEST_PATH_IMAGE003
旋转时,曲柄滑块机构将旋转运动转变为柱塞在液缸内的往复运动,液缸内容积变化实现液体的吸入和排出。以
Figure 758277DEST_PATH_IMAGE004
轴正向为曲柄转角的参考轴,顺时针方向旋转,曲柄与
Figure 49581DEST_PATH_IMAGE004
轴正向的夹角
Figure 582194DEST_PATH_IMAGE005
为曲柄转角。当
Figure 374569DEST_PATH_IMAGE006
时,滑块中心C与滑块右死点A重合,
Figure 512290DEST_PATH_IMAGE007
;当
Figure 584282DEST_PATH_IMAGE008
时,滑块中心C与滑块左死点B重合,
Figure 807453DEST_PATH_IMAGE009
。在任意曲柄转角
Figure 137940DEST_PATH_IMAGE010
下,取CB长为
Figure 926905DEST_PATH_IMAGE011
,由几何关系可得:
Figure 825590DEST_PATH_IMAGE012
式中:
Figure 145845DEST_PATH_IMAGE013
为曲柄半径;
Figure 889810DEST_PATH_IMAGE014
为连杆长度;
Figure 798860DEST_PATH_IMAGE015
称为连杆比。
由式(1)对时间求导,可得任意转角下滑块的运动速度为:
Figure 461922DEST_PATH_IMAGE016
式中:
Figure 659685DEST_PATH_IMAGE017
为曲柄旋转角速度。
设泵缸柱塞或活塞端面面积为
Figure 82708DEST_PATH_IMAGE018
,则缸内吸入瞬时流量
Figure 846264DEST_PATH_IMAGE019
为:
Figure 86753DEST_PATH_IMAGE020
对上述流量进行无量纲化,得无因次瞬时流量为:
Figure 365287DEST_PATH_IMAGE021
Figure 716634DEST_PATH_IMAGE022
时为单缸单作用泵的吸入过程,反之为排出过程。
如图3、4、5所示,对五缸往复泵的液缸进行1号—5号的顺序标号,并在液缸对应的曲轴曲柄上进行1#—5#的顺序标号,将五缸往复泵曲轴的吸入管划分为5个过流截面,并顺序标注1—1断面、2—2断面、3—3断面、4—4断面;分别记载各过流截面的瞬时流量波动情况数据,主要记载瞬时流量波动幅值及零流量持续时间(亦即断流时间,以曲轴转角度量)数据;曲轴上任一曲柄编号与其对应的液缸编号相一致,记为
Figure 334697DEST_PATH_IMAGE023
,以
Figure 618524DEST_PATH_IMAGE024
轴正向为参考轴,顺时针方向度量,第
Figure 259721DEST_PATH_IMAGE025
号曲柄的初相角可设置为0°、72°、144°、216°或288°种任一角度。五缸泵往复泵中,任一曲柄初相角
Figure 273813DEST_PATH_IMAGE026
均可布置在不同液缸位置,以
Figure 11962DEST_PATH_IMAGE027
的排列顺序表示不同的布置方案,如
Figure 594253DEST_PATH_IMAGE028
,每一初相角在同一方案中仅出现一次。按照排列原理可知,共有曲柄布置方案
Figure 598112DEST_PATH_IMAGE029
种。当曲轴顺时针旋转
Figure 291262DEST_PATH_IMAGE030
角时,第
Figure 946234DEST_PATH_IMAGE031
号曲柄转角为
Figure 496164DEST_PATH_IMAGE032
,用
Figure 377532DEST_PATH_IMAGE033
取代式(5)中的
Figure 484160DEST_PATH_IMAGE034
,计算各缸无因次瞬时流量,如在曲柄布置方案
Figure 931322DEST_PATH_IMAGE035
中,
Figure 589836DEST_PATH_IMAGE036
Figure 83134DEST_PATH_IMAGE037
Figure 852507DEST_PATH_IMAGE038
Figure 498383DEST_PATH_IMAGE039
Figure 327799DEST_PATH_IMAGE040
。如图5所示,将吸入管分为6个过流断面分别记为
Figure 308393DEST_PATH_IMAGE041
。若研究吸入过程
Figure 943774DEST_PATH_IMAGE042
,过流断面的瞬时吸入流量仅对相同
Figure 303211DEST_PATH_IMAGE043
下瞬时流量小于零的数据求和。泵的总吸入(排出)端口可以在左、中、右侧布置,若总吸入端口在过流断面1-1左侧(见图5),则过流断面
Figure 199402DEST_PATH_IMAGE044
的无因次流量为
Figure 277080DEST_PATH_IMAGE045
,其中
Figure 716151DEST_PATH_IMAGE046
如图6所示,取连杆比
Figure 320308DEST_PATH_IMAGE047
,分别以方案
Figure 491526DEST_PATH_IMAGE048
和方案
Figure 931866DEST_PATH_IMAGE049
为例,对各断面瞬时吸入流量进行分析,对于过流断面5-5而言,经过该断面的液流只能由5号液缸吸入,对任一布置方案,5-5断面的流量变化情况完全相同。
由图6可以看出,过流断面1-1瞬时流量代表五缸总瞬时吸入流量,与曲柄初相角布置方案无关;过流断面2-2瞬时吸入流量脉动幅值比过流断面1-1大,与曲柄初相角布置方案无关,流量曲线仅相差一定的相位角;过流断面3-3瞬时吸入流量与曲柄初相角布置方案有关,方案B存在零瞬时吸入流量区(称为断流区),而方案A不存在零瞬时吸入流量区,且方案B的瞬时吸入流量脉动幅值大于方案A;过流断面4-4瞬时吸入流量受曲柄初相角布置方案影响,方案A和方案B均存在断流区,但方案B断流区较方案A宽,且方案B的瞬时吸入流量脉动幅值大于方案A。断流区越宽,管路中固相颗粒越容易发生沉降,影响有效通流面积,导致瞬时吸入流量脉动幅值增加。瞬时吸入流量脉动幅值越大,惯性水头也越大,降低了泵的吸入性能,加剧了泵的振动。由图6过流断面3-3和过流断面4-4的瞬时吸入流量曲线还可以发现,断流区宽度越小,瞬时吸入流量脉动幅值相应也越小。因此,可认为优化曲柄初相角布置方案,对改善五缸泵的吸入性能、减轻固相颗粒沉降具有积极意义。
根据曲柄初相角布置方案对五缸泵吸入管无因次瞬时吸入流量的影响分析,以过流断面4-4断流区和瞬时流量脉动幅值小为优化目标,对曲柄初相角布置方案进行优化。经过4-4断面的流量为4号和5号液缸内吸入流量之和,在五个曲柄初相角中任取二个初相角进行组合分别布置在4、5号液缸位置,组合方案有
Figure 909049DEST_PATH_IMAGE050
个。用式(5)分别计算4、5号液缸的瞬时吸入流量,按各组合方案分别求出4-4断面的吸入瞬时流量,并分别统计出其特征值,结果见表1。当阀处于关闭状态时,吸入瞬时流量最小,吸入量为0。由表1可以看出,两曲柄初相角组合中方案2、3、6、7和9是比较好的,其断流区(以曲柄转角度量)较小,最大瞬时流量幅值也较小。
表 1 两曲柄初相角组合下无因次瞬时流量变化特征
Figure 243079DEST_PATH_IMAGE051
由于泵的总吸入(排出)端口可以在左、中、右侧布置,所以1、2号和5、4号曲柄所在位置地位相同。在表1比较好的曲柄初相角组合方案中,选择不含相同初相角的组合方案进行配对并分别布置在1、2号或4、5号曲柄位置,将配对组中未包含的初相角布置于3号曲柄位置,可得优选布置方案。例如:表1中方案2与方案6配对,而
Figure 975411DEST_PATH_IMAGE052
不在此两组合中,即曲柄初相角布置优选方案为
Figure 762102DEST_PATH_IMAGE053
。任一液缸位置可布置不同的曲柄初相角,但随曲轴旋转,任一曲柄相位角可变换为其他角度,因此,可设1号曲柄的初相角为
Figure 356025DEST_PATH_IMAGE054
且保持不变。选择表1中方案2与方案6和7、方案3与方案7和9进行配对,可得基本方案有
Figure 606878DEST_PATH_IMAGE055
Figure 385478DEST_PATH_IMAGE056
Figure 784098DEST_PATH_IMAGE057
Figure 306347DEST_PATH_IMAGE058
。另外,在表1组合关系不改变的前提下可交换4号和5号曲柄的初相角,不会影响表1的结论,这样,每一基本方案可派生出一个扩展方案。五缸泵曲柄初相角布置优选方案见表2。
表 2 五缸泵曲柄初相角布置优选方案
Figure 411706DEST_PATH_IMAGE059
表2中8种曲柄初相角优选组合布置方案仅考虑了吸入瞬时流量断流区和脉动幅值小的要求,未考虑不同方案下,液体在缸内压缩对曲轴强度的影响。因此,本节将以曲轴强度为优化目标,进一步优选曲柄初相角组合布置方案。
由于五缸泵排出压力远大于吸入压力,在曲轴受力分析中仅考虑排出压力。设泵内排出流道的压力为
Figure 236574DEST_PATH_IMAGE060
,则作用在柱塞(活塞)上的液体压力为
Figure 732277DEST_PATH_IMAGE061
。在不考虑惯性力和摩擦力时,滑块受力如图6所示,设第
Figure 182850DEST_PATH_IMAGE062
号曲柄所对应的曲柄滑块机构中,连杆受力为
Figure 142716DEST_PATH_IMAGE063
,则:
Figure 263118DEST_PATH_IMAGE064
Figure 649713DEST_PATH_IMAGE065
Figure 248184DEST_PATH_IMAGE066
方向分解,有:
Figure 390453DEST_PATH_IMAGE067
Figure 744074DEST_PATH_IMAGE068
如图10、11所示,为了简化曲轴受力分析,假设输入动力不影响曲轴的支座反力,曲轴上只有两个支点,相邻两个曲柄距为
Figure 479949DEST_PATH_IMAGE069
,两支点到相邻曲柄的距离为
Figure 757477DEST_PATH_IMAGE070
,五缸泵曲轴受力简图如图10所示。分别以式(6)、(7)和(8)计算出曲柄布置方案
Figure 629618DEST_PATH_IMAGE071
下,各曲柄对应的连杆力
Figure 154141DEST_PATH_IMAGE072
及其分力
Figure 501945DEST_PATH_IMAGE073
Figure 442219DEST_PATH_IMAGE074
,并由受力平衡条件确定出曲轴左侧支座反力为:
Figure 309812DEST_PATH_IMAGE075
几何结构一定时,曲轴各断面的弯曲应力与对应断面受到的弯矩大小成正比。从提高曲轴强度考虑,希望曲轴各断面最大弯矩较小。各曲柄中心所受
Figure 5236DEST_PATH_IMAGE076
方向的弯矩为:
Figure 450124DEST_PATH_IMAGE077
将上述弯矩方程无量纲化,得到
Figure 318723DEST_PATH_IMAGE078
轴方向的无量纲弯矩为:
Figure 431035DEST_PATH_IMAGE079
Figure 31781DEST_PATH_IMAGE080
方向的无量纲弯矩进行合成,得到各曲柄中心所受的无量纲化总弯矩大小为:
Figure 104910DEST_PATH_IMAGE081
上述各式中
Figure 386987DEST_PATH_IMAGE082
对表2的曲柄初相角优选组合布置方案,分别用式(13)、(14)和(15)计算弯矩。各优选组合布置方案中,各曲柄中心处的最大弯矩见表3。由表3可看出,在3号曲柄位置无量纲弯矩值最大且各方案中数值上存在较大的差异。考虑曲轴强度,各曲柄中心最大弯矩应越小越好。从表3可知,方案1和8最优,即最优曲柄初相角布置方案为
Figure 478440DEST_PATH_IMAGE083
Figure 250087DEST_PATH_IMAGE084
,能满足各曲柄中心最大弯矩较小的条件;即为本发明五缸泵曲柄初相角布置方案。
表 3 五缸泵曲轴上各曲柄中心处的无量纲最大弯矩
Figure 935146DEST_PATH_IMAGE085
本发明根据五缸往复泵各缸吸/排液特性及排出压力高的特点,对五缸往复泵曲轴上曲柄初相角优化布置方案进行优化设计,在方案的基础上提高了往复泵设计的可靠性,有效地降低了吸入液体产生的附加惯性水头损失、减轻了管路断流沉沙问题,改善了泵的吸入性能,且降低了曲轴弯曲应力,从而提高了五缸泵的使用寿命。

Claims (1)

1.一种五缸往复泵曲轴上曲柄初相角优化布置方法;其特征在于:它包括以下步骤:
1)、对单缸单作用往复泵柱塞的运动规律进行分析,找出各运动参量与曲轴转角之间的对应关系;
2)、根据流量与速度及过流截面面积的关系,得出单缸单作用往复泵瞬时流量与曲轴转角的对应关系,并采用无因次方法得到单缸单作用往复泵的无因次瞬时流量计算表达式;
3)、对五缸往复泵的液缸进行1号—5号的顺序标号,并在液缸对应的曲轴曲柄上进行1#—5#的顺序标号,将五缸往复泵曲轴的吸入管划分为5个过流截面,并顺序标注1—1断面、2—2断面、3—3断面、4—4断面;分别记载各过流截面的瞬时流量波动情况数据,主要记载瞬时流量波动幅值及零流量持续时间数据;
4)、以过流断面4-4断面断流时间和瞬时流量脉动幅值小为选择目标,在五个曲柄初相角中任取二个初相角进行组合分别布置在4#、5#液缸位置,当这两个初相角的组合能使4-4断面的瞬时流量波动幅值及断流时间达到最小时,即为所选择的两初相角组合;
5)、将步骤4)中得到的两初相角组合同时置于1#、2#和4#、5#液缸位置,剩下的一个初相角置于3#液缸位置,即可得到一种布置方案,同时要求保证各布置方案中每一初相角仅出现一次;
6)、由排出状态时液缸内压作用力在曲轴上产生的无因次弯矩的计算公式分别计算步骤5)得到的各优化布置方案在五个曲柄旋转中心的无因次弯矩,以弯矩小为选择方法,选择出最终五缸泵曲柄初相角布置方案。
CN201710967324.6A 2017-10-17 2017-10-17 一种五缸往复泵曲轴上曲柄初相角优化布置方法 Active CN107742028B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710967324.6A CN107742028B (zh) 2017-10-17 2017-10-17 一种五缸往复泵曲轴上曲柄初相角优化布置方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710967324.6A CN107742028B (zh) 2017-10-17 2017-10-17 一种五缸往复泵曲轴上曲柄初相角优化布置方法

Publications (2)

Publication Number Publication Date
CN107742028A CN107742028A (zh) 2018-02-27
CN107742028B true CN107742028B (zh) 2020-09-22

Family

ID=61237618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710967324.6A Active CN107742028B (zh) 2017-10-17 2017-10-17 一种五缸往复泵曲轴上曲柄初相角优化布置方法

Country Status (1)

Country Link
CN (1) CN107742028B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101776071A (zh) * 2009-12-29 2010-07-14 四川金科环保科技有限公司 对称平衡式自由活塞压缩机的余隙控制方法
CN102141079A (zh) * 2011-02-22 2011-08-03 北京中清能发动机技术有限公司 曲柄、曲柄轴、组合曲轴及应用该曲轴的内燃机或压缩机
CN103632017A (zh) * 2013-12-24 2014-03-12 山东大学 基于模式识别提高内燃机表面振动信号信噪比的方法
CN106202676A (zh) * 2016-07-01 2016-12-07 安徽理工大学 大功率钻井泵双侧斜齿轮啮合传动系统的受力分析方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2937086B1 (fr) * 2008-10-09 2013-05-24 Inst Francais Du Petrole Procede de detection de combustion anormale pour moteurs a combustion interne

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101776071A (zh) * 2009-12-29 2010-07-14 四川金科环保科技有限公司 对称平衡式自由活塞压缩机的余隙控制方法
CN102141079A (zh) * 2011-02-22 2011-08-03 北京中清能发动机技术有限公司 曲柄、曲柄轴、组合曲轴及应用该曲轴的内燃机或压缩机
CN103632017A (zh) * 2013-12-24 2014-03-12 山东大学 基于模式识别提高内燃机表面振动信号信噪比的方法
CN106202676A (zh) * 2016-07-01 2016-12-07 安徽理工大学 大功率钻井泵双侧斜齿轮啮合传动系统的受力分析方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"乘用车两缸柴油机的关键技术研究";张学文;《中国博士学位论文全文数据库 工程科技Ⅱ辑》;20121115(第11期);C035-8 *
"往复式发动机振动特性建模与分析";付素芳 等;《河南科技学院院报(自然科学版)》;20080630;第36卷(第2期);第88-91页 *
"液压偏航驱动器结构设计与研究";肖亚迪;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20170215(第02期);C042-228 *

Also Published As

Publication number Publication date
CN107742028A (zh) 2018-02-27

Similar Documents

Publication Publication Date Title
EA024928B1 (ru) Смещенное отверстие клапана в насосе с возвратно-поступательным движением поршня
Xu et al. Flow ripple reduction of an axial piston pump by a combination of cross-angle and pressure relief grooves: Analysis and optimization
WO2016134464A1 (en) Drive mechanism module for a reciprocating pump
CN102619715B (zh) 一种平衡式大流量轴向柱塞泵
CN201982065U (zh) 一种数控长冲程气平衡液压抽油机
Pang et al. Effect of working medium on the noise and vibration characteristics of water hydraulic axial piston pump
CN107742028B (zh) 一种五缸往复泵曲轴上曲柄初相角优化布置方法
CN103492727B (zh) 具有减小的筒限制通路的液压活塞泵
CN101216022A (zh) 柱塞配流轴向柱塞液压泵
CN201218170Y (zh) 柱塞配流轴向柱塞液压泵
JPH02169878A (ja) 流体用可変容積型装置
CN204283776U (zh) 静液压活塞机
Lu et al. Design strategy and performance evaluation of novel miniature two-dimensional (2D) piston pump with a dual stacking mechanism
CN108252886A (zh) 一种可平衡差动缸流量差的非对称配流轴向柱塞变量泵
CN207728499U (zh) 一种对开式十缸往复泵
Jenkins et al. Investigation of instability of a pressure compensated vane pump
CN107516000B (zh) 一种七缸往复泵曲轴上曲柄初相角的优化布置方法
CN102359444B (zh) 适用于天然气工业的高速大功率往复活塞式压缩机
GB2432197A (en) Orbiting valve for a reciprocating pump
CN103133335A (zh) 中排气防气抽油泵及其抽油工艺
CN103775317A (zh) 一种二级抽气装置的设计方法
CN103133339A (zh) 两级压缩抽油泵及其抽油工艺
CN103133302A (zh) 两级压缩抽油泵
CN103742395A (zh) 一种一级抽气装置的设计方法
CN203926000U (zh) 机械驱动活塞作用于流体的对夹摇摆托盘活塞摇摆驱动机

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant