CN107656124B - 无需外部采样电阻的Boost负载电流检测电路及方法 - Google Patents

无需外部采样电阻的Boost负载电流检测电路及方法 Download PDF

Info

Publication number
CN107656124B
CN107656124B CN201710271844.3A CN201710271844A CN107656124B CN 107656124 B CN107656124 B CN 107656124B CN 201710271844 A CN201710271844 A CN 201710271844A CN 107656124 B CN107656124 B CN 107656124B
Authority
CN
China
Prior art keywords
transistor
current
current sampling
switch
electrically connected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710271844.3A
Other languages
English (en)
Other versions
CN107656124A (zh
Inventor
麦凯
张海波
郭丽芳
林楚镇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN HOTCHIP TECHNOLOGY CO LTD
Original Assignee
SHENZHEN HOTCHIP TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN HOTCHIP TECHNOLOGY CO LTD filed Critical SHENZHEN HOTCHIP TECHNOLOGY CO LTD
Priority to CN201710271844.3A priority Critical patent/CN107656124B/zh
Publication of CN107656124A publication Critical patent/CN107656124A/zh
Application granted granted Critical
Publication of CN107656124B publication Critical patent/CN107656124B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/30Structural combination of electric measuring instruments with basic electronic circuits, e.g. with amplifier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

无需外部采样电阻的Boost转换器负载电流检测电路,包括:电流采样管和电流采样放大电路;电流采样管的源极用作负载电流检测输入端子,且和第二Boost输出功率管的源极电连接;电流采样管通过栅极接受第二控制信号控制;电流采样管漏极与电流采样放大电路的第一输入端子电连接,电流采样放大电路的第二输入端子用于同第二Boost输出功率管的漏极电连接;电流采样放大电路的输出端子用作Boost转换器负载电流检测电路的负载电流检测输出端子。本发明无需外部采样电阻,简化了外围电路的设计,减小能量损耗,提高整体效率,也提高了应用该类电路芯片的可靠性。

Description

无需外部采样电阻的Boost负载电流检测电路及方法
技术领域
本发明涉及直流电能变换电路或控制装置;特别涉及Boost升压转换的直流电能变换电路,尤其涉及具有负载电流检测的Boost升压转换直流电能变换装置及方法。
背景技术
现有技术用于直流电能变换电路或控制装置的开关电源电路SWITCHINGREGULATOR中,Boost升压转换器是DC/DC(直流转直流)转换器重要的类型,主要适用于输入电压低于输出电压的情形,为实现Boost升压转换器在不同负载时的恒流输出,通常需要检测负载电流,也就是需要对Boost转换器的负载电流进行精确检测,并反馈到Boost变换电路的控制端进行Boost转换器控制,以保持Boost转换器的恒流输出。
现有Boost负载电流检测技术通常是在功率管和输出电容之间串联一个小的采样电阻进行检测,针对这种检测方法,电阻上流过的平均电流即为输出负载电流,因此通过采样检测电路,时刻检测到采样电阻两端的电压,然后放大,取其均值,即转化为负载电流对应比例的电压信号;CC控制环路中,将此得出的采样电压与基准电压进行环路误差对比,使之趋于相等,使系统工作在恒流输出模式。
如图1所示是现有技术实现负载电流检测的结构框图。外接电流采样电阻Rs串接在功率管M2与输出电容之间,即芯片需要设置两个端子用于外接电流采样电阻Rs;电感的电流经功率管M2流过电流采样电阻Rs产生压降,芯片内部的电流采样放大电路通过检测外部电流采样电阻Rs上的压降,转换成内部电流信号Isen,并进一步地转换成负载电流的反馈电压信号Vsen_FB,该反馈电压信号Vsen_FB传给Boost转换器内部CC恒流控制的误差放大器,当Boost转换器处于CC恒流控制区间内时,输出电流跟随Vsen_FB相应变化,直至CC环路起作用稳定至目标输出电流或最大输出电流。
现有Boost负载电流检测技术是依靠片外串联采样电阻的方式来实现负载检测的,这种方案有以下几个劣势: 1.芯片需要多增加一个用于电流采样的PIN脚,在管脚资源紧张,空间要求紧凑的芯片应用中,颇为不利;2.外接的采样电阻正常工作时流过电流,造成能量损失,引起效率降低;3.通常外接的采样电阻的精度要求比较高,增加高精度的电阻,使得整个应用系统的成本相应增加,并且由于外接端子增加,也降低了应用系统连接的可靠性。
名词解释:
DCDC是英文Direct current Direct current的缩写,中文含义为直流电压变换为直流电压;
Boost升压转换器在本申请中的含义为采用Boost REGULATOR方式的升压DC/DC变换电路;
CC在本申请中的含义为constant current,即恒流
NMOS是Negative channel-Metal-Oxide-Semiconductor-FET的缩写,即N型金属氧化物半导体场效应管;
PMOS是Positive channel-Metal-Oxide-Semiconductor-FET的缩写,即P型金属氧化物半导体场效应管;
PWM是英文Pulse Width Modulation的缩写,中文含义为脉冲宽度调制;脉宽宽度调制式(PWM)开关型稳压电路是在控制电路输出频率不变的情况下,通过调整其占空比,从而达到稳定输出电压的目的。
发明内容
本发明要解决的技术问题在于避免上述现有技术的不足之处而提出一种无需外部采样电阻的Boost转换器负载电流检测电路及方法,在需要恒流控制的Boost升压转换电路中实现无外部采样电阻的负载电流检测,减少芯片管脚,节省外部电阻引起的能耗和成本,提高应用系统的可靠性。
解决上述技术问题采用的技术方案是一种无需外部采样电阻的Boost转换器负载电流检测电路,包括:用于镜像第二Boost输出功率管导通电流的电流采样管、用于负载电流采样放大的电流采样放大电路和用于输出信号低通滤波的低通滤波器;所述电流采样管的源极用作Boost转换器负载电流检测电路的负载电流检测输入端子,所述电流采样管的源极和第二Boost输出功率管的源极电连接;所述电流采样管的栅极用于输入第二控制信号,所述电流采样管接受第二控制信号的控制;所述电流采样管的漏极与所述电流采样放大电路的第一输入端子电连接,所述电流采样放大电路的第二输入端子用于同第二Boost输出功率管的漏极电连接;所述电流采样放大电路的输出端子用作Boost转换器负载电流检测电路的负载电流检测输出端子;所述低通滤波器包括低通滤波电阻和低通滤波电容,所述低通滤波电阻的一端用作所述低通滤波器的输入端子;所述低通滤波器的输入端子与所述电流采样放大电路的输出端子电连接;所述低通滤波电阻的另一端用作所述低通滤波器的输出端子,并与所述低通滤波电容的一端电连接,所述低通滤波电容的另一端接地。
所述电流采样放大电路包括用于电路信号连接关系控制的第一开关和第二开关、电流采样运算放大器、第四晶体管、第五晶体管、第六晶体管、第七晶体管和内部检流电阻;所述第一开关和所述第二开关接受第一控制信号的控制;第六晶体管的栅极和第七晶体管的栅极电连接,第六晶体管的源极和第七晶体管的源极接地,第七晶体管的栅极和第七晶体管的漏极电连接,在所述第一开关和第二开关断开时,第六晶体管和第七晶体管组成一个电流镜;所述第一开关的一端和第六晶体管的漏极电连接,同时第六晶体管的漏极和所述电流采样运算放大器的负极输入端子电连接,所述电流采样运算放大器的负极输入端子同时还和所述电流采样管的漏极电连接;所述第一开关的另一端用作所述电流采样放大电路的第二输入端子,即所述第一开关的另一端和第二Boost输出功率管的漏极电连接,同时所述电流采样运算放大器的正极输入端子也和第二Boost输出功率管的漏极电连接;所述第二开关的一端和所述电流采样运算放大器的正极输入端子电连接;所述第二开关的另一端和所述电流采样运算放大器的输出端子电连接,同时所述第二开关的这一端还和第五晶体管的栅极以及第四晶体管的栅极电连接;所述第四晶体管的漏极和所述第七晶体管的漏极电连接;所述第五晶体管的源极以及所述第四晶体管的源极和所述电流采样运算放大器的正极输入端子电连接;所述第五晶体管的漏极和内部检流电阻的一端电连接,所述内部检流电阻的另一端接地;所述第五晶体管的漏极用作所述电流采样放大电路的输出端子。
所述电流采样放大电路包括用于电路信号连接关系控制的第一开关和第二开关、电流采样运算放大器、第四晶体管和内部检流电阻;所述第一开关和所述第二开关接受第一控制信号的控制;所述第一开关的一端和第四晶体管的源极电连接,同时第四晶体管的源极和所述电流采样运算放大器的负极输入端子电连接,所述电流采样运算放大器的负极输入端子同时还和所述电流采样管的漏极电连接,即所述第一开关的这一端用作所述电流采样放大电路的第一输入端子;所述第一开关的另一端用作所述电流采样放大电路的第二输入端子,即所述第一开关的另一端和第二Boost输出功率管的漏极电连接,同时所述电流采样运算放大器的正极输入端子也和第二Boost输出功率管的漏极电连接;所述第二开关的一端和所述电流采样运算放大器的正极输入端子电连接;所述第二开关的另一端和所述电流采样运算放大器的输出端子电连接,同时所述第二开关的这一端还和第四晶体管的栅极电连接;所述第四晶体管的漏极和内部检流电阻的一端电连接,所述内部检流电阻的另一端接地;所述第四晶体管的漏极用作所述电流采样放大电路的输出端子。
所述电流采样运算放大器包括低误差运算放大器、斩波型运算放大器和自动调零运算放大器。
所述的无需外部采样电阻的Boost转换器负载电流检测电路,还包括用于输出信号缓冲放大的Buffer缓冲器电路,所述Buffer缓冲器电路的正极输入端子和所述低通滤波器的输出端电连接,所述Buffer缓冲器电路的负极输入端子和所述Buffer缓冲器电路的输出端子电连接;所述Buffer缓冲器电路的输出端子将低通滤波后的采样信号缓冲放大后输出。
一种基于上述无需外部采样电阻的Boost转换器负载电流检测电路的无需外部采样电阻的Boost转换器负载电流检测方法,包括步骤1:在第一控制信号为低电平且第二控制信号也为低电平时,第一Boost输出功率管截止,而第二Boost输出功率管和电流采样管导通,此时第一开关和第二开关断开,电流采样运算放大器、第四晶体管、第五晶体管、第六晶体管和第七晶体管工作,此时第二Boost输出功率管和电流采样管形成镜像对管,第六晶体管和第七晶体管也形成镜像对管,第四晶体管、第五晶体管也形成镜像对管,于是在第五晶体管上得到与第二Boost输出功率管成比例的电流,此电流流过内部检流电阻,在内部检流电阻的非接地端获得一个表征负载电流大小的电压信号,该电压信号经低通滤波器滤波后输出;低通滤波器在该时间段内输出一个缓慢上升的电压信号;步骤2:在第一控制信号为高电平且第二控制信号也为高电平时,第一Boost输出功率管导通,而第二Boost输出功率管和电流采样管截止,此时第一开关和第二开关闭合,电流采样运算放大器、第四晶体管、第五晶体管、第六晶体管和第七晶体管停止工作;此时第二Boost输出功率管、电流采样管、第四晶体管、第五晶体管、第六晶体管和第七晶体管上都没有电流流过,内部检流电阻的非接地端的对地电位近似为0,低通滤波器在该时间段内,通过低通滤波电容上存储的上一个时间段内获得的电能输出一个缓慢下降的电压信号;在整个控制信号周期内,低通滤波器输出的电压信号幅度平均值近似于内部检流电阻上的电压信号幅度平均值。
一种基于上述无需外部采样电阻的Boost转换器负载电流检测电路的无需外部采样电阻的Boost转换器负载电流检测方法,包括步骤1:在第一控制信号为低电平且第二控制信号也为低电平时,第一Boost输出功率管截止,而第二Boost输出功率管和电流采样管导通,此时第一开关和第二开关断开,电流采样运算放大器、第四晶体管、第五晶体管、第六晶体管和第七晶体管工作,此时第二Boost输出功率管和电流采样管形成镜像对管,第六晶体管和第七晶体管也形成镜像对管,第四晶体管、第五晶体管也形成镜像对管,于是在第五晶体管上得到与第二Boost输出功率管成比例的电流,此电流流过内部检流电阻,在内部检流电阻的非接地端获得一个表征负载电流大小的电压信号,该电压信号经低通滤波器滤波后输出;低通滤波器在该时间段内输出一个缓慢上升的电压信号;步骤2:在第一控制信号为高电平且第二控制信号也为高电平时,第一Boost输出功率管导通,而第二Boost输出功率管和电流采样管截止,此时第一开关和第二开关闭合,电流采样运算放大器、第四晶体管、第五晶体管、第六晶体管和第七晶体管停止工作;此时第二Boost输出功率管、电流采样管、第四晶体管、第五晶体管、第六晶体管和第七晶体管上都没有电流流过,内部检流电阻的非接地端的对地电位近似为0,低通滤波器在该时间段内,通过低通滤波电容上存储的上一个时间段内获得的电能输出一个缓慢下降的电压信号;在整个控制信号周期内,低通滤波器输出的电压信号幅度平均值近似于内部检流电阻上的电压信号幅度平均值;步骤3:在所述低通滤波器之后还设置有使用Buffer缓冲器电路的信号缓冲和放大的步骤。
同现有技术相比较,本发明的有益效果是:1、在应用了本发明设计电路方案的芯片中,无须外部再连接采样电阻即可实现负载电流检测;2.节省了芯片管脚,使得在小空间少管脚的芯片应用中也能实现负载电流检测,从而实现Boost恒流控制;3.无须外部再连接采样电阻也节省了芯片应用时的外接电阻引起的功耗和成本;4.通过一个管脚作为负载电流检测的端子,减少外部元器件,也减少了应用这些芯片的电路的连接节点,提高了电路综合应用的集成度,相对分离器件的线路板,大大而提高了应用该类电路芯片的可靠性。
附图说明
图1是现有技术中Boost变换电路的负载电流检测实施方案的电路结构框图;
图2是本发明优选实施例之一的电路结构框图;
图3是本发明优选实施例之一的电路原理图;
图4是本发明优选实施例之一的波形时序关系图;
图5是本发明优选实施例之二的电路原理图。
具体实施方式
以下结合各附图对本发明的实施方式做进一步详述。
Boost转换器中,输出负载电流等于高位功率管电流的均值。如图1和2所示,高位功率管直接连到输出点,而所有输出的电流都必须流过高位功率管才能到达输出端,所以高位功率管的平均电流即为boost电路的输出电流。本发明所涉及的无需外部采样电阻的Boost转换器负载电流检测电路,基本思想就是精确检测流过高位功率管的电流之后通过低通滤波器平均来得知输出负载电流。
在如图2所示的本发明的具体实施例中高位功率管对应于第二Boost输出功率管M2,低位功率管对应于第一Boost输出功率管M1,所述第二Boost输出功率管M2是PMOS管,所述第一Boost输出功率管M1为NMOS管,当然实施例图中仅示出了有限的实施例,在实际应用中,管子的类型可以是其他类型的晶体管来替代,只要能实现Boost变换电路的开关功率输出即可。
如图2所示的本发明优选实施例之一的基本框图中,包括用于检测输出电压的电阻串R1和R2、用于检测负载电流的采样放大电路20、控制CC/CV环路的误差放大器模块、用于比较斜坡与误差放大器输出的PWM比较器、用于控制功率管的逻辑控制模块、第一Boost输出功率管M1和第二Boost输出功率管M2和电流采样管M3;外部电感L的一端和外部输入电源VIN电连接;外部电感L的另一端与第一Boost输出功率管M1的漏极电连接,同时第一Boost输出功率管M1的漏极和第二Boost输出功率管M2的漏极电连接,第二Boost输出功率管M2的源极和外部输出电容Cout的一端电连接,外部输出电容Cout的另一端接地。
除了采样放大电路20以及采样放大电路20和电路主体的连接关系之外,图2中其余的电路构成均和图1所示的现有技术的基本框图一致。
在图2所示的实施例中,第一输出电压采样电阻R1和第二输出电压采样电阻R2串联分压,第一输出电压采样电阻R1和第二输出电压采样电阻R2串接在输出电压Vout的输出端子和地之间,第二输出电压采样电阻R2上的输出电压反馈信号VFB是输出电压Vout的分压,输出电压反馈信号VFB信号连接至CC/CV误差放大器。
采样放大电路20输出表征负载电流大小的负载电流反馈电压信号Vsen;Boost变换器内部还产生恒流控制参考电压信号Vref_CC和恒压控制参考电压信号Vref_CV;输出电压反馈信号VFB与负载电流反馈电压信号Vsen、恒压控制参考电压信号Vref_CV与恒流控制参考电压信号Vref_CC信号连接至CC/CV误差放大器模块,在CC/CV误差放大器中,CC误差放大器检测负载电流反馈电压信号Vsen与恒流控制参考电压信号Vref_CC的误差,CV误差放大器检测输出电压反馈信号VFB与恒压控制参考电压信号Vref_CV的误差,然后经CC/CV误差放大器选择后输出综合控制信号VC送至PWM比较器;内部斜坡信号Vsum也送至PWM比较器;所述PWM比较器比较内部斜坡信号Vsum与综合控制信号VC,产生PWM信号送至逻辑控制模块;所述逻辑控制模块输出第一控制信号GN和第二控制信号GP;第一控制信号GN用于控制第一Boost输出功率管M1、第一开关S1和第二开关S2;第二控制信号GP用于控制第二Boost输出功率管M2。
如图3所示,采样放大电路20包括第一开关S1和第二开关S2、电流采样运算放大器27、第四晶体管M4、第五晶体管M5、第六晶体管M6、第七晶体管M7和内部检流电阻Rsen。采样放大电路20还可以包括由低通滤波电阻Rf和低通滤波电容Cf组成的低通滤波器22,以及输出信号缓冲放大的Buffer缓冲器电路26。
如图3所示,电流采样运算放大器27的正极输入端与外部电容的外部电压输出端子Vout电连接,电流采样运算放大器27的负极输入端为第一电路节点A,电流采样运算放大器27的输出端为第二电路节点B,第一开关S1连接在外部电压输出端子Vout与第一电路节点A点之间,第二开关S2连接在外部电压输出端子Vout与第二电路节点B点之间,第四晶体管M4和第五晶体管M5的源极与外部电压输出端子Vout电连接,第四晶体管M4和第五晶体管M5的栅极与第二电路节点B点电连接,第四晶体管M4的漏极连接第七晶体管M7的栅极、漏极和第六晶体管M6的栅极,第七晶体管M7和第六晶体管M6的源极接地,第六晶体管M6的漏极和第一电路节点A点电连接,第五晶体管M5的漏极连接内部检流电阻Rsen和低通滤波电阻Rf的一端,内部检流电阻Rsen的另一端接地,低通滤波电阻Rf的另一端和低通滤波电容Cf的一端、缓冲器buf的正极输入端电连接,低通滤波电容Cf的另一端接地,缓冲器buf的负极输入端与缓冲器buf的输出端连接,缓冲器的输出端输出的信号即为负载电流反馈电压信号Vsen。
当给外部电感L充电时,第二控制信号GP为高,第二Boost输出功率管M2截止;第一控制信号GN也为高,第一Boost输出功率管M1导通;第一开关S1和第二开关S2也受第一控制信号GN的控制而闭合使得第一电路节点A和第二电路节点B的电位等于外部电压输出端子上的电位Vout,同时也使电流采样运算放大器27、第四晶体管M4、第五晶体管M5、第六晶体管M6和第七晶体管M7都关闭;此时第二Boost输出功率管M2和电流采样管M3的导通电流为0,第四晶体管M4、第五晶体管M5、第六晶体管M6和第七晶体管M7的导通电流也为0,内部检流电阻Rsen的非接地端输出的电压信号Vsen1的电位近似为0。而低通滤波电容Cf的能量通过滤波电阻Rf和检流电阻Rsen缓慢释放,即电压慢慢降低。而缓冲器buf的电压会一直跟随Cf上的电压,即缓冲器输出的电压信号Vsen也会缓慢降低。
当外部电感L充电达到合适值后,第一控制信号GN变为低电平,关闭第一Boost输出功率管M1,同时第一开关S1和第二开关S2也受第一控制信号GN的控制而断开,从而使也使电流采样运算放大器27、第四晶体管M4、第五晶体管M5、第六晶体管M6和第七晶体管M7都工作;第二控制信号GP也变为低电平,打开第二Boost输出功率管M2,同时打开电流采样管M3,电流采样管M3为第二Boost输出功率管M2的镜像管,第二Boost输出功率管M2的宽度为电流采样管M3的K倍,又由于电流采样运算放大器27和控制管第四晶体管M4、第六晶体管M6和第七晶体管M7的作用,第一电路节点A点的电位等于外部电压输出端子上的电位Vout,所以第二Boost输出功率管M2的导通电流也为电流采样管M3的K倍。此时第一Boost输出功率管M1的电流为0,电感电流IL逐渐减小,第二Boost输出功率管M2的电流IM2约等于电感电流,电流采样管M3的电流IM3等于IM2的1/K, 第六晶体管M6的电流IM6等于电流采样管M3的电流即IM6=IM3, 第七晶体管M7的电流IM7等于第六晶体管IM6的1/K1,其中K1为第六晶体管M6管和第七晶体管M7管组成的电流镜的比例系数,第四晶体管M4的电流IM4等于第七晶体管M7的电流即IM4=IM7,第五晶体管M5的电流IM5等于第四晶体管M4的电流即IM5=IM4,所以IM5=IM2×(1/K)×(1/K1), 第五晶体管M5管的电流流经内部检流电阻Rsen,得到检流电压Vsen1,所以Vsen1= IM5×Rsen= IM2×(1/K)×(1/K1)×Rsen,即Vsen1与IM2成比例。由于Boost电路的输出电流等于第二Boost输出功率管M2电流的平均值,所以检流电压Vsen1的电压平均值与输出电流成比例。检流电压Vsen1经过滤波器的滤波后得到平均值,再经过缓冲器的增强之后,得到我们需要的与输出电流成比例的电压信号Vsen。 Vsen送至误差放大器之后和其他一些信号联合产生控制信号VC以控制系统的输出电流,从而实现了Boost型电压变换器工作在CC模式时的输出电流恒定。其中关键信号的波形时序如图4所示。
如图5是本发明的Boost型电路的另一种负载电流检测电路的具体实现电路,图5所示的实施例中,所述的采样放大电路20包括第一开关S1和第二开关S2、电流采样运算放大器27、第四晶体管M4和内部检流电阻Rsen;由电阻Rf和电容Cf组成的低通滤波器以及用于增强信号的缓冲器buf。电流采样运算放大器27的正极输入端连接Vout,电流采样运算放大器27的负极输入端与第一电路节点A电连接,电流采样运算放大器27的输出端与第二电路节点B电连接,第一开关S1连接在外部电压输出端子Vout与第一电路节点A之间,第二开关S2连接在外部电压输出端子Vout与第二电路节点B之间,第四晶体管M4的源极和第一电路节点A电连接,第四晶体管M4的栅极与第二电路节点B电连接,第四晶体管M4的漏极连接检流电阻Rsen和滤波电阻Rf的一端,检流电阻Rsen的另一端接地,滤波电阻Rf的另一端和滤波电容Cf的一端、缓冲器buf的正极输入端电连接,滤波电容Cf的另一端接地,缓冲器buf的负极输入端与冲器buf的输出端电连接,缓冲器的输出端输出的信号即为负载电流反馈电压信号Vsen。
当给外部电感L充电时,第二控制信号GP为高电平,第二Boost输出功率管M2截止,第一控制信号GN也为高电平,第一Boost输出功率管M1导通,第一开关S1和第二开关S2也受第一控制信号GN的控制而闭合使得第一电路节点A和第二电路节点B的电位等于外部电压输出端子上的电位Vout从而关闭第四晶体管M4和电流采样运算放大器27;第二Boost输出功率管M2和电流采样管M3的电流为0,第四晶体管M4电流为0,Vsen1的电压近似为0;此过程电感电流逐渐增大。
当外部电感L充电达到合适值后,第一控制信号GN变为低电平,关闭第一Boost输出功率管M1,同时断开第一开关S1和第二开关S2,从而使第四晶体管M4和电流采样运算放大器27工作,第二控制信号也变为低电平,打开第二Boost输出功率管M2,同时打开电流采样管M3,电流采样管M3为第二Boost输出功率管M2的镜像管,第二Boost输出功率管M2的宽度为电流采样管M3的K倍,又由于电流采样运算放大器27和控制管第四晶体管M4的作用,第一电路节点A的电位等于Vout,所以第二Boost输出功率管M2的电流也为电流采样管M3的K倍;此时第一Boost输出功率管M1的电流为0,第二Boost输出功率管M2的电流IM2约等于电感电流,电流采样管M3的电流IM3等于第二Boost输出功率管的电流IM2的1/K,第四晶体管M4的电流IM4等于电流采样管M3的电流即IM4=IM3,第四晶体管M4的电流流经检流电阻Rsen,得到检流电压Vsen1,所以Vsen1=IM4×Rsen=IM2×(1/K)×Rsen,即Vsen1与IM2成比例。由于boost电路的输出电流等于M2管电流的平均值,所以Vsen1的电压平均值与输出电流成比例。Vsen1经过滤波器的滤波后得到平均值,再经过缓冲器的增强之后,得到我们需要的与输出电流成比例的电压信号Vsen。 Vsen送至误差放大器之后和其他一些信号联合产生控制信号VC以控制系统的输出电流,从而实现了Boost型电压变换器工作在CC模式时的输出电流恒定。其中关键信号的波形也如图4所示。
图4中横坐标为时间轴,纵坐标上画出的信号包括,外部电感电流信号IL(A)、第一Boost输出功率管M1的电流信号IM1(A)、第二Boost输出功率管M2的电流信号IM2(A)、电流采样管M3的电流信号IM3(A)、内部检流电阻Rsen上检测到的检流电压Vsen1(V)和负载电流检测电路输出的负载电流反馈电压信号Vsen(V)。如图4可见,在第一Boost输出功率管M1导通、第二Boost输出功率管M2关闭的时间段内,负载电流检测电路输出的负载电流反馈电压信号Vsen随着第二Boost输出功率管M2的关闭而减小。此时,以图5的电路为例说明,由于第二Boost输出功率管M2关闭且第一开关S1和第二开关S2闭合,所以电路节点A和电路节点B的电平都为高,则第四晶体管M4截止,所以内部采样电阻获得的负载电流采样电压信号Vsen1的电位近似为0,滤波电容Cf上的能量会通过滤波电阻Rf和检流电阻Rsen缓慢释放,即电压缓慢降低,缓冲器的输出电压大小会一直跟随输入电压变化,所以缓冲器输出的电压信号Vsen的大小也会缓慢减小。在第一Boost输出功率管M1关闭、第二Boost输出功率管M2导通的时间段内,负载电流检测电路输出的负载电流反馈电压信号Vsen随着第二Boost输出功率管M2的导通而增大。此时,以图5的电路为例说明,由于第二Boost输出功率管M2导通且第一开关S1和第二开关S2断开,运算放大器27和第四晶体管M4工作,则由上面公式推导可知内部采样电阻获得的负载电流采样电压信号Vsen1=IM4×Rsen=IM2×(1/K)×Rsen,而Vsen1会通过滤波电阻Rf对滤波电容Cf缓慢充电,所以滤波电容Cf上的电压会缓慢上升,缓冲器的输出电压会一直跟随输入电压变化,所以Vsen电压会缓慢上升。
本发明的技术方案,无需外部采样电阻的Boost转换器负载电流检测电路包括电流采样管M3、电流采样电路20和低通滤波器22;在第二Boost输出功率管M2导通时,Boost转换器负载电流检测电路利用电流采样管M3和电流采样电路20采样获得第二Boost输出功率管M2的导通电流之后得到检流电压Vsen1,经过滤波之后得到Vsen1的平均值Vsen,Vsen与输出电流成比例。本发明无需外部采样电阻,简化了外围电路的设计,减小能量损耗,提高整体效率,采用合适具体电路可以实现与外部采用相同的精度,实现高精度恒流充电。
本发明与现有技术相比,本发明的有益效果是:1、在应用了本发明设计电路方案的芯片中,无须外部再连接采样电阻即可实现负载电流检测;2.节省了芯片管脚,使得在小空间少管脚的芯片应用中也能实现负载电流检测,从而实现Boost恒流控制;3.无须外部再连接采样电阻也节省了芯片应用时的外接电阻引起的功耗和成本;4.通过一个管脚作为负载电流检测的端子,减少外部元器件,也减少了应用这些芯片的电路的连接节点,提高了电路综合应用的集成度,相对分离器件的线路板,大大而提高了应用该类电路芯片的可靠性。
另需说明的是,为了描述方便,NMOS管、NMOS管、电阻、电容等电子元器件都采用了第一、第二等顺序编号,这些顺序编号并不代表其位置或顺序上的限定,只是为了描述方便。以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (7)

1.一种无需外部采样电阻的Boost转换器负载电流检测电路,其特征在于,
包括:用于镜像第二Boost输出功率管(M2)导通电流的电流采样管(M3)、用于负载电流采样放大的电流采样放大电路(20)和用于输出信号低通滤波的低通滤波器(22);所述电流采样管(M3)的源极用作Boost转换器负载电流检测电路的负载电流检测输入端子,所述电流采样管(M3)的源极和第二Boost输出功率管(M2)的源极电连接;所述电流采样管(M3)的栅极用于输入第二控制信号(GP),所述电流采样管(M3)接受第二控制信号(GP)的控制;所述电流采样管(M3)的漏极与所述电流采样放大电路(20)的第一输入端子电连接,所述电流采样放大电路(20)的第二输入端子用于同第二Boost输出功率管(M2)的漏极电连接;所述电流采样放大电路(20)的输出端子用作Boost转换器负载电流检测电路的负载电流检测输出端子;所述低通滤波器(22)包括低通滤波电阻(Rf)和低通滤波电容(Cf),所述低通滤波电阻(Rf)的一端用作所述低通滤波器(22)的输入端子;所述低通滤波器(22)的输入端子与所述电流采样放大电路(20)的输出端子电连接;所述低通滤波电阻(Rf)的另一端用作所述低通滤波器(22)的输出端子,并与所述低通滤波电容(Cf)的一端电连接,所述低通滤波电容(Cf)的另一端接地。
2.根据权利要求1所述无需外部采样电阻的Boost转换器负载电流检测电路,其特征在于,
所述电流采样放大电路(20)包括用于电路信号连接关系控制的第一开关(S1)和第二开关(S2)、电流采样运算放大器(27)、第四晶体管(M4)、第五晶体管(M5)、第六晶体管(M6)、第七晶体管(M7)和内部检流电阻(Rsen);所述第一开关(S1)和所述第二开关(S2)接受第一控制信号(GN)的控制;第六晶体管(M6)的栅极和第七晶体管(M7)的栅极电连接,第六晶体管(M6)的源极和第七晶体管(M7)的源极接地,第七晶体管(M7)的栅极和第七晶体管(M7)的漏极电连接,在所述第一开关(S1)和第二开关(S2)断开时,第六晶体管(M6)和第七晶体管(M7)组成一个电流镜;所述第一开关(S1)的一端和第六晶体管(M6)的漏极电连接,同时第六晶体管(M6)的漏极和所述电流采样运算放大器(27)的负极输入端子电连接,所述电流采样运算放大器(27)的负极输入端子同时还和所述电流采样管(M3)的漏极电连接;所述第一开关(S1)的另一端用作所述电流采样放大电路(20)的第二输入端子,即所述第一开关(S1)的另一端和第二Boost输出功率管(M2)的漏极电连接,同时所述电流采样运算放大器(27)的正极输入端子也和第二Boost输出功率管(M2)的漏极电连接;所述第二开关(S2)的一端和所述电流采样运算放大器(27)的正极输入端子电连接;所述第二开关(S2)的另一端和所述电流采样运算放大器(27)的输出端子电连接,同时所述第二开关(S2)的这一端还和第五晶体管(M5)的栅极以及第四晶体管(M4)的栅极电连接;所述第四晶体管(M4)的漏极和所述第七晶体管(M7)的漏极电连接;所述第五晶体管(M5)的源极以及所述第四晶体管(M4)的源极和所述电流采样运算放大器(27)的正极输入端子电连接;所述第五晶体管(M5)的漏极和内部检流电阻(Rsen)的一端电连接,所述内部检流电阻(Rsen)的另一端接地;所述第五晶体管(M5)的漏极用作所述电流采样放大电路(20)的输出端子。
3.根据权利要求1所述的无需外部采样电阻的Boost转换器负载电流检测电路,其特征在于,
所述电流采样放大电路(20)包括用于电路信号连接关系控制的第一开关(S1)和第二开关(S2)、电流采样运算放大器(27)、第四晶体管(M4)和内部检流电阻(Rsen);所述第一开关(S1)和所述第二开关(S2)接受第一控制信号(GN)的控制;所述第一开关(S1)的一端和第四晶体管(M4)的源极电连接,同时第四晶体管(M4)的源极和所述电流采样运算放大器(27)的负极输入端子电连接,所述电流采样运算放大器(27)的负极输入端子同时还和所述电流采样管(M3)的漏极电连接,即所述第一开关(S1)的这一端用作所述电流采样放大电路(20)的第一输入端子;所述第一开关(S1)的另一端用作所述电流采样放大电路(20)的第二输入端子,即所述第一开关(S1)的另一端和第二Boost输出功率管(M2)的漏极电连接,同时所述电流采样运算放大器(27)的正极输入端子也和第二Boost输出功率管(M2)的漏极电连接;所述第二开关(S2)的一端和所述电流采样运算放大器(27)的正极输入端子电连接;所述第二开关(S2)的另一端和所述电流采样运算放大器(27)的输出端子电连接,同时所述第二开关(S2)的这一端还和第四晶体管(M4)的栅极电连接;所述第四晶体管(M4)的漏极和内部检流电阻(Rsen)的一端电连接,所述内部检流电阻(Rsen)的另一端接地;所述第四晶体管(M4)的漏极用作所述电流采样放大电路(20)的输出端子。
4.根据权利要求2或3任意一项所述的无需外部采样电阻的Boost转换器负载电流检测电路,其特征在于,所述电流采样运算放大器(27)包括低误差运算放大器、斩波型运算放大器和自动调零运算放大器。
5.根据权利要求2所述的无需外部采样电阻的Boost转换器负载电流检测电路,其特征在于,
还包括用于输出信号缓冲放大的Buffer缓冲器电路(26),所述Buffer缓冲器电路(26)的正极输入端子和所述低通滤波器的输出端电连接,所述Buffer缓冲器电路(26)的负极输入端子和所述Buffer缓冲器电路(26)的输出端子电连接;所述Buffer缓冲器电路(26)的输出端子将低通滤波后的采样信号缓冲放大后输出。
6.一种基于权利要求2所述无需外部采样电阻的Boost转换器负载电流检测电路的无需外部采样电阻的Boost转换器负载电流检测方法,包括:
步骤1:在第一控制信号(GN)为低电平且第二控制信号(GP)也为低电平时,第一Boost输出功率管(M1)截止,而第二Boost输出功率管(M2)和电流采样管(M3)导通,此时第一开关(S1)和第二开关(S2)断开,电流采样运算放大器(27)、第四晶体管(M4)、第五晶体管(M5)、第六晶体管(M6)和第七晶体管(M7)工作,此时第二Boost输出功率管(M2)和电流采样管(M3)形成镜像对管,第六晶体管(M6)和第七晶体管(M7)也形成镜像对管,第四晶体管(M4)、第五晶体管(M5)也形成镜像对管,于是在第五晶体管(M5)上得到与第二Boost输出功率管(M2)成比例的电流,此电流流过内部检流电阻(Rsen),在内部检流电阻(Rsen)的非接地端获得一个表征负载电流大小的电压信号(Vsen1),该电压信号(Vsen1)经低通滤波器(22)滤波后输出;低通滤波器(22)在该时间段内输出一个缓慢上升的电压信号;
步骤2:在第一控制信号(GN)为高电平且第二控制信号(GP)也为高电平时,第一Boost输出功率管(M1)导通,而第二Boost输出功率管(M2)和电流采样管(M3)截止,此时第一开关(S1)和第二开关(S2)闭合,电流采样运算放大器(27)、第四晶体管(M4)、第五晶体管(M5)、第六晶体管(M6)和第七晶体管(M7)停止工作;此时第二Boost输出功率管(M2)、电流采样管(M3)、第四晶体管(M4)、第五晶体管(M5)、第六晶体管(M6)和第七晶体管(M7)上都没有电流流过,内部检流电阻(Rsen)的非接地端的对地电位近似为0,低通滤波器(22)在该时间段内,通过低通滤波电容(Cf)上存储的上一个时间段内获得的电能输出一个缓慢下降的电压信号;在整个控制信号周期内,低通滤波器(22)输出的电压信号幅度平均值近似于内部检流电阻(Rsen)上的电压信号幅度平均值。
7.一种基于权利要求5所述的无需外部采样电阻的Boost转换器负载电流检测电路的无需外部采样电阻的Boost转换器负载电流检测方法,包括:
步骤1:在第一控制信号(GN)为低电平且第二控制信号(GP)也为低电平时,第一Boost输出功率管(M1)截止,而第二Boost输出功率管(M2)和电流采样管(M3)导通,此时第一开关(S1)和第二开关(S2)断开,电流采样运算放大器(27)、第四晶体管(M4)、第五晶体管(M5)、第六晶体管(M6)和第七晶体管(M7)工作,此时第二Boost输出功率管(M2)和电流采样管(M3)形成镜像对管,第六晶体管(M6)和第七晶体管(M7)也形成镜像对管,第四晶体管(M4)、第五晶体管(M5)也形成镜像对管,于是在第五晶体管(M5)上得到与第二Boost输出功率管(M2)成比例的电流,此电流流过内部检流电阻(Rsen),在内部检流电阻(Rsen)的非接地端获得一个表征负载电流大小的电压信号(Vsen1),该电压信号(Vsen1)经低通滤波器(22)滤波后输出;低通滤波器(22)在该时间段内输出一个缓慢上升的电压信号;
步骤2:在第一控制信号(GN)为高电平且第二控制信号(GP)也为高电平时,第一Boost输出功率管(M1)导通,而第二Boost输出功率管(M2)和电流采样管(M3)截止,此时第一开关(S1)和第二开关(S2)闭合,电流采样运算放大器(27)、第四晶体管(M4)、第五晶体管(M5)、第六晶体管(M6)和第七晶体管(M7)停止工作;此时第二Boost输出功率管(M2)、电流采样管(M3)、第四晶体管(M4)、第五晶体管(M5)、第六晶体管(M6)和第七晶体管(M7)上都没有电流流过,内部检流电阻(Rsen)的非接地端的对地电位近似为0,低通滤波器(22)在该时间段内,通过低通滤波电容(Cf)上存储的上一个时间段内获得的电能输出一个缓慢下降的电压信号;在整个控制信号周期内,低通滤波器(22)输出的电压信号幅度平均值近似于内部检流电阻(Rsen)上的电压信号幅度平均值;
步骤3:在所述低通滤波器(22)之后还设置有使用Buffer缓冲器电路(26)的信号缓冲和放大的步骤。
CN201710271844.3A 2017-04-24 2017-04-24 无需外部采样电阻的Boost负载电流检测电路及方法 Active CN107656124B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710271844.3A CN107656124B (zh) 2017-04-24 2017-04-24 无需外部采样电阻的Boost负载电流检测电路及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710271844.3A CN107656124B (zh) 2017-04-24 2017-04-24 无需外部采样电阻的Boost负载电流检测电路及方法

Publications (2)

Publication Number Publication Date
CN107656124A CN107656124A (zh) 2018-02-02
CN107656124B true CN107656124B (zh) 2023-06-09

Family

ID=61126706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710271844.3A Active CN107656124B (zh) 2017-04-24 2017-04-24 无需外部采样电阻的Boost负载电流检测电路及方法

Country Status (1)

Country Link
CN (1) CN107656124B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116086B (zh) * 2018-08-20 2020-08-14 电子科技大学 一种负载电流检测电路
CN112014616B (zh) * 2019-05-30 2023-03-21 伏达半导体(合肥)股份有限公司 电流检测设备和方法
CN112710886B (zh) * 2020-12-02 2023-03-28 江苏应能微电子有限公司 一种电流采样电路
CN114624493A (zh) * 2020-12-10 2022-06-14 圣邦微电子(北京)股份有限公司 电流检测电路
CN115811199A (zh) * 2021-09-16 2023-03-17 深圳英集芯科技股份有限公司 一种电流检测装置和相关升压转换系统
CN113885631B (zh) * 2021-10-27 2023-07-18 昂宝电子(上海)有限公司 用于电源管理系统的端口电流检测方法和电路
CN114994392B (zh) * 2022-07-19 2022-11-01 成都市易冲半导体有限公司 一种芯片内部接近无损的高精度电流采样电路及方法
CN115656609B (zh) * 2022-12-28 2023-04-28 苏州博创集成电路设计有限公司 一种电感电流采样电路

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111983A (ja) * 1994-10-12 1996-04-30 Fuji Xerox Co Ltd 電子機器用電源回路
CN101655516A (zh) * 2008-08-20 2010-02-24 力博特公司 一种主路输入电流检测装置
CN102523650A (zh) * 2011-12-02 2012-06-27 赵修平 一种led电流检测和控制电路
CN103605084A (zh) * 2013-11-14 2014-02-26 南京理工大学 升压pfc变换器输出电容esr和c的监测装置及方法
WO2014071674A1 (zh) * 2012-11-09 2014-05-15 联合汽车电子有限公司 直流隔离降压变换器及其母线电压检测电路
CN103855942A (zh) * 2012-11-30 2014-06-11 西安智海电力科技有限公司 一种高效率boost电路
CN103904881A (zh) * 2014-03-04 2014-07-02 东莞博用电子科技有限公司 输入电压阈值自适应控制的部分有源功率因数校正电路
CN104038059A (zh) * 2013-03-04 2014-09-10 精工电子有限公司 开关调节器以及电子设备
CN204408184U (zh) * 2014-12-19 2015-06-17 长安大学 一种Boost型DC-DC转换器同步功率管限流电路
CN104779791A (zh) * 2015-03-27 2015-07-15 绵阳豪迈电子科技有限公司 综合布线系统升压驱动电路
CN204559392U (zh) * 2015-03-27 2015-08-12 绵阳豪迈电子科技有限公司 综合布线系统电流反馈的升压驱动电路
CN104979804A (zh) * 2015-07-08 2015-10-14 灿瑞半导体(上海)有限公司 一种输出过压保护电路
CN105811761A (zh) * 2014-12-30 2016-07-27 展讯通信(上海)有限公司 一种电流采样电路及集成电流采样电路的boost电路
CN106487215A (zh) * 2016-11-11 2017-03-08 南京航空航天大学 Crm升压型pfc变换器变化导通时间的优化控制
CN206788231U (zh) * 2017-04-24 2017-12-22 深圳市华芯邦科技有限公司 无需外部采样电阻的Boost转换器负载电流检测电路

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111983A (ja) * 1994-10-12 1996-04-30 Fuji Xerox Co Ltd 電子機器用電源回路
CN101655516A (zh) * 2008-08-20 2010-02-24 力博特公司 一种主路输入电流检测装置
CN102523650A (zh) * 2011-12-02 2012-06-27 赵修平 一种led电流检测和控制电路
WO2014071674A1 (zh) * 2012-11-09 2014-05-15 联合汽车电子有限公司 直流隔离降压变换器及其母线电压检测电路
CN103855942A (zh) * 2012-11-30 2014-06-11 西安智海电力科技有限公司 一种高效率boost电路
CN104038059A (zh) * 2013-03-04 2014-09-10 精工电子有限公司 开关调节器以及电子设备
CN103605084A (zh) * 2013-11-14 2014-02-26 南京理工大学 升压pfc变换器输出电容esr和c的监测装置及方法
CN103904881A (zh) * 2014-03-04 2014-07-02 东莞博用电子科技有限公司 输入电压阈值自适应控制的部分有源功率因数校正电路
CN204408184U (zh) * 2014-12-19 2015-06-17 长安大学 一种Boost型DC-DC转换器同步功率管限流电路
CN105811761A (zh) * 2014-12-30 2016-07-27 展讯通信(上海)有限公司 一种电流采样电路及集成电流采样电路的boost电路
CN104779791A (zh) * 2015-03-27 2015-07-15 绵阳豪迈电子科技有限公司 综合布线系统升压驱动电路
CN204559392U (zh) * 2015-03-27 2015-08-12 绵阳豪迈电子科技有限公司 综合布线系统电流反馈的升压驱动电路
CN104979804A (zh) * 2015-07-08 2015-10-14 灿瑞半导体(上海)有限公司 一种输出过压保护电路
CN106487215A (zh) * 2016-11-11 2017-03-08 南京航空航天大学 Crm升压型pfc变换器变化导通时间的优化控制
CN206788231U (zh) * 2017-04-24 2017-12-22 深圳市华芯邦科技有限公司 无需外部采样电阻的Boost转换器负载电流检测电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王菁等.高效率、低功耗直流电压转换器芯片的设计与实现.江南大学学报(自然科学版).2008,(第03期),全文. *

Also Published As

Publication number Publication date
CN107656124A (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
CN107656124B (zh) 无需外部采样电阻的Boost负载电流检测电路及方法
CN107659151B (zh) 无需外部采样电阻的Buck负载电流检测电路及方法
US11108328B2 (en) Systems and methods for high precision and/or low loss regulation of output currents of power conversion systems
TWI397244B (zh) 具內部漣波補償之降壓型電源轉換器
US8525498B2 (en) Average input current limit method and apparatus thereof
WO2016029489A1 (zh) 单电感正负电压输出装置
US20150028830A1 (en) Current-mode buck converter and electronic system using the same
US9595866B2 (en) Hysteretic switching regulator including a power converting unit and a switch driving unit
US7352161B2 (en) Burst-mode switching voltage regulator with ESR compensation
US8742743B2 (en) Switching control circuit
CN107656123B (zh) 带补偿电路的Buck负载电流检测电路及方法
CN101145699A (zh) 电源系统和用于控制输出电压的方法
US20240030817A1 (en) Dynamic biasing circuit for main comparator to improve load-transient and line-transient performance of buck converter in 100% mode
IT201800008221A1 (it) Convertitore elettronico, circuito integrato e procedimento di funzionamento di un convertitore elettronico corrispondenti
CN206788231U (zh) 无需外部采样电阻的Boost转换器负载电流检测电路
CN104917375B (zh) Dc/dc转换器
CN106921294B (zh) 一种脉冲波调制和脉冲跳周期调制的切换电路和切换方法
US8476942B2 (en) Summation circuit in DC-DC converter
WO2023246861A1 (zh) Dc-dc变换器
US11387731B2 (en) DC-DC converter with improved regulation accuracy
CN108988624B (zh) 一种异步启动电路
US11888395B2 (en) Switch mode power supply with improved transient performance and control circuit thereof
CN112787505A (zh) 一种dc-dc变换器及其控制电路和控制方法
CN113422512B (zh) 一种四开关控制电路
CN107087328B (zh) Led驱动电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant