CN107690761B - 高级错误检测码处理方法及其装置 - Google Patents

高级错误检测码处理方法及其装置 Download PDF

Info

Publication number
CN107690761B
CN107690761B CN201580080561.XA CN201580080561A CN107690761B CN 107690761 B CN107690761 B CN 107690761B CN 201580080561 A CN201580080561 A CN 201580080561A CN 107690761 B CN107690761 B CN 107690761B
Authority
CN
China
Prior art keywords
code processing
data
adapting
error
decoding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201580080561.XA
Other languages
English (en)
Other versions
CN107690761A (zh
Inventor
弗雷德里克·林德奎斯特
埃里克·埃里克松
马丁·赫斯勒
奥斯曼·努里·卡恩·伊尔马兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Publication of CN107690761A publication Critical patent/CN107690761A/zh
Application granted granted Critical
Publication of CN107690761B publication Critical patent/CN107690761B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • H04L1/0058Block-coded modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

公开了一种用于操作无线通信网络的发送节点(10,100)的方法,所述发送节点被适配用于利用错误检测码处理来发送数据,其中所述错误检测码处理具有以比特为单位的码处理长度,所述方法包括:基于所述数据的重传状态对所述码处理长度进行适配。还公开了用于操作接收节点的对应方法以及对应的节点、程序产品和存储介质。

Description

高级错误检测码处理方法及其装置
技术领域
本公开涉及无线通信网络和技术,特别涉及错误检测码处理的使用。
背景技术
在许多无线通信网络中,数据在分组或传输块中发送。在要发送的数据之后,每个传输块可以包含用于错误检测码处理(EDC)和前向纠错(FEC,也称为信道码处理)的比特。错误检测码处理使得能够确定数据是否已被正确接收(和/或解码),而前向纠错可以有助于纠正错误地接收(和/或解码)的数据。用于错误检测和前向纠错的编码(和解码)可以彼此分开,并且可以允许独立处理数据。术语错误码处理(error coding)通常可以指和/或包含错误检测码处理和/或前向纠错码处理。码处理(coding)通常可以指编码(encoding)和/或解码(decoding),其中解码可以特别地在接收机侧执行,和/或编码可以在发射机侧执行。
这些码处理可以在具有HARQ过程(混合应答请求)的上下文中使用,其中要发送的每个传输块被分配了HARQ标识符。如果确定块被正确地接收(和/或解码),则接收机(例如,终端或用户设备)可以用针对相应HARQ标识符的肯定应答信号(ACK)进行回复。如果确定块没有被正确接收(和/或解码),则回复可以通知否定应答(NACK)。在这种情况下,传输块可以被调度为使用相同的HARQ标识符重发一次或多次,直到发送节点接收到ACK回复。
码处理和解码(用于错误检测和FEC)都需要类似的计算资源,并且在发送相应编码的数据或传输块时占用如时间和/或频率资源之类的发送资源。由此产生的开销可能是相当大的。
发明内容
本公开的目的是提供以下解决方案,即在错误码处理的上下文中处理数据时限制开销,尤其是关于计算和/或发送资源的使用。
公开了一种用于操作无线通信网络的发送节点的方法,该发送节点被适配用于利用错误检测码处理来发送数据。错误检测码处理具有以比特为单位的码处理长度。该方法包括基于数据的重传状态来对码处理长度进行适配。
此外,描述了用于无线通信网络的发送节点。发送节点被适配用于利用错误检测码处理来发送数据,和/或可以包括用于利用错误检测码处理来发送数据的发送模块。可以认为,错误检测码处理具有以比特为单位的码处理长度。发送节点还被适配用于和/或可以包括码处理长度适配模块以用于基于数据的重传状态来对码处理长度进行适配。
还公开了一种用于操作无线通信网络的接收节点的方法,所述接收节点被适配用于接收错误编码数据,所述方法包括:基于所述数据的重传状态对所述错误编码数据的解码进行适配。
此外,描述一种无线通信网络的接收节点,所述接收节点被适配用于和/或包括接收模块以用于接收错误编码数据,所述接收节点还被适配用于和/或包括解码模块以用于:基于所述数据的重传状态对所述错误编码数据的解码进行适配。
还公开了一种程序产品,包括控制电路可执行的代码,所述代码当被所述控制电路执行时使所述控制电路执行和/或控制本文描述的任一方法,还公开了一种存储这样的程序产品的存储介质。
利用本文公开的方法和概念,可以针对数据传输的动态对错误码处理进行适配,特别是在如下情况下允许减少开销:即数据已经被发送,并且可以假定错误概率由于重传而减少或预期会很低,例如在MTC(特别是关键MTC)的情况下。
附图说明
这些图旨在示出为了阐明(而不是限制)而引入的概念的示例。
图1示出了用于操作发送节点的方法的流程图;
图2示出了用于操作发送节点的方法的示例;
图3示出了发送节点的示例;
图4示出了用于操作接收节点的方法的示例;
图5示出了接收节点的示例;
图6示出了发送节点的示例;以及
图7示出了接收节点的示例。
具体实施方式
在本公开的上下文中,数据的重传状态可以指示数据块(特别是传输块)在第一次传输还是随后的重传中被预期和/或提供(例如由发送节点)和/或被接收(例如,由接收节点),特别是在HARQ过程中。重传状态可以具体地指示传输块已经多经常传输(例如,在当前预期或调度或传输之前)和/或当前的重传次数。重传状态可以涉及特定的传输块(其中的数据)和/或特定的HARQ过程和/或对应分配的HARQ标识符。节点特别是发送节点或接收节点可以监视(例如,计数)和/或被适配为监视和/或包括监视模块以监视传输块和/或对应的HARQ标识符(以及例如对应的传输或传输块)的重传状态,例如,通过对传输或重传的次数进行计数(例如,块或标识符的传输次数(例如对于发送节点),或者接收的块的数量,特别是针对相关标识符(例如对于接收节点),和/或存储所发送和/或接收的块(例如对于接收节点))。在已经确定传输块已经被成功传输或接收(例如基于EDC和/或FEC的解码)之后,可以重用HARQ标识符。在数据的不同(重新)传输中,数据可以位于不同的传输块中,例如,由于不同的错误检测码处理和/或FEC码处理。
数据(其也可以被称为通信数据)通常可以包括或者是用户数据和/或控制数据和/或分配数据。控制数据可以涉及对节点(例如接收节点)进行控制,和/或可以包括例如控制信令。分配数据可以涉及对资源进行调度(例如针对接收节点)。控制数据和/或分配数据可以涉及对要配置的节点(例如终端或UE)的配置。
数据可以以分组(例如传输块)的形式发送或接收。数据的传输块(简称为传输块)可以包括要传输的数据,特别是数据比特,例如用户数据和/或控制数据和/或分配数据,例如一定数量的比特和/或具有数据比特长度(该数量可以是例如根据数据传输条件和/或要传输的总数据量可适配的)。另外,传输块可以包括用于错误检测的码处理,特别是用于错误检测的比特,其可以被称为错误检测比特或EDC比特,并且可以包括用于前向纠错的码处理,特别是用于前向纠错的比特,其可以被称为(前向)纠错或FEC比特。
错误编码数据可以包括或者是已经被执行错误编码的数据,特别是EDC和/或FEC。错误编码数据可以以传输块的形式传输,HARQ标识符可以被分配给该传输块;对于重传,由于所使用的错误码处理的差异,分配有相同的HARQ标识符的传输块可能是不同的,但包含相同的数据。针对EDC编码的数据可以称为EDC编码数据,针对FEC编码的数据可以称为FEC编码数据。传输块中的数据可以同时针对EDC和FEC进行编码。FEC可以在EDC之后执行和/或包括错误检测码处理的比特。
可以通过执行错误检测码处理(特别是编码)来提供码处理(用于纠错)和/或错误检测比特,码处理的大小可以表示或对应于错误检测比特的数量,并且可以被称为码处理长度或错误检测码处理长度。错误检测码处理(特别是编码)可以由发送节点和/或发送节点的EDC编码模块执行。码处理可以由一个或多个码和/或码处理时要执行的算法来表示。用于解码的码处理可以与对应的用于编码的码处理互补(反之亦然)。
类似地,可以通过执行(前向)纠错码处理(特别是编码)来提供纠正码处理和/或纠错比特,码处理的大小可以表示或对应于纠错比特的数量,并且可以被称为纠正码处理长度或纠错码处理长度。前向纠错码处理(特别是编码)可以由发送节点和/或发送节点的FEC编码模块执行。
用于错误检测的编码可以包括确定和/或计算一个或多个EDC比特,特别是预定数量的EDC比特(对应于码处理长度),和/或根据所选择的算法。特别地,用于错误检测的编码可以包括利用CRC(循环冗余校验)算法。
用于前向纠错的编码可以包括确定和/或计算一个或多个FEC比特,特别是预定数量的FEC比特(对应于纠正码处理长度),和/或根据所选择的算法。特别地,用于前向纠错的编码可以包括利用纠错算法或码,例如,卷积码和/或汉明码和/或里德-所罗门码和/或里德-穆勒码和/或Turbo码,或任何其它合适的FEC码。
解码(针对错误检测码处理的数据并类似地针对FEC编码的数据)可以包括利用用于对错误编码数据进行解码的码处理处理,其中码处理特别地可以具有码处理长度。码处理可以例如由传输节点配置和/或预先确定。对错误检测码处理的解码可以包括确定在传输和/或解码数据时是否发生了错误。对错误检测解码的解码和/或这样的确定可以包括基于错误检测码处理来确定发生一个或多个错误的概率(和/或未发生错误的概率)。该解码可以包括将该概率(和/或对应的参数或一组参数)与阈值(或对应的阈值数值)进行比较。
阈值或数值可以被配置或预定义。可以认为,阈值或数值基于重传状态和/或传输条件进行适配或可适配。如果发生错误的概率低于阈值,则可以确定未发生错误。对概率进行确定可以包括对概率和/或指示和/或表示概率的参数或一组参数进行计算和/或估计。对FEC码处理的解码可以包括对先前接收到的错误编码数据(特别是相同的传输块和/或相同的HARQ过程或标识符)的软合并。如果已经改变了码处理长度(和/或纠正码处理长度),则针对FEC的解码或者软合并通常可以包括重新计算用于FEC的一些值,例如,因为可能包括和/或针对错误检测码处理比特而执行了FEC。
无线通信网络可以包括被适配用于无线和/或无线电通信的一个或多个无线电节点。一个或多个上述节点可以形成无线电接入网络(RAN),例如,根据一个或多个特定的无线电接入技术(RAT),例如LTE(长期演进,一种描述RAT的电信标准)和/或基于LTE的技术。至少一个无线电节点(例如基站)可以连接到或可连接到提供更高级功能的节点和/或核心网络。
本公开的上下文中的无线电节点特别地可以是发送节点和/或接收节点(或反之亦然)。发送节点特别地可以是基站。可以认为接收节点是终端或用户设备(UE)。基站通常可以被适配用于与一个或多个终端或UE进行无线电和/或无线通信,和/或被适配为控制去往和/或与终端或UE的通信,例如通过对它们进行配置和/或调度来实现这一点。调度可以包括确定和/或分配用于和/或针对通信的时间-频率资源,特别是用于发送和/或接收,例如用于上行链路(UL)和/或下行链路(DL)通信。调度可以包括发送相应的信号或信息,例如控制数据或分配数据。
对节点(特别是接收节点和/或终端或UE)进行配置可以包括向要配置的节点发送指示配置(其可以是分配数据)的控制数据。配置可以描述用于被配置节点的设置和/或操作模式,该被配置节点可以被适配为针对这样的配置(例如基于相应的数据)来配置自身。配置可以例如涉及被配置节点的被调度资源和/或用于传输和/或接收的设置或者对应的电路(例如控制和/或无线电电路),和/或涉及数据的码处理(特别是数据的解码),例如已接收和/或要接收和/或预期用于该节点的一个或多个传输数据块。基站通常可以是eNodeB(eNB)。
公开了一种用于操作无线通信网络的发送节点的方法,该发送节点被适配用于利用错误检测码处理来发送数据。错误检测码处理具有以比特为单位的码处理长度。该方法包括基于数据的重传状态来对码处理长度进行适配。该方法可以包括在对码处理长度进行适配之前发送所述数据或错误编码数据至少一次。
此外,描述了用于无线通信网络的发送节点。发送节点被适配用于利用错误检测码处理来发送数据,和/或可以包括用于利用错误检测码处理来发送数据的发送模块。可以认为,错误检测码处理具有以比特为单位的码处理长度。发送节点还被适配用于和/或可以包括码处理长度适配模块以用于基于数据的重传状态来对码处理长度进行适配。
对码处理长度进行适配可以在发送所述数据至少一次之后执行和/或针对所述数据的重传来执行,例如,在相同的HARQ过程内和/或针对相同的HARQ过程标识符。发送节点或码处理长度适配模块可以相应地进行适配。
还公开了一种用于操作无线通信网络的接收节点的方法,所述接收节点被适配用于接收错误编码数据,所述方法包括:基于所述数据的重传状态对所述错误编码数据的解码进行适配。该方法可以包括在对解码进行适配之前接收所述数据或错误编码数据至少一次。
此外,描述一种无线通信网络的接收节点,所述接收节点被适配用于和/或包括接收模块以用于接收错误编码数据,所述接收节点还被适配用于和/或包括解码模块以用于:基于所述数据的重传状态对所述错误编码数据的解码进行适配。
对解码进行适配可以在接收(和解码)所述数据至少一次之后执行和/或针对所述数据的重传来执行,例如,在相同的HARQ过程内和/或针对相同的HARQ过程标识符。接收节点或解码模块可以相应地进行适配。
对码处理长度进行适配和/或对解码进行适配通常可以包括:与较早的或(直接)在先的数据传输相比,改变(例如,减小)码处理长度和/或解码或解码方法。
还公开了一种程序产品,包括控制电路可执行的代码,所述代码在被所述控制电路执行时使所述控制电路执行和/或控制本文描述的任一方法,还公开了一种存储这样的程序产品的存储介质。
利用错误检测码处理进行发送可以包括在发送之前执行用于错误检测的编码。发送节点可以被适配用于和/或包括EDC编码模块以用于这种编码。或者,利用错误检测码处理进行发送可以包括接收EDC编码数据并发送(例如,中继)该数据。可以认为,发送具有目标,该目标可以是接收节点和/或中继节点,中继节点例如可以将所发送数据中继到最终或中间(中继)目标,其中最终目标可以例如是接收节点。特别地,对数据进行发送可以是在关键MTC的上下文中和/或具有10-4或更低的定义和/或要求的BLER,特别是10-5或更低或10-6或更低,和/或在10-6和10-9之间或更低。发送可以包括对数据进行重传,特别是在HARQ过程的上下文中和/或基于(例如从接收节点)接收到的NACK指示。
基于数据的重传状态对码处理长度进行适配可以包括:与(相同)数据或传输块的较早传输中使用的码处理相比,使用具有不同长度的码处理和/或使用用于编码的不同码处理算法(具体地,具有不同的码处理长度)来进行错误检测编码。
用于编码的码处理或算法(和/或码处理长度)可以从预定义或配置的一组码处理或算法或码处理长度中选择,其可以例如存储在发送节点的存储器中。
错误检测码处理通常可以包括CRC码处理或者是CRC码处理。
可以认为,对码处理长度进行适配包括:例如通过选择相应的码处理和/或码处理长度来减少针对数据的重传的码处理长度。对于重传序列和/或根据预定义或配置的方案,可以顺序地和/或不止一次地减少码处理长度。通过减少码处理长度,可以减少计算量和(传输块中的)要发送的比特的总量。在一个变型中,减少码处理长度可以包括:增加(FEC的)纠正码处理长度,例如以使由码处理长度和纠正码处理长度表示的比特的总和保持恒定(例如,相比于数据的较早传输,特别是在相同的HARQ过程中的数据的较早传输),或者将该总和降低到低于相应较早传输的比特的总和。较早传输可以是直接在先的传输。
通常,例如针对编码或解码而对码处理长度进行的适配,可以分别针对数据的重传或重传的数据来执行。特别地,这样的适配可以涉及预期重传的数据或者之前发送过至少一次的数据,例如,在相同的HARQ过程内和/或针对相同的标识符的数据。
对码处理长度进行适配可以基于传输条件,特别是信道条件。
传输条件通常可以基于以下确定和/或包括以下:SIR/SINR和/或干扰和/或发送功率和/或接收功率和/或相应的测量和/或报告,例如,来自至少一个接收节点的传输反馈和/或一个或多个传输条件报告,其例如可以指示SIR/SINR和/或接收功率和/或CSI测量报告等传输条件。发送节点可以接收,和/或被适配用于接收,和/或包括报告或反馈接收模块以用于接收,例如来自一个或多个接收节点的传输反馈和/或一个或多个传输条件报告。因此,错误码处理所涉及的开销可能响应于传输条件,并且该开销对于良好的传输条件通常会降低。可以认为传输条件包括与数据或数据类型有关的信息,例如,与数据相关联的服务质量等级,和/或数据是控制数据还是用户数据。传输条件可以关于和/或被确定用于编码数据的先前传输,特别是直接在先的传输。
用于操作发送节点的方法可以包括对数据执行前向纠错码处理,特别是在错误检测码处理之后,所述前向纠错码处理具有以比特为单位的纠正码处理长度。所执行的码处理可以是编码。编码可以在发送(错误编码的)数据之前执行。
可选地或附加地,该方法可以包括基于数据的重传状态和/或传输条件,特别是信道条件,对数据的前向纠错码处理的纠正码处理长度进行适配。
发送节点还可以被适配用于和/或包括FEC模块以用于对数据执行前向纠错码处理,特别是在错误检测码处理之后,所述前向纠错码处理具有以比特为单位的纠正码处理长度。所执行的码处理可以是编码。编码可以在发送(错误编码的)数据之前执行。
可选地或附加地,发送节点可以被适配用于基于数据的重传状态对数据的前向纠错码处理的纠正码处理长度进行适配。
通常,对错误编码数据的解码进行适配还可以基于传输条件,特别是信道条件。
对错误编码数据的解码进行适配可以包括对用于错误检测的阈值进行适配。特别地,对阈值进行适配可以包括增加确定未发生错误的概率(例如,在解码时),这可以降低解码所需的开销。可选地或附加地,对错误编码数据的解码进行适配可以包括:基于重传状态对针对利用错误检测码处理来测试正确性的码字的假设的数量进行适配,例如,随着(重新)传输次数的增加而增加假设的数量。
可选地或附加地,对错误编码数据的解码进行适配可以包括对码处理长度进行适配,所述码处理长度用于对数据被编码所使用的错误检测码处理进行解码。可以认为,对码处理长度进行适配包括:例如通过选择相应的码处理和/或码处理长度来减少例如针对(例如,由接收节点接收的)数据的重传的码处理长度。对于重传序列和/或根据预定义或配置的方案,可以顺序地和/或不止一次地减少码处理长度。通过减少码处理长度,可以减少计算量和(传输块中的)要发送的比特的总量。在一个变型中,减少码处理长度可以包括:增加(FEC的)纠正码处理长度,例如以使由码处理长度和纠正码处理长度表示的比特的总和保持恒定(例如,相比于数据的较早传输,特别是在相同的HARQ过程中的数据的较早传输),或者将该总和降低到低于相应较早传输的位的总和。较早传输可以是直接在先的传输。
对错误编码数据的解码进行适配可以包括对纠正码处理长度进行适配,所述纠正码处理长度用于对数据被编码所使用的前向纠错码处理进行解码。
发送节点可以接收,和/或被适配为用于接收,和/或包括接收模块以用于接收传输反馈(例如从接收节点接收)。
传输反馈通常可以包括ACK或NACK,具体地涉及可以由相应的标识符(例如,HARQ过程标识符)来表示的特定的重传过程和/或HARQ过程和/或传输块。对数据进行发送可以包括基于传输反馈(特别是基于接收到的NACK)来重传数据。可以认为传输反馈包括一个或多个传输条件报告。
接收节点可以发送,和/或被适配用于发送,和/或包括反馈发送模块以用于发送传输反馈到发送节点(可以从该发送节点接收了错误编码数据)。传输反馈可以基于对错误码处理的解码(特别是对错误检测码处理和/或FEC的解码)来确定。
可以认为,发送节点配置和/或被适配用于配置和/或包括配置模块以用于向接收节点配置针对EDC的码处理和/或针对FEC的码处理和/或码处理长度和/或纠正码处理长度和/或用于对码处理和/或码处理长度和/或FEC码处理和/或纠正码处理长度进行适配和/或用于对其解码进行适配以对应于在发送数据时利用的适配的错误码处理(特别是用于错误检测码处理和/或FEC码处理)的方案。可选地或附加地,这样的配置可以包括用一个或多个要用于错误解码(特别是错误检测解码)的阈值来配置接收节点。这样的配置可以包括发送相应的指示,其指示要用于解码的EDC码处理和/或码处理长度和/或FEC码处理和/或纠正码处理长度和/或方案和/或阈值。对错误编码数据的解码可以基于这样的配置,这样的配置可以从网络(特别是发送节点)接收。
本文讨论的概念和思想特别适用于5G无线电概念或机器类型通信(MTC)。例如,5G无线电概念的一个主要目标是支持高可靠性和低延迟的机器类型通信(MTC),即所谓的关键MTC(Critical-MTC)。关键MTC概念应该解决与例如端到端延迟、传输可靠性、系统容量和部署有关的设计权衡,并且针对不同的工业应用使用情况提供如何设计无线网络的解决方案。关键MTC系统应该允许以下不同类别的应用共存:具有低延迟的零星数据(例如,警报消息)的应用和具有实时周期性数据(或简称为尽力而为数据)的应用。警报消息(例如,警报)是需要支持关键MTC应用的一种重要类型的消息。关键MTC的超高可靠性表明即使是最糟糕的情况也需要得到支持。这与传统的移动宽带(例如LTE)不同,在传统的移动宽带中0.1的BLER是常见的,相比之下,关键MTC应用讨论10-6-10-9的BLER。
当前的3G/4G MBB系统中用于检测块错误的机制是,在物理层从较高层(例如MAC和RLC)接收的(传输块内的)数据比特块中,包括n个错误检测码处理(例如循环冗余校验CRC),即校验和。CRC广泛用于检测数据通信和存储介质中的随机错误。常见的CRC的例子有:
CRC-16-CDMA2000用于3G移动网络;
CRC-CCITT用于蓝牙;
CRC-32用于以太网,HDLC协议;
CRC-40-GSM用于GSM控制信道。
其中CRC-n表示具有n次生成多项式的CRC。具有n次生成多项式的CRC检测长度为n或更小的所有突发错误。CRC编码和解码可以使用线性反馈移位寄存器(LFSR)高效地实现。
在添加了错误检测码(特别是CRC)之后,包括信道码处理以允许前向纠错(FEC),其可以包括添加冗余比特。常用的FEC码是turbo码和卷积码。FEC能够纠正特定比特错误,而CRC仅允许接收机通常以高概率检测块是否包含任何比特错误。如果在CRC解码时在块内检测到至少一个比特错误,则向发射机发送否定应答(NACK)以通知该块应该被重传。这种机制被称为混合ARQ(HARQ),其中可以采用多个并行HARQ过程。在每次重传中,即使(FEC中使用的)冗余比特可能根据HARQ使用的冗余版本(例如,跟踪合并或增量冗余)不同而不同,也通常将相同的CRC包括到数据中。这种做法具有发射机不需要重新计算CRC的优点。通过对相同HARQ过程内的所有(错误地)接收的块进行软合并,每次重传的实际BLER连续地减少,代价是增加了延迟和计算复杂度。然而,对于衰落的无线电信道,由HARQ-CRC方案提供的这种重传机制已经证明对于当今使用的MBB系统是成功的。
用于例如3G(HSPA、UMTS)和4G(LTE)系统的当前标准主要设计用于基于分组(基于块)的移动宽带(MBB)通信。这意味着系统要求与本文考虑的具有低延迟和超高可靠性的MTC通信系统(即,关键MTC)非常不同。例如,3G/4G MBB的误块率(BLER)通常设计为大约0.1,而对于MTC关键应用,系统需要以低得多的BLER(例如10-9)进行工作。这意味着块错误的概率,即传输时间间隔(TTI)被错误地检测到的可能性可能具有10亿分之一的数量级。那确实是一个非常罕见的事件。因此,如果这些系统利用错误检测机制,例如通过利用基于HARQ-CRC方案的重传机制,则控制开销实际上将仅在非常罕见的事件中才有效使用。在许多MTC应用中,情况变得更加严重,因为信息比特数比典型的数据传输如上网、FTP下载和视频流小得多。因此,为了使系统(频谱)高效,应将CRC开销保持在最低限度。但是,通过降低CRC开销,CRC的强度也会降低,这意味着块错误被漏掉的概率增加。后者是不希望的,因为它可能导致块(可能)首先在较高层(其通常也使用CRC)被检测为错误的块,并因此导致在较高层上的重传,从而导致额外的系统延迟。
本文描述的概念包括基于传输的错误概率来对用于错误检测的资源量进行适配。例如,通过根据HARQ重传方案来改变CRC的长度,以便将控制开销保持为最小,同时不降低错误块的遗漏检测的概率。应该看到,关键MTC的数据包可能相当短,这意味着CRC将构成不可忽视的开销。
一些提出的解决方案包括:针对至少一次重传甚或每次重传,减少用于错误检测码处理的码处理长度(例如,CRC长度),以便降低控制开销。可以设想下面描述的一组实施例。
在前三个实施例中,所提出的解决方案通过采用经适配的错误检测量(例如通过对CRC长度进行适配)来减少控制开销。在最后的实施例中,减少的CRC开销被用于加强FEC(即,增加的FEC开销),这潜在地降低了重传次数,从而降低了(重新)传输延迟。后者可能对关键MTC应用特别重要。
在一个实施例中,CRC码处理长度的连续减少是由对发射机和接收机两者已知的标准化方案(例如预定义的方案)确定的。例如,可以在第一次传输尝试中使用24比特CRC(具有相应的24比特的码处理长度),而在此后使用16比特CRC,并且可能在第三次或最后一次重新尝试中使用8比特CRC。
利用所提出的解决方案,接收机以NACK向发射机通知错误地检测的码字以允许重传。然后,发射机将首先根据对发射机和接收机两者已知的标准化程序来减小CRC长度。更具体地说,CRC长度由重传计数决定。对于从MAC层接收到的第一次传输尝试时使用的原始传输块,计算新的CRC。在包括CRC之后执行信道码处理,其中发送的冗余比特(FEC)的数目可以对应于所使用的冗余版本和HARQ过程中的重传次数。给定较短的分组大小(由于较小的CRC长度),可以使重传机制更快地执行。因此,连续传输之间的信道变化(信道条件或传输条件)通常可以忽略,信道可以被认为是(大致)静态的。因此接收机可以利用相干合并,以便增加FEC解码之前的SINR。这增加了正确解码的可能性,这与减少的CRC长度折中。
应该注意,如LTE中那样的软合并有可能不能直接适用,因为当CRC在多次重传之间改变时,可能不得不重新计算FEC比特。
在另一个实施例中,对CRC的适配和/或适配公式可以基于传输条件,例如,诸如SINR之类的一组可靠性测量和先前的传输尝试等,以允许例如即时传输或信道条件影响CRC长度。
该实施例与上述实施例的不同之处在于如何获得用于重传尝试的CRC比特的数量(表示码处理长度)。更具体地说,对码处理长度(即CRC比特)进行适配是基于或根据传输或信道条件来执行的,例如基于SINR测量。当测量在接收机侧(或接收节点)发生时,可以将测量结果或其指示作为NACK反馈的一部分和/或作为传输反馈进行通知。对于要求很少量的反馈比特的系统,建议对测量结果进行量化,并且仅反馈对查找表的索引,发射机在该查找表中检索CRC长度。如在上面的实施例中那样,接收机或接收节点通常可以采用相干合并(软合并)来利用重传的累积能量。
在另一个实施例中,可以采用例如基于传输或信道条件的改变逐渐减少FEC比特和CRC比特的方案。
图1示出了用于操作发送节点的方法的示例流程图。当发送错误编码数据时,在动作A10中,可以对(相同)数据的传输尝试或相同HARQ过程内的传输尝试的次数进行计数,以确定重传状态。在可选的动作A12中,可以例如通过传输反馈来获得或取得作为传输条件的代表的信道估计。在动作S14中,基于信道估计(或者更一般地,基于传输条件)(如果已经执行了动作S12)和重传状态,可以确定用于错误检测码处理的资源,特别是码处理长度。在A16中,可以确定用于FEC的资源(纠正码处理长度)。在根据A14和A16中的确定,利用错误检测码处理和FEC码处理发送数据之后,在动作A18中,可以例如基于传输反馈来确定是否需要另外的重传。如果需要,则可以继续执行动作A10并增加传输计数。如果不需要,则可以结束该数据的传输,并且例如可以用新的数据开始新的HARQ过程。
因此,如图1中的流程图所示,当决定纠错冗余比特数(即,FEC位数)和/或EDC的比特数时,除了ACK/NACK响应(作为传输反馈的一部分)和重传计数之外,可以使用信道估计,例如基于即时的信道知识或来自先前尝试的信道知识。取决于信道条件,冗余比特可以增加、减少或保持相同,而取决于用于码处理长度适配的方案,错误检测CRC比特有可能在每次重传尝试中减少。
在另一实施例中,用于确定减少的CRC比特的数量的方案包括确定在不增加关于第一传输尝试的控制开销的情况下可能使用的增加的FEC比特的数量。例如,可以使用CRC码处理长度的减少来增强(增加纠正码处理长度)FEC。尽管后者不会降低控制开销,但与固定长度CRC/FEC相比,重传有可能会更少,从而带来较低的重传延时。
在另一个实施例中,开销减少可以位于接收机侧,例如接收节点的开销减少。在一些实施方式中,这一情况在发射机侧是已知的,在一些实施方式中,发送节点不知道这一情况。在该实施例中,可以基于重传状态对错误检测码处理进行适配,使得对用于接受或确定解码为正确的阈值进行适配。例如,作为确定正确解码的概率的示例,标准解码器可以计算置信度,即最可能的码字是正确的码字的估计概率。对于尝试j,该置信概率可以表示为Gj。在该实施例中,对于某个阈值或阈值数值Tj,如果Gj>Tj,则解码尝试将被视为成功,从而满足所要求的错误检测错误概率Dj。该要求可以由标准或接收节点的应用决定。满足该准则的Tj的选择可以取决于解码器、信道估计器等中的细节,这些细节在本文中不进一步描述,其可以由网络或发送节点来配置。该实施例中的开销与给定解码正确,如果Gj≤Tj,解码结果不被接受的概率相关,也就是说,如果我们可以使阈值更小,则开销就会降低。为了降低开销,阈值或相应的数值可以针对重传进行适配,使得阈值T1≥T2≥...≥Tk-1被确定或用于错误检测解码,其实现D1≤D2≤...≤Dk-1。这里的下标表示错误编码数据的传输次数(表示重传状态)。对于这种方法,错误检测码处理(解码)可以基于已知的或假定的码处理长度,其可以例如预定义(和/或存储在接收模块的存储器中)和/或从网络接收,特别是从发送节点接收。这种方法不要求在发射机侧本身进行改变,然而,它可以与以下方法进行组合:对码处理长度进行适配,和/或,发送节点配置和/或被适配用于配置和/或包括配置模块以用于向接收模块配置用于错误检测码处理的码处理长度和/或一个或多个阈值。
给出用于减少接收机侧的开销的另一个实施例。同样,在一些实施方式中,这一情况在发射机侧是已知的,在一些实施方式中,发送节点不知道这一情况。
假定一种用于码处理长度适配的错误检测码处理或其方案,例如,对于码字C,具有固定码处理长度S,在接收机侧的开销可以用如下方式减少。接收节点(或接收节点的解码器或解码器模块)可以基于对最有可能码字的猜测来进行解码或适配用于解码,和/或可以提供或确定码字的多个假设。可以使用错误检测码处理(例如固定长度的CRC)来校验该码字。使用这种技术,可以减少“有效”的CRC长度。例如,对于24比特的CRC和8=23的猜测数,“有效的”CRC长度可以减少到21比特。假设的数量可能会受到限制(例如由于复杂性),并且在某些情况下,具有许多假设时错误行为可能会变得复杂。这种方法可以用对于例如Turbo解码器的解码实现的非常微小的更新来实现。
举例来说,假设D1(如上所定义)非常低,例如小于10-9,如果P1=10%,则对于CRCP,必须使用CRC S的至少30个比特。
进一步假设Pj=10-j,则Dj≈10-(10-j)。这意味着需要的有效比特数是30,27,24,...,4,因此我们在解码尝试中允许(最多)1,8,64,...,226个假设(注意最后的数字仅仅是为了完整性,不可能提供和测试226个假设)。这种方法也可以结合对码处理长度的适配。
错误检测概率适配
对用于缩放错误检测开销的错误检测概率适配进行描述,其说明了所实现的性能增益背后的技术原理。其原理是,如果在解码尝试j中FEC解码的错误概率是Pj,并且在错误的FEC解码已经发生的情况下错误检测(CRC)错误概率是Dj,则对于某个最大次数的k次传输尝试,分组错误率应当满足:
Figure GDA0002636195370000161
也就是说,在所有k次传输之后解码失败的概率是Pk,但是如果在某个前面的步骤中检测解码错误失败,这也将导致错误。因此,P1≥P2≥...≥Pk,这意味着对于资源有效的解决方案,错误检测错误概率应该是D1≤D2≤...≤Dk-1。例如,如果k=10并且期望具有错误率10-9,则一种可能的解决方案是使用PjDj≈Pk≈10-10。为了进一步澄清表述,可以考虑两个例子。在第一个例子中,假设Pk是1,这意味着Dj=0。对于第二个例子,假设P1是0,则Dj是未定义的,但是在这种情况下我们可以将Dj重新定义为0(或者实际上是[0,1]中的任何数字)。
因此,基于例如重传尝试k-1时的SINR测量,可以估计Pk-1。通过进一步假设静态信道条件,Pk=Pk-1,因此对于期望的或给定的错误率,Dk可以通过上述方程求解。CRC长度(码处理长度(由Dk表示))可以作为NACK消息的一部分传送到发送节点。
图2示意性地示出了用于操作发送节点的方法,该发送节点用于无线通信网络或位于无线通信网络中。发送节点可以被适配用于利用错误检测码处理来发送数据,其中错误检测码处理具有以比特为单位的码处理长度。该方法可以包括基于数据的重传状态对码处理长度进行适配的动作TA10,例如如上所述。可选动作TA8可以包括动作TA10之前的至少第一次传输。
图3示出了发送节点100的示例,发送节点100可以是无线电节点或网络节点,特别是基站或eNodeB。发送节点100可以包括用于执行动作TA8的可选发送模块TN8和用于执行动作TA10的码处理长度适配模块TN10。
图4示意性地示出了用于操作接收节点的方法,该接收节点用于无线通信网络或位于无线通信网络中。接收节点可以被适配用于接收错误编码数据。该方法可以包括基于数据的重传状态对解码进行适配的动作RA10,例如如上所述。可选动作RA8可以包括在动作TA10之前至少接收两次数据和/或在动作RA10之前执行至少一次对数据的至少第一次传输的解码。
图5示意性地示出了接收节点10的示例,接收节点10可以是无线电节点,特别是终端或UE。接收节点10可以包括用于执行动作RA8的可选接收模块RN8和用于执行动作RA10的适配模块RN10。
图6示意性地示出了发送节点100,发送节点100尤其可以是网络节点或基站或eNodeB。发送节点100包括控制电路120,控制电路120可以包括连接到存储器的控制器。接收模块和/或发送模块和/或控制或处理模块和/或调度模块和/或调制和/或配置模块,可以在控制电路120中实现和/或可由其执行。控制电路(可操作地)连接到或可连接到网络节点100的控制无线电电路122,控制无线电电路122提供接收机和发射机和/或收发机功能。天线电路124可以连接到或可连接到无线电电路122以提供信号接收或发送和/或放大。发送节点100可以被适配为执行本文公开的用于操作发送节点的任何方法;具体地说,它可以包括相应的电路,例如控制电路。本文描述的发送节点的模块可以用相应电路中的软件和/或硬件和/或固件来实现。
图7示出了接收节点10的示例,接收节点10可以实现为用户设备或终端。接收节点10包括控制电路20,还包括提供接收和发送或收发功能的无线电电路22,无线电电路22(可操作地)连接到或可连接到控制电路20。天线电路24可以(可操作地)连接到或可连接到无线电电路22,例如用来收集或发送和/或放大信号。无线电电路22和控制它的控制电路20(以及例如天线电路)被配置用于与网络或网络节点(特别是发送节点,例如节点100)进行蜂窝通信。无线电节点10可以被适配为执行本文公开的用于操作接收节点的任何方法;具体地说,它可以包括相应的电路,例如控制电路。本文描述的接收节点的模块或功能可以用相应电路中的软件和/或硬件和/或固件来实现。
通常,控制电路可以包括用于处理和/或控制例如一个或多个处理器和/或处理器内核和/或FPGA(现场可编程门阵列)和/或ASIC(专用集成电路)的集成电路。控制电路可以包括和/或连接到和/或被适配用于访问(例如,写入和/或读取)存储器,存储器可以包括任何类型的易失性和/或非易失性存储器,例如高速缓存和/或缓冲存储器和/或RAM(随机存取存储器)和/或ROM(只读存储器)和/或光存储器和/或EPROM(可擦除可编程只读存储器)。这种存储器可以被适配用于存储可由控制电路执行的代码和/或其它数据,例如有关通信的数据,例如节点的配置和/或地址数据等。控制电路可以被适配用于控制本文所述的任何方法和/或使得这样的方法被例如无线电节点执行。相应的指令可以存储在存储器中,存储器可以是可读的和/或可读地连接到控制电路。
无线电电路可以包括接收电路(例如一个或多个接收机)和/或发送电路(例如一个或多个发射机)。可选地或附加地,无线电电路可以包括用于发送和接收的收发电路(例如一个或多个收发机)。可以认为无线电电路包括用于执行LBT/CCA的感测装置。天线电路可以包括一个或多个天线或天线元件,其可以布置在天线阵列中。
对无线电节点(特别是用户设备)进行配置可以指,无线电节点被适配为或使得或设置为根据该配置进行操作。配置可以由另一个设备完成,另一个设备例如是网络节点(例如网络的无线电节点,如基站或eNodeB)或网络,在这种情况下,这可以包括将配置数据发送到要配置的无线电节点。这样的配置数据可以表示要配置的配置和/或包括与配置有关的一个或多个指令,例如关于冻结间隔和/或传输开始间隔。无线电节点可以对自身进行配置,例如,基于从网络或网络节点接收的配置数据对自身进行配置。
通常,配置可包括确定表示配置的配置数据并将该配置数据提供(例如,通过发送)给一个或多个其他节点(并行和/或顺序地),后者可将该配置数据进一步发送到无线电节点(或另一个节点,重复该过程直到该配置数据到达无线设备)。可选地或附加地,配置无线电节点(例如通过网络节点或其他设备)可以包括接收配置数据和/或与配置数据有关的数据,例如从另一个节点(例如网络节点,其可以是网络的更高层节点)接收,和/或将接收到的配置数据发送到无线电节点。因此,确定配置并将配置数据发送到无线电节点可以由不同的网络节点或实体来执行,这些网络节点或实体可以能够经由适当的接口(例如,在LTE的情况下是X2接口)进行通信。
存储介质通常可以是计算机可读的和/或可由控制电路访问和/或读取的(例如,在将其连接到合适的设备或接口之后),并且可以包括例如光盘和/或磁存储器和/或易失性或非易失性存储器和/或闪存和/或RAM和/或ROM和/或EPROM和/或EEPROM和/或缓冲存储器和/或高速缓存存储器以及/或数据库和/或电或光信号。
一般而言,发送节点和接收节点可以由其各自的功能来定义,如本文所述。可以认为,一个物理设备组合了两个功能,并且因此基于其与至少一个其他无线电节点的相应交互,被配置为既是发送节点又是接收节点。
在本描述中,为了解释而非限制的目的,阐述了特定的细节(例如特定的网络功能、过程和信令步骤)以便提供对本文所呈现的技术的透彻理解。对于本领域技术人员将明显的是,本概念和方面可以在不同于这些具体细节的其他实施例和变型中实践。
例如,在长期演进(LTE)或高级LTE(LTE-A)移动或无线通信技术的上下文中部分地描述了概念和变型;然而,这并不排除结合诸如全球移动通信系统(GSM)的附加或替代移动通信技术使用本概念和方面。尽管将相对于第三代合作伙伴计划(3GPP)的某些技术规范(TS)部分地描述以下实施例,但是应当理解,本概念和方面还可以结合不同的性能管理(PM)规范来实现。
此外,本领域技术人员将意识到:本文解释的服务、功能和步骤可以结合编程微处理器使用软件功能来实现或使用专用集成电路(ASIC)、数字信号处理器(DSP)、现场可编程门阵列(FPGA)或通用计算机来实现。还将意识到:尽管在方法和设备的上下文中阐述了本文所描述的实施例,但是本文呈现的概念和方面还可以体现在程序产品中以及包括控制电路(例如计算机处理器和耦合到处理器的存储器)的系统中,其中存储器用执行本文公开的服务、功能和步骤的一个或多个程序或程序产品来进行码处理。
相信从前面的描述将完全理解本文呈现的方面的优点和变型,并且将明显的是,在不脱离本文所描述的概念和方面的范围或不牺牲其所有有利效果的情况下,可以对其示例性方面的形式、结构和布置进行各种改变。因为本文提出的方面可以以很多方式改变,将认识到,任何保护范围应由以下权利要求的范围来限定,而不受到说明书限制。
一些缩写:
3GPP 第三代合作伙伴计划
Ack/Nack 肯定应答/否定应答,也作A/N
AP 接入点
BER/BLER 误码率,误块率;
BS 基站
CA 载波聚合
CCA 空闲信道评估
CIS 传输确认信号
CoMP 协作多点传输和接收
CQI 信道质量信息
CRS 小区特定参考信号
CSI 信道状态信息
CSI-RS CSI参考信号
D2D 设备到设备
DCI 下行链路控制信息
DL 下行链路
下行链路通常是指更远离网络核心(物理上和/或逻辑上)的节点/方向的数据的传输;特别是从基站或eNodeB终端;更一般地,可以指由终端或节点接收的传输(例如在D2D环境中);经常使用不同于UL的指定频谱/带宽(例如,LTE)
DMRS 解调参考信号
DRS 发现参考信号
eNB 演进NodeB;基站的一种形式,还称为eNodeB
EPDCC 增强的物理DL控制信道
E-UTRA/N 演进的UMTS陆地无线电接入/网络,RAT的示例
FDD 频分双工
HARQ 混合自动重传请求
ID 标识
L1 层1
L2 层2
LA 授权辅助
LA 授权辅助接入
LBT 先听后说
LTE 长期演进,一种电信标准
MAC 媒体访问控制
MBSFN 多广播单频网络
MCS 调制与码处理方案
MDT 最小化路测
NW 网络
O&M 运营和维护
OFDM 正交频分复用
OSS 运营支持系统
PC 功率控制
PCFICH 物理控制格式指示符信道
PDCCH 物理下行链路控制信道
PDCCH 物理DL控制信道
PH 功率余量
PHR 功率余量报告
PMI 预码处理矩阵指示符
PRB 物理资源块
PSS 主同步信号
PUCCH 物理上行链路控制信道
PUSCH 物理上行链路共享信道
RA 随机接入
RACH 随机接入信道
RAT 无线电接入技术
RB 资源块
RE 资源单元
RI 秩指示符
RRC 无线电资源控制
RRH 远程射频头
RRM 无线电资源管理
RRU 远程无线电单元
RSRP 参考信号接收功率
RSRQ 参考信号接收质量
RSSI 接收信号强度指示符
RX 接收/接收器,接收相关
SA 调度分配
SCell 辅助小区
SFN 单频网络
SINR/SNR 信号与噪声和干扰比;信噪比
SON 自组织网络
SR 调度请求
SRS 探测参考信号
SSS 辅同步信号
TDD 时分双工
TPC 发射功率控制
TTI 发送时间间隔
TX 发射/发射器,发射相关
UE 用户设备
UL上行链路;通常是指向更靠近网络核心(物理上和/或逻辑上)的节点/方向的数据的传输;特别是从D2D使能节点或UE到基站或eNodeB;在D2D的上下文中,其可以指代用于在D2D中发射的频谱/带宽,其可以同样用于蜂窝通信中的到eNB的UL通信;在一些D2D变型中,D2D通信涉及的所有设备的传输在一些变型中通常可以在UL频谱/带宽/载波/频率中;通常,UL可以指由终端进行(例如,在例如D2D上下文中,到网络或网络节点或另一个终端)的传输。
根据LTE标准定义,可以使用这些和其他缩写。

Claims (26)

1.一种用于操作无线通信网络的发送节点(10,100)的方法,所述发送节点(10,100)被适配用于利用错误检测码处理来发送数据,其中所述错误检测码处理具有以比特为单位的码处理长度,所述方法包括:基于所述数据的重传状态对所述码处理长度进行适配,其中对所述码处理长度进行适配包括:减少针对所述数据的重传的码处理长度。
2.根据权利要求1所述的方法,其中所述错误检测码处理包括循环冗余校验CRC码处理,或者所述错误检测码处理是循环冗余校验CRC码处理。
3.根据权利要求1或2所述的方法,其中对所述码处理长度进行适配基于传输条件。
4.根据权利要求3所述的方法,其中所述传输条件包括信道条件。
5.根据权利要求1或2所述的方法,包括对所述数据执行前向纠错码处理,所述前向纠错码处理具有以比特为单位的纠正码处理长度。
6.根据权利要求5所述的方法,其中对所述数据执行前向纠错码处理是在所述错误检测码处理之后执行的。
7.根据权利要求1或2所述的方法,包括:基于所述数据的重传状态和/或传输条件,对所述数据的前向纠错码处理的纠正码处理长度进行适配。
8.根据权利要求7所述的方法,其中所述传输条件包括信道条件。
9.一种无线通信网络的发送节点(10,100),所述发送节点(10,100)被适配用于利用错误检测码处理来发送数据,其中所述错误检测码处理具有以比特为单位的码处理长度,所述发送节点(10,100)还被适配用于基于所述数据的重传状态对所述码处理长度进行适配,其中对所述码处理长度进行适配包括:减少针对所述数据的重传的码处理长度。
10.根据权利要求9所述的发送节点(10,100),其中所述错误检测码处理包括循环冗余校验CRC码处理,或者所述错误检测码处理是循环冗余校验CRC码处理。
11.根据权利要求9或10所述的发送节点(10,100),其中对所述码处理长度进行适配基于传输条件。
12.根据权利要求11所述的发送节点(10,100),其中所述传输条件包括信道条件。
13.根据权利要求9或10所述的发送节点(10,100),所述发送节点(10,100)还被适配用于对所述数据执行前向纠错码处理,所述前向纠错码处理具有以比特为单位的纠正码处理长度。
14.根据权利要求13所述的发送节点(10,100),其中对所述数据执行前向纠错码处理是在所述错误检测码处理之后执行的。
15.根据权利要求9或10所述的发送节点(10,100),所述发送节点(10,100)被适配用于基于所述数据的重传状态对所述数据的前向纠错码处理的纠正码处理长度进行适配。
16.一种用于操作无线通信网络的接收节点(10,100)的方法,所述接收节点(10,100)被适配用于接收错误编码数据,所述方法包括:基于所述错误编码数据的重传状态对所述错误编码数据的解码进行适配,其中对所述错误编码数据的解码进行适配包括对用于错误检测码处理的解码的码处理长度进行适配,并且其中对码处理长度进行适配包括:减少针对所述错误编码数据的重传的码处理长度。
17.根据权利要求16所述的方法,其中对所述错误编码数据的解码进行适配还基于传输条件。
18.根据权利要求17所述的方法,其中所述传输条件包括信道条件。
19.根据权利要求16或17所述的方法,其中对所述错误编码数据的解码进行适配包括对用于错误检测的阈值进行适配。
20.根据权利要求16或17所述的方法,其中对所述错误编码数据的解码进行适配包括对纠正码处理长度进行适配,所述纠正码处理长度用于对所述数据被编码所使用的前向纠错码处理进行解码。
21.一种无线通信网络的接收节点(10,100),所述接收节点(10,100)被适配用于接收错误编码数据,所述接收节点(10,100)还被适配用于:基于所述错误编码数据的重传状态对所述错误编码数据的解码进行适配,其中对所述错误编码数据的解码进行适配包括对用于错误检测码处理的解码的码处理长度进行适配,并且其中对码处理长度进行适配包括:减少针对所述错误编码数据的重传的码处理长度。
22.根据权利要求21所述的接收节点(10,100),其中对所述错误编码数据的解码进行适配还基于传输条件。
23.根据权利要求22所述的接收节点(10,100),其中所述传输条件包括信道条件。
24.根据权利要求21或22所述的接收节点(10,100),其中对所述错误编码数据的解码进行适配包括对用于错误检测的阈值进行适配。
25.根据权利要求21或22所述的接收节点(10,100),其中对所述错误编码数据的解码进行适配包括对纠正码处理长度进行适配,所述纠正码处理长度用于对所述数据被编码所使用的前向纠错码处理进行解码。
26.一种计算机可读存储介质,包括控制电路可执行的代码,所述代码在被所述控制电路执行时使所述控制电路执行和/或控制根据权利要求1至8或权利要求16至20中任一项所述的方法。
CN201580080561.XA 2015-04-01 2015-04-01 高级错误检测码处理方法及其装置 Expired - Fee Related CN107690761B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SE2015/050406 WO2016159847A1 (en) 2015-04-01 2015-04-01 Advanced error detection coding

Publications (2)

Publication Number Publication Date
CN107690761A CN107690761A (zh) 2018-02-13
CN107690761B true CN107690761B (zh) 2020-10-27

Family

ID=53175113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580080561.XA Expired - Fee Related CN107690761B (zh) 2015-04-01 2015-04-01 高级错误检测码处理方法及其装置

Country Status (4)

Country Link
US (1) US10707994B2 (zh)
EP (1) EP3278481B1 (zh)
CN (1) CN107690761B (zh)
WO (1) WO2016159847A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10225046B2 (en) 2017-01-09 2019-03-05 At&T Intellectual Property I, L.P. Adaptive cyclic redundancy check for uplink control information encoding
US10277252B2 (en) 2017-01-09 2019-04-30 At&T Intellectual Property I, L.P. Encoding data with polar codes for control channels
US10560905B2 (en) * 2017-05-04 2020-02-11 Samsung Electronics Co., Ltd. Method and apparatus for transmitting power headroom information in a communication system
US11304146B2 (en) * 2017-08-03 2022-04-12 Lg Electronics Inc. Method for controlling transmission power in wireless communication system, and apparatus therefor
CA3109526C (en) * 2018-08-17 2023-04-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method, terminal device and network device
CN114246004B (zh) * 2019-08-08 2023-10-10 上海诺基亚贝尔股份有限公司 用于随机接入的可实现的sinr集合预测
CN110933708B (zh) * 2019-12-12 2021-02-26 北京邮电大学 中继辅助智慧工厂通信的资源分配方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174931A (zh) * 2006-10-30 2008-05-07 华为技术有限公司 一种重传类型选择方法、相应的发送设备、接收设备及系统
EP1931072A2 (en) * 2006-12-08 2008-06-11 Fujitsu Ltd. Transmission apparatus, reception apparatus and data transmission method
EP2180625A2 (en) * 2008-10-21 2010-04-28 Fujitsu Limited Data coding apparatus, system, and method for communication
CN102111232A (zh) * 2009-12-29 2011-06-29 华为技术有限公司 前向纠错方法和装置
WO2013142039A1 (en) * 2012-03-23 2013-09-26 Qualcomm Incorporated Dynamic receiver switching
CN103780362A (zh) * 2012-10-25 2014-05-07 中国科学院声学研究所 一种lte系统中基于mmib的链路性能预测方法及系统
CN104079376A (zh) * 2013-03-25 2014-10-01 三星电子株式会社 使用前向纠错的数据通信方法和设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6182264B1 (en) * 1998-05-22 2001-01-30 Vlsi Technology, Inc. Smart dynamic selection of error correction methods for DECT based data services
US6721834B2 (en) * 2001-02-09 2004-04-13 Lucent Technologies Inc. Rate adaptation in a wireless communication system
KR100493158B1 (ko) * 2002-09-17 2005-06-02 삼성전자주식회사 적응적 하이브리드 arq 방법 및 적응적 하이브리드arq 시스템에 있어서 데이터 송수신방법
EP1920608B1 (en) * 2005-08-30 2018-11-14 Thomson Licensing Cross-layer optimization for scalable video multicast over ieee 802.11 wireless local area networks
KR100728037B1 (ko) * 2006-03-03 2007-06-14 삼성전자주식회사 무선 데이터 스트리밍 시스템의 파라미터 제어 방법 및장치
KR100886903B1 (ko) * 2006-12-06 2009-03-09 한국전자통신연구원 위성 송수신 시스템에서 효과적인 신호 송수신을 위한적응형 부호 변조 시스템 및 방법
RU2009135449A (ru) * 2007-03-01 2011-04-10 НТТ ДоСоМо, Инк. (JP) Базовая станция и способ управления связью
JP5336765B2 (ja) * 2008-05-13 2013-11-06 キヤノン株式会社 画像処理装置、その制御方法、プログラム、及び画像処理システムの制御方法
US9444587B2 (en) * 2008-10-16 2016-09-13 Qualcomm Incorporated Incremental redundancy relays for wireless communication
JP2011077822A (ja) * 2009-09-30 2011-04-14 Fujitsu Ltd 無線通信装置、無線通信システム、及び無線通信システムにおける無線通信方法
US9100951B2 (en) * 2011-11-04 2015-08-04 Intel Corporation Simultaneous transmission of different types of feedback information in a wireless environment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174931A (zh) * 2006-10-30 2008-05-07 华为技术有限公司 一种重传类型选择方法、相应的发送设备、接收设备及系统
EP1931072A2 (en) * 2006-12-08 2008-06-11 Fujitsu Ltd. Transmission apparatus, reception apparatus and data transmission method
EP2180625A2 (en) * 2008-10-21 2010-04-28 Fujitsu Limited Data coding apparatus, system, and method for communication
CN102111232A (zh) * 2009-12-29 2011-06-29 华为技术有限公司 前向纠错方法和装置
WO2013142039A1 (en) * 2012-03-23 2013-09-26 Qualcomm Incorporated Dynamic receiver switching
CN103780362A (zh) * 2012-10-25 2014-05-07 中国科学院声学研究所 一种lte系统中基于mmib的链路性能预测方法及系统
CN104079376A (zh) * 2013-03-25 2014-10-01 三星电子株式会社 使用前向纠错的数据通信方法和设备

Also Published As

Publication number Publication date
EP3278481B1 (en) 2020-07-08
US10707994B2 (en) 2020-07-07
EP3278481A1 (en) 2018-02-07
CN107690761A (zh) 2018-02-13
WO2016159847A1 (en) 2016-10-06
US20180091259A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
US10986615B2 (en) Method and user equipment for transmitting uplink signal, and method and base station for receiving uplink signal
CN107690761B (zh) 高级错误检测码处理方法及其装置
CA2723859C (en) Increasing reliability of hybrid automatic repeat request protocol
US11716609B2 (en) Delaying transmission depending on transmission type and UE processing capabilities
US10615920B2 (en) Method and apparatus for reducing HARQ feedback latency
US10469213B2 (en) Network node, a wireless device and methods therein for handling automatic repeat requests (ARQ) feedback information
CN107624227B (zh) 用于在通信中处理束大小的配置的设备和方法
KR102344200B1 (ko) 할당된 리소스 상의 인코딩된 데이터를 디코딩할 수 없다는 표시에 해당하는 재전송 프로세스를 구현하는 수신기, 송신기, 시스템 및 방법
JP2016532370A (ja) サブフレームバンドリングの場合における動的なスケジューリング
CN108886436B (zh) 无线电网络节点、无线设备以及其中执行的方法
US20120084618A1 (en) Jointly encoding a scheduling request indicator and acknowledgments/negative acknowledgments
US11963182B2 (en) Radio code block transmission based on DCI extension
WO2013184053A1 (en) Methods and arrangements for supporting retransmission
WO2009156798A1 (en) Method and apparatus for crc rate matching in communications systems
CN103873217A (zh) 信道质量指示的校正方法及装置、用户设备
EP3633893A1 (en) Method and device for transmitting configuration information, and method and device for receiving configuration information
CN110140317B (zh) 解码部分无线电传送
US9660765B1 (en) Method and apparatus for broadcast information reception in wireless communication systems
WO2023052134A1 (en) Communications devices, network nodes, circuitry, systems and methods
FI20195875A1 (en) Common link adaptation for a downlink control channel and data channel for wireless networks
WO2024170936A1 (en) Pdsch throughput improvement by pucch irm/mrc auto switching

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201027

CF01 Termination of patent right due to non-payment of annual fee