CN107674669A - 一种高分子复合编码微球及其制备方法 - Google Patents

一种高分子复合编码微球及其制备方法 Download PDF

Info

Publication number
CN107674669A
CN107674669A CN201710882708.8A CN201710882708A CN107674669A CN 107674669 A CN107674669 A CN 107674669A CN 201710882708 A CN201710882708 A CN 201710882708A CN 107674669 A CN107674669 A CN 107674669A
Authority
CN
China
Prior art keywords
fpgma
pgma
ethanol
coding
microspheres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710882708.8A
Other languages
English (en)
Inventor
游力军
宋立岛
黄慈
张其清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201710882708.8A priority Critical patent/CN107674669A/zh
Publication of CN107674669A publication Critical patent/CN107674669A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F120/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种高分子复合编码微球及其制备方法,属于复合材料技术领域。其先采用沉淀聚合法和原位包覆技术制得聚甲基丙烯酸缩水甘油脂(PGMA)荧光微球,然后以PGMA荧光微球为基材,在其表面修饰Ag‑NPs和拉曼标记分子,再经SiO2表面修饰,制得具有拉曼和荧光编码信号的新型编码微球。所得编码微球编码信号稳定、可靠,并具有良好生物相容性,在生物检测方面具有良好的应用前景。

Description

一种高分子复合编码微球及其制备方法
技术领域
本发明属于复合材料技术领域,具体涉及一种高分子复合编码微球及其制备方法。
背景技术
抗体、抗原、DNA等生物分子的快速、高灵敏检测对疾病诊断和治疗具有十分重要的意义。然而,在检测过程中通常需要对目标分子进行大量的筛选和分析,因此,需要合适的方法来应对大量生物标志物的分析。编码微球检测技术是把目标分子固定在具有特定编码的微球表面,然后再根据编码微球的编码信号识别其表面载有的目标分子,在分析时,只需识别编码信号,就可以确定相应的待测分子。各种发光的分子或其他微粒可以通过共价或非共价的方式与微球结合,从而制得光谱编码微球。这些发光物质包括荧光胶体粒子、荧光染料分子、半导体纳米晶体、稀土元素等,其中用得最多是量子点和荧光染料。荧光染料来源丰富,价格便宜,并且目前文献报道的荧光编码微球仍以有机染料发光为主,只要选择合适染料就可以制备性能优异的荧光编码微球。除了荧光编码外,拉曼光谱也被尝试用作编码,并用于多重检测。然而,单一的荧光或拉曼光谱编码不可避免会发生特征峰的重叠,从而导致编码的容量大大降低。因而至今可用于标记编码的信号仍然远远不能满足实际需求。因此,开发出具有大编码容量的混合编码微球有着重大意义。
发明内容
本发明的目的在于提供一种新的高分子复合编码微球及其制备方法,其采用荧光和拉曼光谱共同进行编码,所得编码微球具有编码信号干扰弱、编码信号强且稳定的特点,在生物检测方面具有良好的应用前景。
为实现上述目的,本发明采用如下技术方案:
一种高分子复合编码微球,其是以聚甲基丙烯酸缩水甘油脂(PGMA)荧光微球为基材,采用拉曼光谱和荧光光谱共同作为编码元素制成所述编码微球。
所述高分子复合编码微球是采用沉淀聚合法和原位包覆技术制备PGMA荧光微球;然后以正丁胺为还原剂,将银纳米粒子(Ag-NPs)沉积在PGMA荧光微球表面,形成FPGMA/Ag-NPs复合微球;再在其上修饰拉曼分子,形成FPGMA/Ag-XBT微球,最后经SiO2修饰,制得具有荧光和表面增强拉曼光谱双编码信号的编码微球;其制备方法包括如下步骤:
(1)将5.0 g甲基丙烯酸缩水甘油脂,1.0 g PVP,87 mL乙醇,13 mL离子水与0.1 gAIBN混合,加入1-8mL荧光探针分子,然后于70℃反应12 h,将得到的产物用水和乙醇分别洗三次,离心分离出产物,然后于50℃真空干燥 2 h,得到PGMA荧光微球;
(2)将10mg步骤(1)所得PGMA荧光微球加入到20mL含2-10 mg AgNO3的乙醇溶液中,加入2-15 mL正丁胺,然后放置于摇床中,在50℃下振荡反应60 min,离心后用乙醇清洗2-3次,50℃真空干燥2 h,得到FPGMA/Ag-NPs复合微球;
(3)将5mg步骤(2)得到的FPGMA/Ag-NPs复合微球分散在2mL含拉曼标记分子200 mg/L的乙醇溶液中,放入摇床中在室温下反应2 h,得到FPGMA/Ag-XBT微球;
(4)在步骤(3)得到的FPGMA/Ag-XBT微球表面修饰SiO2壳层,即得所述高分子复合编码微球。
所述荧光探针分子为异硫氰酸荧光素(FITC)、罗丹明B(RB)中的一种或两种;所述拉曼标记分子为对氨基苯硫酚(ABT)、对氯基苯硫酚(CBT)、对羟基苯硫酚(HBT)中的一种或两种。
本发明的显著优点在于:
(1)本发明以聚甲基丙烯酸缩水甘油脂为高分子基材,可使所得高分子复合编码微球具有良好可控制备性能和生物相容性能。
(2)本发明采用荧光和拉曼共同编码,减少了光谱重叠对编码信号的干扰,使编码信号稳定、可靠,在生物检测方面具有良好的应用前景。
(3)本发明制备方法简便、快捷,微球产量高,成本低。
附图说明
图1为实施例3所制备编码微球的形貌图,其中(a)为SEM扫描图;(b)为荧光发光显微照片。
图2为实施例3所制备编码微球的编码信号图,其中(a)为荧光光谱编码信号;(b)为拉曼光谱编码信号。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1:具有FITC荧光编码信号、ABT拉曼信号的编码微球的制备
(1)将5.0 g甲基丙烯酸缩水甘油脂,1.0 g PVP,87 mL乙醇,13 mL离子水与0.1 gAIBN混合,加入1.0 mL FITC,然后于70℃反应12 h,将得到的产物用水和乙醇分别洗三次,离心分离出产物,然后于50℃真空干燥 2 h,得到PGMA荧光微球;
(2)将10 mg步骤(1)所得PGMA荧光微球加入到20mL含2.5 mg AgNO3的乙醇溶液中,加入7.5 mL正丁胺,然后放置于摇床中,在50℃下振荡反应60 min,离心后用乙醇清洗2-3次,50℃真空干燥2 h,得到FPGMA/Ag-NPs复合微球;
(3)将5 mg步骤(2)得到的FPGMA/Ag-NPs复合微球分散在2mL含ABT拉曼标记分子200mg/L的乙醇溶液中,放入摇床中在室温下反应2 h,得到FPGMA/Ag-XBT微球;
(4)在20 mg步骤(3)得到的FPGMA/Ag-XBT微球分散在60 mL乙醇和20 mL蒸馏水组成的混合溶液中,加入2.0 mL氨水,搅拌5 min,然后取0.3 mL正硅酸乙酯,将其在4 h之内分三次加入,再在室温下反应6 h,将产物离心分离,并分别用乙醇、水、乙醇清洗,即得到具有FITC荧光编码信号、ABT拉曼编码信号的编码微球。
实施例2:具有RB荧光编码信号、HBT拉曼信号的编码微球的制备
(1)将5.0 g甲基丙烯酸缩水甘油脂,1.0 g PVP,87 mL乙醇,13 mL离子水与0.1 gAIBN混合,加入6.0 mL RB,然后于70℃反应12 h,将得到的产物用水和乙醇分别洗三次,离心分离出产物,然后于50℃真空干燥 2 h,得到PGMA荧光微球;
(2)将10 mg步骤(1)所得PGMA荧光微球加入到20mL含2.5 mg AgNO3的乙醇溶液中,加入7.5 mL正丁胺,然后放置于摇床中,在50℃下振荡反应60 min,离心后用乙醇清洗2-3次,50℃真空干燥2 h,得到FPGMA/Ag-NPs复合微球;
(3)将5 mg步骤(2)得到的FPGMA/Ag-NPs复合微球分散在2mL含HBT拉曼标记分子200mg/L的乙醇溶液中,放入摇床中在室温下反应2 h,得到FPGMA/Ag-XBT微球;
(4)在20 mg步骤(3)得到的FPGMA/Ag-XBT微球分散在60 mL乙醇和20 mL蒸馏水组成的混合溶液中,加入2.0 mL氨水,搅拌5 min,然后取0.3 mL正硅酸乙酯,将其在4 h之内分三次加入,再在室温下反应6 h,将产物离心分离,并分别用乙醇、水、乙醇清洗,即得到具有RB荧光编码信号,HBT拉曼编码信号的编码微球。
实施例3:具有FITC和RB荧光编码信号,ABT和HBT拉曼编码信号的编码微球的制备
(1)将5.0 g甲基丙烯酸缩水甘油脂,1.0 g PVP,87 mL乙醇,13 mL离子水与0.1 gAIBN混合,加入2.5 mL FITC和2.5 mL RB,然后于70℃反应12 h,将得到的产物用水和乙醇分别洗三次,离心分离出产物,然后于50℃真空干燥 2 h,得到PGMA荧光微球;
(2)将10 mg步骤(1)所得PGMA荧光微球加入到20mL含2.5 mg AgNO3的乙醇溶液中,加入7.5 mL正丁胺,然后放置于摇床中,在50℃下振荡反应60 min,离心后用乙醇清洗2-3次,50℃真空干燥2 h,得到FPGMA/Ag-NPs复合微球;
(3)将5 mg步骤(2)得到的FPGMA/Ag-NPs复合微球分散在2mL含ABT-HBT拉曼标记分子(1:1)200 mg/L的乙醇溶液中,放入摇床中在室温下反应2 h,得到FPGMA/Ag-XBT微球;
(4)在20 mg步骤(3)得到的FPGMA/Ag-XBT微球分散在60 mL乙醇和20 mL蒸馏水组成的混合溶液中,加入2.0 mL氨水,搅拌5 min,然后取0.3 mL正硅酸乙酯,将其在4 h之内分三次加入,再在室温下反应6 h,将产物离心分离,并分别用乙醇、水、乙醇清洗,即得到具有FITC和RB荧光编码信号,ABT和HBT拉曼编码信号的编码微球。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1.一种高分子复合编码微球,其特征在于:以PGMA荧光微球为基材,采用拉曼光谱和荧光光谱共同作为编码元素制成所述编码微球。
2.一种如权利要求1所述高分子复合编码微球的制备方法,其特征在于:采用沉淀聚合法和原位包覆技术制备PGMA荧光微球;然后以正丁胺为还原剂,将Ag-NPs沉积在PGMA荧光微球表面,形成FPGMA/Ag-NPs复合微球;再在其上修饰拉曼分子,形成FPGMA/Ag-XBT微球,最后经SiO2修饰,制得具有荧光和表面增强拉曼光谱双编码信号的编码微球。
3.根据权利要求2所述高分子复合编码微球的制备方法,其特征在于:包括如下步骤:
(1)将5.0 g甲基丙烯酸缩水甘油脂,1.0 g PVP,87 mL乙醇,13 mL离子水与0.1 gAIBN混合,加入1-8mL荧光探针分子,然后于70℃反应12 h,将得到的产物用水和乙醇分别洗三次,离心分离出产物,然后于50℃真空干燥 2 h,得到PGMA荧光微球;
(2)将10mg步骤(1)所得PGMA荧光微球加入到20mL含2-10 mg AgNO3的乙醇溶液中,加入2-15 mL正丁胺,然后放置于摇床中,在50℃下振荡反应60 min,离心后用乙醇清洗2-3次,50℃真空干燥2 h,得到FPGMA/Ag-NPs复合微球;
(3)将5mg步骤(2)得到的FPGMA/Ag-NPs复合微球分散在2mL含拉曼标记分子200 mg/L的乙醇溶液中,放入摇床中在室温下反应2 h,得到FPGMA/Ag-XBT微球;
(4)在步骤(3)得到的FPGMA/Ag-XBT微球表面修饰SiO2壳层,即得所述高分子复合编码微球。
4.根据权利要求3所述高分子复合编码微球的制备方法,其特征在于:所述荧光探针分子为FITC、RB中的一种或两种;
所述拉曼标记分子为ABT、CBT、HBT中的一种或两种。
CN201710882708.8A 2017-09-26 2017-09-26 一种高分子复合编码微球及其制备方法 Pending CN107674669A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710882708.8A CN107674669A (zh) 2017-09-26 2017-09-26 一种高分子复合编码微球及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710882708.8A CN107674669A (zh) 2017-09-26 2017-09-26 一种高分子复合编码微球及其制备方法

Publications (1)

Publication Number Publication Date
CN107674669A true CN107674669A (zh) 2018-02-09

Family

ID=61137306

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710882708.8A Pending CN107674669A (zh) 2017-09-26 2017-09-26 一种高分子复合编码微球及其制备方法

Country Status (1)

Country Link
CN (1) CN107674669A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896526A (zh) * 2018-05-18 2018-11-27 清华大学深圳研究生院 拉曼光谱编码的液相生物芯片的检测方法及装置
CN110760301A (zh) * 2018-07-26 2020-02-07 合皓股份有限公司 硅氧烷有机荧光粉与其制法
CN115646466A (zh) * 2022-11-11 2023-01-31 南通裕弘分析仪器有限公司 核壳结构的有机无机杂化颗粒的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013152314A1 (en) * 2012-04-06 2013-10-10 University Of North Texas A facile method for making non-toxic biomedical compositions comprising hybrid metal-polymer microparticles
CN105294899A (zh) * 2015-11-25 2016-02-03 厦门大学 聚甲基丙烯酸缩水甘油微球的合成及表面改性方法
CN105688765A (zh) * 2016-02-15 2016-06-22 福州大学 一种新型编码微球及其制备方法
CN106496385A (zh) * 2016-10-18 2017-03-15 福州大学 一种聚甲基丙烯酸缩水甘油脂高分子微球的制备方法
CN106634945A (zh) * 2016-09-26 2017-05-10 福州大学 一种荧光编码微球的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013152314A1 (en) * 2012-04-06 2013-10-10 University Of North Texas A facile method for making non-toxic biomedical compositions comprising hybrid metal-polymer microparticles
CN105294899A (zh) * 2015-11-25 2016-02-03 厦门大学 聚甲基丙烯酸缩水甘油微球的合成及表面改性方法
CN105688765A (zh) * 2016-02-15 2016-06-22 福州大学 一种新型编码微球及其制备方法
CN106634945A (zh) * 2016-09-26 2017-05-10 福州大学 一种荧光编码微球的制备方法
CN106496385A (zh) * 2016-10-18 2017-03-15 福州大学 一种聚甲基丙烯酸缩水甘油脂高分子微球的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIJUN YOU ET AL.: "Micro-sized surface enhanced raman scattering reporter/fluorescence probe encode colloidal microspheres for sensitive DNA detection", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
XUAN WANG ET AL.: "Fabrication of uniform substrate based on silver nanoparticles decorated glycidyl methacrylate ethylene dimethacrylate porous material for ultrasensitive surface enhanced raman scattering detection", 《JOURNAL OF RAMAN SPECTROSCOPY》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896526A (zh) * 2018-05-18 2018-11-27 清华大学深圳研究生院 拉曼光谱编码的液相生物芯片的检测方法及装置
CN110760301A (zh) * 2018-07-26 2020-02-07 合皓股份有限公司 硅氧烷有机荧光粉与其制法
CN115646466A (zh) * 2022-11-11 2023-01-31 南通裕弘分析仪器有限公司 核壳结构的有机无机杂化颗粒的制备方法

Similar Documents

Publication Publication Date Title
Cui et al. Au@ organosilica multifunctional nanoparticles for the multimodal imaging
Wang et al. Dual-luminophore-doped silica nanoparticles for multiplexed signaling
JP5356204B2 (ja) 蛍光色素化合物含有コロイドシリカ粒子の製造方法およびこれを用いた定量方法
JP6354754B2 (ja) 生体分子染色用の蛍光ナノ粒子およびその製造方法
CN107674669A (zh) 一种高分子复合编码微球及其制备方法
EP1490691B1 (de) Lumineszierende, sphärische, nicht autofluoreszierende silicagel-partikel mit veränderbaren emissionsintensitäten und -frequenzen
CN102721680B (zh) 一种高灵敏检测t-DNA的SERS液相芯片方法
CN105688765A (zh) 一种新型编码微球及其制备方法
CN110243889B (zh) 基于CsPbBr3/GO同型异质结构的分子印迹光电化学传感器及其制备方法和应用
Vaidya et al. Reduction in aggregation and energy transfer of quantum dots incorporated in polystyrene beads by kinetic entrapment due to cross-linking during polymerization
You et al. Micron-sized surface enhanced Raman scattering reporter/fluorescence probe encoded colloidal microspheres for sensitive DNA detection
CN107356570B (zh) 一种固态上转换荧光探针及其制备方法与应用
TW201023899A (en) Tunable fluorescent gold nanocluster and method for forming the same
CN110885678B (zh) 金纳米团簇自组装体及其制备方法和发光材料
CN103739762B (zh) 一种近紫外聚苯乙烯共聚荧光微球的制备方法
CN109504366A (zh) 一种稀土络合物包覆纳米空心SiO2和包覆型稀土络合物及其制备方法
Cong et al. Application of dendrimers in analytical chemistry
CN103992789B (zh) 一种无机-有机复合荧光微球的制备方法
CN109265601A (zh) 识别和荧光定量农药的纳米印迹微球及其制备方法
CN103992449A (zh) 一种核-壳型荧光微球的制备方法
CN104892815A (zh) 表面带正电荷具有聚集诱导荧光增强性质的荧光纳米微球及其生物应用
JP5540867B2 (ja) 有機蛍光色素内包シリカナノ粒子、その製造方法、それを用いた生体物質標識剤
JP6187170B2 (ja) 蛍光色素内包樹脂粒子、該蛍光色素内包樹脂粒子を含む組織多重染色用蛍光色素内包樹脂粒子セット、及び該蛍光色素内包樹脂粒子を用いた組織多重染色法
Wu et al. Overcoming Aggregation-Caused Quenching by an Improved Porphyrin Hybrid and Its Application in Enhanced Electrochemiluminescence Biosensing
CN108659813A (zh) 一种荧光纳米颗粒及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180209

RJ01 Rejection of invention patent application after publication