CN107670672A - 一种钛酸钡复合硫化镉纳米复合光催化剂及其制备方法 - Google Patents

一种钛酸钡复合硫化镉纳米复合光催化剂及其制备方法 Download PDF

Info

Publication number
CN107670672A
CN107670672A CN201710849296.8A CN201710849296A CN107670672A CN 107670672 A CN107670672 A CN 107670672A CN 201710849296 A CN201710849296 A CN 201710849296A CN 107670672 A CN107670672 A CN 107670672A
Authority
CN
China
Prior art keywords
batio
cds
catalysts
composite photo
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710849296.8A
Other languages
English (en)
Other versions
CN107670672B (zh
Inventor
刘平
黄学烟
王凯强
王波
张璐璐
赵燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201710849296.8A priority Critical patent/CN107670672B/zh
Publication of CN107670672A publication Critical patent/CN107670672A/zh
Application granted granted Critical
Publication of CN107670672B publication Critical patent/CN107670672B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J35/23
    • B01J35/39
    • B01J35/50
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种BaTiO3‑CdS纳米复合光催化剂及其制备方法,属于材料制备及光催化的技术领域。该方法以钛酸四丁酯,氢氧化钾,氢氧化钡,乙酸镉,硫脲为原料,先通过溶胶凝胶法合成钛酸钡,再用共沉淀法分步合成BaTiO3‑CdS纳米复合结构。本发明制备的复合材料催化剂可以有效提高光生载流子的分离和降低载流子复合率,具有优良的光催化活性,可用于催化光解水制氢,表现出比单一材料更优异的光催化性能。其光催化活性是纯的CdS的88.5倍,在光催化领域具有广阔的应用前景。

Description

一种钛酸钡复合硫化镉纳米复合光催化剂及其制备方法
技术领域
本发明属于材料制备及光催化技术领域,具体涉及一种BaTiO3-CdS纳米复合光催化剂及其制备方法。
背景技术
氢气是一种具有高燃烧值、高效率和清洁的能源。但是,目前氢能的生产还主要是依靠煤、天然气的重整来获得,这必然会加剧非可再生能源的消耗并且带来环境污染问题。因此,以水、生物质等可再生物资为原料,利用太阳能制氢则是从根本上解决能源及环境污染问题的理想途径之一。而目前制约光催化剂在实际生产中应用的主要原因是太阳能利用率低、光催化剂稳定性不够,从而无法循环使用等。因此,能够更好地利用太阳能,制备出高效、稳定的可见光光催化剂对解决目前的能源和环境问题具有深远意义。
钛酸钡(BaTiO3)是经典的铁电材料,其四方晶相在常温下具有较强的自发极化强度。有研究表明,当铁电材料作为基底材料时,如果外层所包覆的光催化剂厚度小于100nm,铁电极化场的效应仍然能够穿透表面包覆层,对表面层内的光生载流子起到分离的作用。
硫化镉(CdS)是一种重要的硫化物类半导体材料,其禁带宽度为2.4 eV,具有较好的可见光吸收性能。同时,CdS在可见光激发后产生的光生电子可转移到材料表面,具有较强的还原能力,能够顺利还原氢离子而产生氢气,因此,在解决能源问题上可以发挥良好的作用。但单组分CdS的量子效率低,光生电子与空穴容易复合,并且在光照下容易被光生空穴氧化而发生光腐蚀现象,光腐蚀现象使CdS光催化活性降低。为了提高CdS的光催化活性,制备出其复合光催化剂成为研究重点。基于以上分析,结合四方相BaTiO3与CdS各自的优点,制备出BaTiO3-CdS复合光催化剂,利用四方相BaTiO3较强的自发极化电场驱动包裹在其表面的CdS光生载流子分离,从而有效地提高催化剂的光催化活性。
由于BaTiO3能带宽度较大,主要吸收波段在紫外光范围,对可见光吸收少,并且介电常数大,不利于光生电子和空穴的传输,所以并不适合作为光催化材料使用。研究者们主要采取两种策略对其进行改性:其一,通过掺杂或者替换BaTiO3中B位元素等方式窄化禁带宽度,如Sun等人(Adv. Energy Mater. 2016, 1600932)采用熔盐法得到窄带隙Ba2FeNbO6光催化剂。其二,采用窄带隙半导体对其进行敏化作用,如Thampi等人(J. Mater. Chem.A, 2014, 2, 10231–10238)制备了CdS量子点敏化BaTiO3电极材料。上述第一类技术的组成与作用机理与本发明相差较大。上述第二类技术与本发明在组成、结构与原理三方面均存在本质差异。如Thampi等人的论文公开的技术中,BaTiO3制作成电极并组成上占绝对多数,而CdS在组成上是极少数,结构上是覆盖极少比例的电极表面,原理上是通过敏化其作用。目前,还未见到本发明那样以CdS包覆球状BaTiO3粉末的光催化剂的相关报道,本发明原理是利用BaTiO3自发极化电场驱动包裹在其表面的CdS光生载流子分离。
发明内容
本发明的目的在于提供一种BaTiO3-CdS纳米复合光催化剂及其制备方法,所制得的复合材料具有优良光催化活性,可作为光催化材料用于可见光下产氢。
为实现上述目的,本发明采用如下技术方案:
一种BaTiO3-CdS复合光催化剂,是以四方相BaTiO3纳米球为核,外层包裹CdS纳米颗粒复合而成;
所述的BaTiO3-CdS复合光催化剂制备方法:先利用溶胶凝胶法制备BaTiO3纳米球,然后将其分散在去离子水中,与二水合乙酸镉、硫脲在80℃油浴条件下进行反应制备而成。
其具体包括以下步骤:
(1)制备BaTiO3前驱体
称取5 mL乙醇、8.508 g 钛酸四丁酯,在不断磁力搅拌下加入5 mL去离子水,得到溶液A,另外配制10 mL 3.75 M氢氧化钡溶液B,在A溶液中加入4 mL氨水,随后将B溶液缓慢加入到A溶液中,80℃油浴条件下反应20~30 min 制得BaTiO3前驱液C。
(2)制备BaTiO3纳米球
将步骤(1)中制得的C溶液加入到聚四氟乙烯反应釜中,加入去离子水至反应釜容积60%,磁力搅拌至分散均匀。在200℃下反应24小时,所得产物自然冷却到室温,分别用去离子水、乙醇洗涤多次,离心收集沉淀,真空烘干,即得到BaTiO3纳米球。
(3)制备BaTiO3-CdS复合材料
将步骤(2)所得到的BaTiO3纳米球超声分散于去离子水中,加入二水合乙酸镉,分散均匀,随后加入硫脲,在80℃油浴条件下反应20~30 min。抽滤收集固体产物,分别用去离子水、乙醇洗涤多次,真空烘干,制得所述BaTiO3-CdS复合光催化剂。
步骤(1)中A、B溶液在同时加热到80℃后再混合。
步骤(1)反应原料中的钛元素和钡元素的摩尔比为2:3。
步骤(3)中BaTiO3与CdS的质量比控制为100:5~100:50。
所得BaTiO3-CdS复合光催化剂可于催化光解水制氢。
本发明的显著优点在于:
本发明提出的BaTiO3-CdS复合光催化剂,可以有效的提高CdS可见光下光催化活性。所制备的复合光催化剂的颗粒CdS与BaTiO3纳米球表面结合紧密,利用四方相BaTiO3的极化场效应,可以有效地提高光生载流子的分离,降低载流子的复合率,从而有效地提高CdS的光催化活性。
经实验证明,本发明所得BaTiO3-CdS复合光催化剂在可见光下的产氢效率可达到796.5 μmol h-1 g-1,是纯CdS产氢效率的88.5倍。
本发明还提出了一种BaTiO3-CdS纳米复合光催化剂的制备方法,其原料易得,生产成本低,适合工业化推广。
附图说明
图1为纯CdS、BaTiO3与BaTiO3-CdS纳米复合光催化剂的XRD图。
图2为本发明BaTiO3-CdS纳米复合光催化剂的扫描电镜图。
图3为本发明BaTiO3-CdS纳米复合光催化剂的透射电镜图。
图4为纯CdS、纯BaTiO3和BaTiO3-CdS纳米复合材料的光催化产氢效果图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1 BaTiO3前驱体的制备
量取5 mL乙醇、8.508 g钛酸四丁酯,在不断磁力搅拌下加入5 mL去离子水,得到溶液A,另外配制10 mL 3.75 M的氢氧化钡溶液B,在A溶液中加入4 mL氨水,随后将B溶液缓慢加入到A溶液中,80℃油浴条件下反应30 min 制得BaTiO3前驱液C。
实施例2 BaTiO3纳米球的制备
将实施例1中制得的C溶液加入到聚四氟乙烯反应釜中,加入去离子水至反应釜容积60%,磁力搅拌至分散均匀。在200℃下反应24小时,所得产物自然冷却到室温,分别用去离子水、乙醇洗涤多次,离心收集沉淀,真空烘干,即得到BaTiO3纳米球。
实施例3 BaTiO3-CdS复合材料的制备
将实施例2所得到的BaTiO3纳米球超声分散于去离子水中,加入148 mg 二水合乙酸镉,分散均匀,随后加入80 mg 硫脲,在80℃油浴条件下反应30 min。抽滤收集固体产物,分别用去离子水、乙醇洗涤多次,真空烘干,制得所述BaTiO3-CdS复合光催化剂。
实施例4 纯CdS颗粒制备
在圆底烧瓶中依次加入7.4 g 二水合乙酸镉和4.0 g 硫脲,搅拌均匀,置于80℃油浴条件下反应30 min,抽滤收集固体产物,分别用去离子水、乙醇洗涤多次,真空烘干,制得纯CdS纳米颗粒。
实施例5
分别取实施例2、3、4中制得的催化剂20 mg ,分散在100 mL 0.1 M Na2S/0.1 M Na2SO3水溶液中,将其加入反应器中,5℃恒温条件下对反应体系进行脱气,用波长大于400nm的可见光照射反应体系,利用气相色谱进行分析,以氩气为载气,隔一个小时取一个样,检测制氢产量,计算4小时的平均产氢速率,其结果见图4。
由图4可知,BaTiO3-CdS复合光催化剂的催化活性最高,其产率为796.5 μmol h-1g-1,是纯CdS产氢效率的88.5倍。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (6)

1.一种BaTiO3-CdS纳米复合光催化剂,其特征在于:所述催化剂是以四方相BaTiO3纳米球为核,外层包裹CdS纳米颗粒复合而成;其中钛酸钡与硫化镉的质量比为100:5~100:50;四方相BaTiO3纳米球的尺寸为80~100 nm。
2.一种制备如权利要求1所述的BaTiO3-CdS复合光催化剂的方法,其特征在于:先利用溶胶凝胶法制备钛酸钡纳米球,然后将其分散在去离子水中,与二水合乙酸镉、硫脲在80℃油浴条件下进行反应,制得所述BaTiO3-CdS复合光催化剂。
3.根据权利要求2所述BaTiO3-CdS复合光催化剂的制备方法,其特征在于:包括以下步骤:
(1)制备BaTiO3前驱体
称取5 mL乙醇、8.508 g 钛酸四丁酯,在不断磁力搅拌下加入5 mL去离子水,得到溶液A,另外配制10 mL 3.75 M氢氧化钡溶液B,在A溶液中加入4 mL氨水,随后将B溶液缓慢加入到A溶液中,80℃油浴条件下反应20~30 min 制得BaTiO3前驱液C;
(2)制备BaTiO3纳米球
将步骤(1)中制得的C溶液加入到聚四氟乙烯反应釜中,加入去离子水至反应釜容积60%,磁力搅拌至分散均匀;在200℃下反应24小时,所得产物自然冷却到室温,分别用去离子水、乙醇洗涤多次,离心收集沉淀,真空烘干,即得到BaTiO3纳米球;
(3)制备BaTiO3-CdS复合材料
将步骤(2)所得到的BaTiO3纳米球超声分散于去离子水中,加入二水合乙酸镉,分散均匀,随后加入硫脲,在80℃油浴条件下反应20~30 min;抽滤收集固体产物,分别用去离子水、乙醇洗涤多次,真空烘干,制得所述BaTiO3-CdS复合光催化剂。
4.根据权利要求3所述BaTiO3-CdS复合光催化剂的制备方法,其特征在于:步骤(1)反应原料中的钛元素和钡元素的摩尔比为2:3。
5.根据权利要求3所述BaTiO3-CdS复合光催化剂的制备方法,其特征在于:步骤(3)中BaTiO3与CdS的质量比为100:5~100:50。
6.一种如权利要求1所述BaTiO3-CdS复合光催化剂的应用,其特征在于:用于催化光解水制氢。
CN201710849296.8A 2017-09-20 2017-09-20 一种钛酸钡复合硫化镉纳米复合光催化剂及其制备方法 Active CN107670672B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710849296.8A CN107670672B (zh) 2017-09-20 2017-09-20 一种钛酸钡复合硫化镉纳米复合光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710849296.8A CN107670672B (zh) 2017-09-20 2017-09-20 一种钛酸钡复合硫化镉纳米复合光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN107670672A true CN107670672A (zh) 2018-02-09
CN107670672B CN107670672B (zh) 2019-10-15

Family

ID=61137351

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710849296.8A Active CN107670672B (zh) 2017-09-20 2017-09-20 一种钛酸钡复合硫化镉纳米复合光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN107670672B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110860299A (zh) * 2019-10-29 2020-03-06 南通职业大学 一种硫铟锌/钛酸钡复合光催化剂的制备方法
CN111304671A (zh) * 2020-02-19 2020-06-19 台州学院 一种Sr掺杂BaTiO3/ZnTe光阴极材料的制备方法
WO2021072643A1 (zh) * 2019-10-15 2021-04-22 诸暨易联众创企业管理服务有限公司 一种BaCl2基纳米材料的制备方法
CN113559856A (zh) * 2021-07-30 2021-10-29 陕西科技大学 一种钛酸钡/碘酸银异质结光催化剂的制备方法
CN113603498A (zh) * 2020-12-30 2021-11-05 苏州金宏气体股份有限公司 钴掺杂BaTiO3压电陶瓷、其制法及高纯制氢
CN114433057A (zh) * 2020-10-31 2022-05-06 中国石油化工股份有限公司 一种固体酸催化剂及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103084189A (zh) * 2013-01-29 2013-05-08 南昌大学 一种适合海水或盐湖卤水的制氢光催化剂的制备方法
CN106012104A (zh) * 2016-05-23 2016-10-12 同济大学 一种一步法合成一维核壳结构BaTiO3@Al2O3的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103084189A (zh) * 2013-01-29 2013-05-08 南昌大学 一种适合海水或盐湖卤水的制氢光催化剂的制备方法
CN106012104A (zh) * 2016-05-23 2016-10-12 同济大学 一种一步法合成一维核壳结构BaTiO3@Al2O3的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KE MENG,ET.AL.: "BaTiO3 photoelectrodes for CdS quantum dot sensitized solar cells", 《J. MATER. CHEM. A》 *
KWI-IL PARK,ET.AL.: "Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons", 《ADV. MATER》 *
YONGFEI CUI,ET.AL.: "Enhanced Photocatalytic Activity of Heterostructured Ferroelectric BaTiO3/α-Fe2O3 and the Significance of Interface Morphology Control", 《ACS APPL. MATER. INTERFACES》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021072643A1 (zh) * 2019-10-15 2021-04-22 诸暨易联众创企业管理服务有限公司 一种BaCl2基纳米材料的制备方法
CN110860299A (zh) * 2019-10-29 2020-03-06 南通职业大学 一种硫铟锌/钛酸钡复合光催化剂的制备方法
CN110860299B (zh) * 2019-10-29 2022-03-15 南通职业大学 一种硫铟锌/钛酸钡复合光催化剂的制备方法
CN111304671A (zh) * 2020-02-19 2020-06-19 台州学院 一种Sr掺杂BaTiO3/ZnTe光阴极材料的制备方法
CN114433057A (zh) * 2020-10-31 2022-05-06 中国石油化工股份有限公司 一种固体酸催化剂及制备方法
CN114433057B (zh) * 2020-10-31 2023-09-01 中国石油化工股份有限公司 一种固体酸催化剂及制备方法
CN113603498A (zh) * 2020-12-30 2021-11-05 苏州金宏气体股份有限公司 钴掺杂BaTiO3压电陶瓷、其制法及高纯制氢
CN113559856A (zh) * 2021-07-30 2021-10-29 陕西科技大学 一种钛酸钡/碘酸银异质结光催化剂的制备方法
CN113559856B (zh) * 2021-07-30 2023-12-22 陕西科技大学 一种钛酸钡/碘酸银异质结光催化剂的制备方法

Also Published As

Publication number Publication date
CN107670672B (zh) 2019-10-15

Similar Documents

Publication Publication Date Title
CN105688945B (zh) MoS2纳米片/CdS纳米线核壳结构复合光催化剂
CN107670672B (zh) 一种钛酸钡复合硫化镉纳米复合光催化剂及其制备方法
Kumar et al. Noble metal-free metal-organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: Enhanced activity of CdS for improving photocatalytic hydrogen production
Fajrina et al. 2D-montmorillonite-dispersed g-C3N4/TiO2 2D/0Dnanocomposite for enhanced photo-induced H2 evolution from glycerol-water mixture
Wang et al. Amorphous Co 3 S 4 nanoparticle-modified tubular gC 3 N 4 forms step-scheme heterojunctions for photocatalytic hydrogen production
Yang et al. State-of-the-art progress in the rational design of layered double hydroxide based photocatalysts for photocatalytic and photoelectrochemical H2/O2 production
Geng et al. Fabrication of the SnS2/ZnIn2S4 heterojunction for highly efficient visible light photocatalytic H2 evolution
CN111921550B (zh) 一种MXene/二氧化钛纳米管复合材料光催化剂及其制备方法
CN109589991A (zh) 一种锌铟硫/铜铟硫二维异质结光催化剂、其制备方法及应用
CN108686665B (zh) 一种纳米棒铁酸锌原位复合片层二氧化钛光催化材料的制备方法
Huang et al. A S-scheme heterojunction of Co9S8 decorated TiO2 for enhanced photocatalytic H2 evolution
Kapoor et al. Nanostructured materials for the visible-light driven hydrogen evolution by water splitting: A review
CN113171780B (zh) 一种硒化钼/富缺陷硫铟锌/硒化镉双z型光解水制氢催化剂
CN109847766A (zh) 一种共面ZnIn2S4/WO3 Z体系结构催化剂材料
Li et al. MoC quantum dots modified by CeO2 dispersed in ultra-thin carbon films for efficient photocatalytic hydrogen evolution
Zou et al. Photocatalytic performance and mechanism of hydrogen evolution from water over ZnCdS/Co@ CoO in sacrificial agent-free system
CN104588040A (zh) 一种光催化剂及其制备方法
Sun et al. Development of novel highly stable synergistic quaternary photocatalyst for the efficient hydrogen evolution reaction
Li et al. 2D NiCo2S4 decorated on ZnIn2S4 formed S-scheme heterojunction for photocatalytic hydrogen production
CN110280276A (zh) 负载型光催化剂NiSe2/CdS的制备方法及其应用
CN103990472A (zh) 一种稳定、高效率制氢助催化剂及其制备方法
Shi et al. Preparation of TiO2/MoSe2 heterostructure composites by a solvothermal method and their photocatalytic hydrogen production performance
Su et al. Co3O4 modified Mn0. 2Cd0. 8S with different shells forms pn heterojunction to optimize energy/mass transfer for efficient photocatalytic hydrogen evolution
CN113058617A (zh) 一种光催化剂及其制备方法和应用
CN107814408B (zh) 一种富含S空缺位的SnS2超薄纳米片的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant