CN107718621B - 一种高强度捻合型风电叶片及其制备方法 - Google Patents

一种高强度捻合型风电叶片及其制备方法 Download PDF

Info

Publication number
CN107718621B
CN107718621B CN201710908564.9A CN201710908564A CN107718621B CN 107718621 B CN107718621 B CN 107718621B CN 201710908564 A CN201710908564 A CN 201710908564A CN 107718621 B CN107718621 B CN 107718621B
Authority
CN
China
Prior art keywords
side body
gypsum
crystal whisker
epoxy resin
type wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710908564.9A
Other languages
English (en)
Other versions
CN107718621A (zh
Inventor
吉玉峰
夏保付
韩飞
张文艳
张永金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI FRP RESEARCH INSTITUTE Co Ltd
Original Assignee
SHANGHAI FRP RESEARCH INSTITUTE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI FRP RESEARCH INSTITUTE Co Ltd filed Critical SHANGHAI FRP RESEARCH INSTITUTE Co Ltd
Priority to CN201710908564.9A priority Critical patent/CN107718621B/zh
Publication of CN107718621A publication Critical patent/CN107718621A/zh
Application granted granted Critical
Publication of CN107718621B publication Critical patent/CN107718621B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wind Motors (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明公开了一种高强度捻合型风电叶片及其制备方法,高强度捻合型风电叶片包括上侧壳体、下侧壳体、边缘连接部;所述的上侧壳体和下侧壳体的两端通过两个边缘连接部进行固定连接;制备方法包括壳体制作、增强筋制作、边缘连接部制作,本发明的强度得到全面的提升。

Description

一种高强度捻合型风电叶片及其制备方法
技术领域
本发明涉及风力发电领域,特别涉及一种高强度捻合型风电叶片及其制备方法。
背景技术
风力发电是指把风的动能转为电能,风是一种没有公害的能源,利用风力发电非常环保,且能够产生的电能非常巨大,因此越来越多的国家更加重视风力发电。目前,风力发电一般是通过大型风电叶片进行的,风电叶片的强度性能尤为关键,目前的风电叶片一般是通过环氧树脂灌注各个部件,然后粘接而成,通过在环氧树脂中加入增强纤维对风电叶片的强度进行提升,使用最多的增强纤维一般是玻璃纤维和碳纤维,但是这样的材料制备出来的高强度捻合型风电叶片强度不是很可靠,没有丝毫的韧性。
发明内容
针对上述现有技术的不足之处,本发明解决的问题为:提供一种具备高强度的捻合型风电叶片及其制备方法。
为解决上述问题,本发明采取的技术方案如下:
一种高强度捻合型风电叶片,包括上侧壳体、下侧壳体、边缘连接部;所述的上侧壳体和下侧壳体的两端通过两个边缘连接部进行固定连接;所述的上侧壳体的内侧设有多个上侧弧形槽;所述的下侧壳体的内侧设有多个下侧弧形槽;所述的上侧弧形槽和下侧弧形槽内均设有增强筋;所述的上侧壳体和下侧壳体包括环氧树脂和尼龙纤维;所述的边缘连接部包括环氧树脂、玻璃纤维、碳纤维、石棉纤维、石膏晶须、纳米级三氧化二铝。
进一步,所述的上侧弧形槽和下侧弧形槽交错分布。
进一步,所述的上侧壳体和下侧壳体中的尼龙纤维和环氧树脂质量比为1:5~1:10。
进一步,所述的增强筋包括硼纤维和石膏晶须。
进一步,所述的硼纤维和石膏晶须的质量比为3:1~3:2。
进一步,所述的边缘连接部中的环氧树脂、石膏晶须、纳米级三氧化二铝的重量份分别为100份、15~20份、15~20份;所述的玻璃纤维、碳纤维、石棉纤维的总体积与环氧树脂、石膏晶须、纳米级三氧化二铝总体积比为1:5~1:7。
一种高强度捻合型风电叶片的制备方法,包括步骤如下:
S1、壳体制作:以尼龙纤维作为内芯,在上壳体和下壳体模具中采用真空灌注法,固化后脱膜成型,得到上侧壳体和下侧壳体;
S2、增强筋制作:将硼纤维和石膏晶须投入到环氧树脂中,搅拌均匀,然后浇筑在上侧壳体的上侧弧形槽和下侧壳体的下侧弧形槽内,固化成型,得到环氧树脂封装的增强筋;
S3、边缘连接部制作:将石膏晶须和纳米级三氧化二铝进行搅拌混合后投入到环氧树脂中,得到混合灌注料,然后将玻璃纤维、碳纤维、石棉纤维三股纤维进行捻合呈增强纤维丝,将多个增强纤维丝铺设在边缘连接部的模具中,最后在边缘连接部的模具中真空灌注混合灌注料,固化成型,得到边缘连接部;
S4;将上壳体、下壳体、边缘连接部进行粘接,得到高强度捻合型风电叶片。
进一步,所述步骤S2中硼纤维和石膏晶须的总质量与环氧树脂的质量比为2:1~3:1。
进一步,所述步骤S2和步骤S3中的石膏晶须的长径比为1:1~2:1。
进一步,所述步骤S3中的石膏晶须和纳米级三氧化二铝的搅拌时间为10至20min。
本发明的有益效果
1.本发明的制备方法中通过玻璃纤维、碳纤维、石棉纤维三股纤维进行捻合呈增强纤维丝,由于材料的特性,玻璃纤维和碳纤维相互捻合的程度不高,通过石棉纤维作为中间体加强了玻璃纤维和碳纤维的捻合度,通过多个增强纤维丝作为边缘连接部内部的增强芯材,增强了边缘连接部的强度,设置玻璃纤维、碳纤维、石棉纤维的总体积与环氧树脂、石膏晶须、纳米级三氧化二铝总体积比为1:5~1:7的合理比例,即控制了边缘连接部的封装效果,又达到了提高强度的目的,本发明的制备手段属于本领域的首例,开创了新的技术高度。
2.本发明的高强度捻合型风电叶片结构设计巧妙,在上侧壳体内侧设置上侧弧形槽,下侧壳体内侧设置下侧弧形槽,然后在上侧弧形槽和下侧弧形槽内侧设置增强筋,均匀的增强了上侧壳体和下侧壳体强度。
3.本发明的的边缘连接部包括环氧树脂、玻璃纤维、碳纤维、石棉纤维、石膏晶须、纳米级三氧化二铝,组分开创了本领域的先例,玻璃纤维、碳纤维、石棉纤维、石膏晶须的相互协同增强了本发明的强度,石膏晶须为具有固定的横截面形状、完整的外形、完善的内部结构、长径比高达5-1000的纤维状单晶体,石膏晶须具有极高的抗拉强度和弹性模量,通过石膏晶须的加热全面增强了边缘连接部的强度和韧性,通过纳米级三氧化二铝的多孔特性将石膏晶须进行吸附和均匀分布。
4.本发明的增强筋包括硼纤维和石膏晶须,通过硼纤维和石膏晶须相互渗透,再通过环氧树脂的封装,控制硼纤维和石膏晶须的质量比为3:1~3:2,使得增强筋具备高强度和一定的韧性。
5.本发明的制备方法根据本发明特定的组分进行设计,制备方法简单合理,制备出来的高强度捻合型风电叶片强度高、韧性好。
附图说明
图1为本发明的结构示意图。
图2为本发明的上侧壳体和下侧壳体的拆分结构示意图。
具体实施方式
下面结合附图对本发明内容作进一步详细说明。
实施例1
如图1和2所示,一种高强度捻合型风电叶片,包括上侧壳体1、下侧壳体2、边缘连接部3。上侧壳体1和下侧壳体2的两端通过两个边缘连接部3进行固定连接。上侧壳体1的内侧设有多个上侧弧形槽11。下侧壳体2的内侧设有多个下侧弧形槽21。上侧弧形槽11和下侧弧形槽21内均设有增强筋4,增强筋4包括硼纤维和石膏晶须,硼纤维和石膏晶须的质量比为3:1。上侧壳体和下侧壳体包括环氧树脂和尼龙纤维,尼龙纤维和环氧树脂质量比为1:5。边缘连接部包括环氧树脂、玻璃纤维、碳纤维、石棉纤维、石膏晶须、纳米级三氧化二铝,其中环氧树脂、石膏晶须、纳米级三氧化二铝的重量份分别为100份、15份、15份,玻璃纤维、碳纤维、石棉纤维的总体积与环氧树脂、石膏晶须、纳米级三氧化二铝总体积比为1:5。为保证整体强度和韧性的均匀性,进一步优选,所述的上侧弧形槽11和下侧弧形槽21交错分布。
一种高强度捻合型风电叶片的制备方法,包括步骤如下:
S1、壳体制作:以尼龙纤维作为内芯,在上壳体和下壳体模具中采用真空灌注法,固化后脱膜成型,得到上侧壳体和下侧壳体。
S2、增强筋制作:将硼纤维和石膏晶须投入到环氧树脂中,搅拌均匀,然后浇筑在上侧壳体的上侧弧形槽和下侧壳体的下侧弧形槽内,固化成型,得到环氧树脂封装的增强筋;硼纤维和石膏晶须的总质量与环氧树脂的质量比为2:1,石膏晶须的长径比为1:1。
S3、边缘连接部制作:将石膏晶须和纳米级三氧化二铝进行搅拌混合后投入到环氧树脂中,石膏晶须和纳米级三氧化二铝的搅拌时间为10 min,然后得到混合灌注料,然后将玻璃纤维、碳纤维、石棉纤维三股纤维进行捻合呈增强纤维丝,将多个增强纤维丝铺设在边缘连接部的模具中,最后在边缘连接部的模具中真空灌注混合灌注料,固化成型,得到边缘连接部,石膏晶须的长径比为1:1。
S4;将上壳体、下壳体、边缘连接部进行粘接,得到高强度捻合型风电叶片。
实施例2
如图1和2所示,一种高强度捻合型风电叶片,包括上侧壳体1、下侧壳体2、边缘连接部3。上侧壳体1和下侧壳体2的两端通过两个边缘连接部3进行固定连接。上侧壳体1的内侧设有多个上侧弧形槽11。下侧壳体2的内侧设有多个下侧弧形槽21。上侧弧形槽11和下侧弧形槽21内均设有增强筋4,增强筋4包括硼纤维和石膏晶须,硼纤维和石膏晶须的质量比为3:1.5。上侧壳体和下侧壳体包括环氧树脂和尼龙纤维,尼龙纤维和环氧树脂质量比为1:7。边缘连接部包括环氧树脂、玻璃纤维、碳纤维、石棉纤维、石膏晶须、纳米级三氧化二铝,其中环氧树脂、石膏晶须、纳米级三氧化二铝的重量份分别为100份、17份、18份,玻璃纤维、碳纤维、石棉纤维的总体积与环氧树脂、石膏晶须、纳米级三氧化二铝总体积比为1:6。为保证整体强度和韧性的均匀性,进一步优选,所述的上侧弧形槽11和下侧弧形槽21交错分布。
一种高强度捻合型风电叶片的制备方法,包括步骤如下:
S1、壳体制作:以尼龙纤维作为内芯,在上壳体和下壳体模具中采用真空灌注法,固化后脱膜成型,得到上侧壳体和下侧壳体。
S2、增强筋制作:将硼纤维和石膏晶须投入到环氧树脂中,搅拌均匀,然后浇筑在上侧壳体的上侧弧形槽和下侧壳体的下侧弧形槽内,固化成型,得到环氧树脂封装的增强筋;硼纤维和石膏晶须的总质量与环氧树脂的质量比为2.5:1,石膏晶须的长径比为1.5:1。
S3、边缘连接部制作:将石膏晶须和纳米级三氧化二铝进行搅拌混合后投入到环氧树脂中,石膏晶须和纳米级三氧化二铝的搅拌时间为15min,然后得到混合灌注料,然后将玻璃纤维、碳纤维、石棉纤维三股纤维进行捻合呈增强纤维丝,将多个增强纤维丝铺设在边缘连接部的模具中,最后在边缘连接部的模具中真空灌注混合灌注料,固化成型,得到边缘连接部,石膏晶须的长径比为1.5:1。
S4;将上壳体、下壳体、边缘连接部进行粘接,得到高强度捻合型风电叶片。
实施例3
如图1和2所示,一种高强度捻合型风电叶片,包括上侧壳体1、下侧壳体2、边缘连接部3。上侧壳体1和下侧壳体2的两端通过两个边缘连接部3进行固定连接。上侧壳体1的内侧设有多个上侧弧形槽11。下侧壳体2的内侧设有多个下侧弧形槽21。上侧弧形槽11和下侧弧形槽21内均设有增强筋4,增强筋4包括硼纤维和石膏晶须,硼纤维和石膏晶须的质量比为3:2。上侧壳体和下侧壳体包括环氧树脂和尼龙纤维,尼龙纤维和环氧树脂质量比为1:10。边缘连接部包括环氧树脂、玻璃纤维、碳纤维、石棉纤维、石膏晶须、纳米级三氧化二铝,其中环氧树脂、石膏晶须、纳米级三氧化二铝的重量份分别为100份、20份、20份,玻璃纤维、碳纤维、石棉纤维的总体积与环氧树脂、石膏晶须、纳米级三氧化二铝总体积比为1:7。为保证整体强度和韧性的均匀性,进一步优选,所述的上侧弧形槽11和下侧弧形槽21交错分布。
一种高强度捻合型风电叶片的制备方法,包括步骤如下:
S1、壳体制作:以尼龙纤维作为内芯,在上壳体和下壳体模具中采用真空灌注法,固化后脱膜成型,得到上侧壳体和下侧壳体。
S2、增强筋制作:将硼纤维和石膏晶须投入到环氧树脂中,搅拌均匀,然后浇筑在上侧壳体的上侧弧形槽和下侧壳体的下侧弧形槽内,固化成型,得到环氧树脂封装的增强筋;硼纤维和石膏晶须的总质量与环氧树脂的质量比为3:1,石膏晶须的长径比为2:1。
S3、边缘连接部制作:将石膏晶须和纳米级三氧化二铝进行搅拌混合后投入到环氧树脂中,石膏晶须和纳米级三氧化二铝的搅拌时间为20min,然后得到混合灌注料,然后将玻璃纤维、碳纤维、石棉纤维三股纤维进行捻合呈增强纤维丝,将多个增强纤维丝铺设在边缘连接部的模具中,最后在边缘连接部的模具中真空灌注混合灌注料,固化成型,得到边缘连接部,石膏晶须的长径比为2:1。
S4;将上壳体、下壳体、边缘连接部进行粘接,得到高强度捻合型风电叶片。
对比实施例1
本实施例可参照实施例1,不同在于,本实施例中上侧壳体1的内侧取消设置上侧弧形槽11,下侧壳体2的内侧取消设置下侧弧形槽21,即在上侧壳体1和下侧壳体2内侧并没有设置增强筋4;边缘连接部包括环氧树脂和玻璃纤维,没有碳纤维、石棉纤维、石膏晶须、纳米级三氧化二铝。
下面采用IS0178-93的测试方法对各实施例的抗折强度进行测试,采用IS0527-93的测试方法对各实施例的拉伸强度进行测试,性能测试如下表1:
表1
由上表可知,本发明的高强度捻合型风电叶片的抗拉强度和拉伸强度均得到了全面的提高。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种高强度捻合型风电叶片,其特征在于,包括上侧壳体、下侧壳体、边缘连接部;所述的上侧壳体和下侧壳体的两端通过两个边缘连接部进行固定连接;所述的上侧壳体的内侧设有多个上侧弧形槽;所述的下侧壳体的内侧设有多个下侧弧形槽;所述的上侧弧形槽和下侧弧形槽内均设有增强筋;所述的上侧壳体和下侧壳体包括环氧树脂和尼龙纤维;所述的边缘连接部包括环氧树脂、玻璃纤维、碳纤维、石棉纤维、石膏晶须、纳米级三氧化二铝;所述的增强筋包括硼纤维和石膏晶须;所述的硼纤维和石膏晶须的质量比为3:1~3:2;所述的边缘连接部中的环氧树脂、石膏晶须、纳米级三氧化二铝的重量份分别为100份、15~20份、15~20份;所述的玻璃纤维、碳纤维、石棉纤维的总体积与环氧树脂、石膏晶须、纳米级三氧化二铝总体积比为1:5~1:7。
2.根据权利要求1所述的高强度捻合型风电叶片,其特征在于,所述的上侧弧形槽和下侧弧形槽交错分布。
3.根据权利要求1所述的高强度捻合型风电叶片,其特征在于,所述的上侧壳体和下侧壳体中的尼龙纤维和环氧树脂质量比为1:5~1:10。
4.一种根据权利要求1至3任意一项所述的高强度捻合型风电叶片的制备方法,其特征在于,包括步骤如下:
S1、壳体制作:以尼龙纤维作为内芯,在上壳体和下壳体模具中采用真空灌注法,固化后脱膜成型,得到上侧壳体和下侧壳体;
S2、增强筋制作:将硼纤维和石膏晶须投入到环氧树脂中,搅拌均匀,然后浇筑在上侧壳体的上侧弧形槽和下侧壳体的下侧弧形槽内,固化成型,得到环氧树脂封装的增强筋;
S3、边缘连接部制作:将石膏晶须和纳米级三氧化二铝进行搅拌混合后投入到环氧树脂中,得到混合灌注料,然后将玻璃纤维、碳纤维、石棉纤维三股纤维进行捻合呈增强纤维丝,将多个增强纤维丝铺设在边缘连接部的模具中,最后在边缘连接部的模具中真空灌注混合灌注料,固化成型,得到边缘连接部;
S4;将上壳体、下壳体、边缘连接部进行粘接,得到高强度捻合型风电叶片。
5.根据权利要求4所述的高强度捻合型风电叶片的制备方法,其特征在于,所述步骤S2中硼纤维和石膏晶须的总质量与环氧树脂的质量比为2:1~3:1。
6.根据权利要求4所述的高强度捻合型风电叶片的制备方法,其特征在于,所述步骤S2和步骤S3中的石膏晶须的长径比为1:1~2:1。
7.根据权利要求4所述的高强度捻合型风电叶片的制备方法,其特征在于,所述步骤S3中的石膏晶须和纳米级三氧化二铝的搅拌时间为10至20min。
CN201710908564.9A 2017-09-29 2017-09-29 一种高强度捻合型风电叶片及其制备方法 Active CN107718621B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710908564.9A CN107718621B (zh) 2017-09-29 2017-09-29 一种高强度捻合型风电叶片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710908564.9A CN107718621B (zh) 2017-09-29 2017-09-29 一种高强度捻合型风电叶片及其制备方法

Publications (2)

Publication Number Publication Date
CN107718621A CN107718621A (zh) 2018-02-23
CN107718621B true CN107718621B (zh) 2019-11-19

Family

ID=61208283

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710908564.9A Active CN107718621B (zh) 2017-09-29 2017-09-29 一种高强度捻合型风电叶片及其制备方法

Country Status (1)

Country Link
CN (1) CN107718621B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4019233A1 (en) * 2020-12-22 2022-06-29 Siemens Gamesa Renewable Energy A/S Method of manufacturing an adaptable carbon-fibre beam

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101424246A (zh) * 2008-11-13 2009-05-06 华南理工大学 采用仿生物中轴设计的风电叶片及其设计方法
CN101830074A (zh) * 2009-03-09 2010-09-15 汉德风电设备(阜宁)有限公司 风电叶片制作工艺
CN102052236A (zh) * 2009-10-30 2011-05-11 通用电气公司 风力涡轮机叶片
CN105358300A (zh) * 2013-07-12 2016-02-24 Lmwp专利控股有限公司 用于制造风力涡轮机叶片的方法和工具以及制造的叶片

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101424246A (zh) * 2008-11-13 2009-05-06 华南理工大学 采用仿生物中轴设计的风电叶片及其设计方法
CN101830074A (zh) * 2009-03-09 2010-09-15 汉德风电设备(阜宁)有限公司 风电叶片制作工艺
CN102052236A (zh) * 2009-10-30 2011-05-11 通用电气公司 风力涡轮机叶片
CN105358300A (zh) * 2013-07-12 2016-02-24 Lmwp专利控股有限公司 用于制造风力涡轮机叶片的方法和工具以及制造的叶片

Also Published As

Publication number Publication date
CN107718621A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
CN104110352B (zh) 一种具有方形预埋螺栓套的风机叶片根部的制备方法
CN103921457A (zh) 一种采用拉挤工艺制造的单向片材制造风机叶片主梁或辅梁的方法
CN204527613U (zh) 一种飞机用三维编织复合材料螺旋桨叶片
CN108839398B (zh) 一种具有碳纤维-多孔尼龙复合结构的螺旋桨及其制备方法
CN103994031B (zh) 一种碳纤维织物增强树脂基复合材料主梁帽及其制造方法
CN108303296A (zh) 一种用于高模型碳纤维复丝拉伸性能测试的制样方法
CN107718621B (zh) 一种高强度捻合型风电叶片及其制备方法
CN108016055A (zh) 一种使用拉挤预制件制造叶片根部的方法
CN104552994B (zh) Z-pin增强复合材料风电叶片及其制造方法
CN104743099A (zh) 一种飞机用三维编织复合材料螺旋桨叶片及其制备方法
CN103909662B (zh) 一种采用拉挤工艺制造的风机叶片根部预埋螺栓套的方法
CN102582088A (zh) 一种用于风机叶片的纤维强化竹基复合材料及其制造方法
CN107859591B (zh) 一种风电叶片及其制备方法
CN103086363B (zh) 利用石墨微粉制备锂离子负极材料的方法
CN109868653A (zh) 一种非金属复合材料用大厚度纤维织物预浸料的制备方法
CN107664094B (zh) 一种喷砂高强型风电叶片及其制备方法
CN202520649U (zh) 大直径冷却塔风机叶片
CN202480462U (zh) 具有高抗屈曲能力的纤维织物
CN104045975B (zh) 一种颗粒增强增韧树脂基纤维复合材料的制备方法
CN202965220U (zh) 风机叶片根端增强层一体制作模具
CN110534896B (zh) 低密度玻璃钢天线罩及其生产工艺
CN106499577A (zh) 风机叶片水平面主梁
CN105216341A (zh) 一种风力发电机叶片制作流程
CN110373001A (zh) 一种基于石墨烯增强碳纤维复合材料的制备方法
CN109927307A (zh) 带蜂窝状加强筋的复合材料结构及其制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant