CN107641796A - 制程设备及化学气相沉积制程 - Google Patents

制程设备及化学气相沉积制程 Download PDF

Info

Publication number
CN107641796A
CN107641796A CN201610574665.2A CN201610574665A CN107641796A CN 107641796 A CN107641796 A CN 107641796A CN 201610574665 A CN201610574665 A CN 201610574665A CN 107641796 A CN107641796 A CN 107641796A
Authority
CN
China
Prior art keywords
cavity
wafer
gas
cavity wall
upper cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610574665.2A
Other languages
English (en)
Other versions
CN107641796B (zh
Inventor
洪世玮
张家睿
林剑锋
潘正扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority to CN201610574665.2A priority Critical patent/CN107641796B/zh
Publication of CN107641796A publication Critical patent/CN107641796A/zh
Application granted granted Critical
Publication of CN107641796B publication Critical patent/CN107641796B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

本发明揭露一种制程设备及化学气相沉积制程。制程设备包含制程腔体、晶圆承托装置、至少一排气管路以及至少一排气通道。晶圆承托装置位于制程腔体中,晶圆承托装置具有晶圆承托位置,晶圆承托位置将制程腔体区分为位于晶圆承托位置上方的上腔体,以及位于晶圆承托位置下方的下腔体。排气通道连通下腔体与排气管路。

Description

制程设备及化学气相沉积制程
技术领域
本发明实施例是有关于一种制程设备。
背景技术
化学气相沉积(Chemical Vapor Deposition;CVD)是一种应用在半导体产业中生产薄膜的技术。化学气相沉积包括常压化学气相沉积、电浆增强化学气相沉积、激光辅助化学沉积、金属有机化学气相沉积等。在化学气相沉积的过程中,晶圆将暴露于一种或多种制程气体中,而这些制程气体可能会发生不同的变化,例如分解、沉积等反应并附着于晶圆上,继而在晶圆上形成所需的薄膜。
发明内容
本发明实施例的一方面在于提供一种制程设备,其能使制程气体保持以层流(Laminar Flow)的方式稳定地流动,而制程气体沉积于晶圆的表面上的过程,也能够得到更佳的控制。
根据本发明的多个实施例,一种制程设备包含制程腔体、晶圆承托装置、至少一排气管路以及至少一排气通道。晶圆承托装置位于制程腔体中,晶圆承托装置具有晶圆承托位置,晶圆承托位置将制程腔体区分为位于晶圆承托位置上方的上腔体,以及位于晶圆承托位置下方的下腔体。排气通道连通下腔体与排气管路。
根据本发明的多个实施例,一种制程设备包含上腔壁、下腔壁、至少一上衬垫、至少一下衬垫以及排气管路。上衬垫介于上腔壁与下腔壁之间。下衬垫介于上衬垫与下腔壁之间,下衬垫具有至少一吹驱气体排气通道于其中。排气管路连通吹驱气体排气通道。
本发明实施例的一方面在于提供一种化学气相沉积制程,其能使制程气体保持以层流(Laminar Flow)的方式稳定地流动,而制程气体沉积于晶圆的表面上的过程,也能够得到更佳的控制。
根据本发明的多个实施例,一种化学气相沉积制程包含导引至少一制程气体进入至少一晶圆上方的上腔体、导引至少一吹驱气体进入晶圆下方的下腔体以及导引至少部分位于下腔体中的吹驱气体进入排气管路。
综上所述,本发明上述的多个实施例所揭露的技术方案至少具有以下优点:
(1)由于排气通道连通制程腔体的下腔体与排气管路,因此,被注入至制程腔体的下腔体中的吹驱气体,将可以通过排气通道而流动至排气管路,继而离开制程设备。而且,在制程设备运作时,由于制程气体被注入至制程腔体的上腔体中,会使得上腔体中的压力增加,因此,通过维持排气管路处于低压的状态,至少部分的吹驱气体将会流动至压力相对较低的排气管路,而不会流动至压力相对较高的上腔体。
(2)由于吹驱气体流动至上腔体的机会降低,因此,吹驱气体因流动至上腔体而于上腔体中产生紊流(Turbulent Flow)的机会也会降低。如此一来,制程气体于上腔体中受到紊流影响的程度也将会降低,而能够实质上保持以层流(Laminar Flow)的方式稳定地流动。如此一来,当制程气体自上腔体沉积于晶圆的表面上时,由于紊流影响的程度降低,制程气体沉积于晶圆表面上的均匀度将会提高,亦即,晶圆表面上所形成的薄膜厚度不一的程度将会降低。换句话说,排气通道能够使制程气体于上腔体中实质保持以层流的方式稳定地流动,将有利于晶圆在制程设备中进行化学气相沉积,而制程气体沉积于晶圆表面上的薄膜,也能够得到更佳的品质控制。
附图说明
图1绘示依照本发明多个实施例的制程设备的局部剖面图;
图2绘示图1的下衬垫的立体示意图;
图3绘示依照本发明多个实施例的化学气相沉积制程的流程图。
具体实施方式
以下将以附图揭露本发明的多个实施例,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明部分实施例中,这些实务上的细节是非必要的。此外,为简化附图起见,一些已知惯用的结构与元件在附图中将以简单示意的方式绘示。
请参照图1,其绘示依照本发明多个实施例的制程设备100的局部剖面图。如图1所示,一种制程设备100包含制程腔体110、晶圆承托装置120、至少一排气管路130以及至少一排气通道140。晶圆承托装置120位于制程腔体110中。晶圆承托装置120具有晶圆承托位置121。当晶圆承托装置120承托晶圆200时,晶圆200将位于晶圆承托位置121。此晶圆承托位置121将制程腔体110区分为位于晶圆承托位置121上方的上腔体110a,以及位于晶圆承托位置121下方的下腔体110b。再者,排气通道140连通下腔体110b与排气管路130。
具体而言,晶圆承托装置120包含支架122以及基座123。支架122配置以承托基座123,而基座123则配置以承托晶圆200。在一些实施例中,支架122是以多个支撑点接触并承托基座123接近边缘的位置。如此一来,晶圆承托装置120对晶圆200的承托将变得更为稳固。并且,通过调校支架122每一个支撑点的位置,可以有效使晶圆200于制程腔体110中保持水平地设置,有利后续的制程进行。
当制程设备100运作时,晶圆承托装置120将承托晶圆200,使得晶圆200位于晶圆承托位置121。另一方面,制程气体G1将会被注入至制程腔体110的上腔体110a中。在实务的应用中,制程设备100所进行的制程可为化学气相沉积(Chemical Vapor Deposition;CVD)制程,例如磊晶成长(Epitaxial Growth)制程。磊晶成长制程亦即为一种用于半导体制程中,在原有的晶圆上长出新结晶层的技术。一般而言,磊晶成长设备是用来在例如硅晶圆的表面上形成单晶层(又称磊晶层)的设备。在逐片式的磊晶成长设备中,晶圆可水平放置,并一面导入制程气体,一面将晶圆加热至既定温度,使磊晶成长。
在一些实施例中,制程气体G1可为例如甲硅烷(SiH4)、氯化氢(HCl)或上述的任意组合,但本发明并不以此为限。在磊晶成长进行的过程中,晶圆200将被晶圆承托装置120所承托,而位于晶圆承托位置121。另一方面,制程气体G1则自制程腔体110的上腔体110a沉积于晶圆200的表面上,并于晶圆200的表面上长出新结晶以形成结晶层。
另一方面,当制程设备100运作时,吹驱气体G2将会被注入至制程腔体110的下腔体110b中,以防止制程气体G1从制程腔体110的上腔体110a流动至下腔体110b,并沉积于下腔体110b的内表面上。具体而言,吹驱气体G2被注入至制程腔体110的下腔体110b中后,下腔体110b中的压力将会增加,从而降低制程气体G1从上腔体110a流动至下腔体110b的机会。如此一来,制程气体G1沉积于下腔体110b的机会也会有效降低。换句话说,通过将吹驱气体G2注入至制程腔体110的下腔体110b中,制程气体G1污染下腔体110b的机会将会降低。
再者,为了避免吹驱气体G2有机会与制程气体G1产生化学反应,甚至导致对制程设备100的运作带来影响,在一些实施例中,吹驱气体G2可包含惰性气体。在此,惰性气体应广义解释为不会与制程气体G1产生影响制程的化学反应的气体。举例来说,在一些实施例中,惰性气体可为钝气,其是指元素周期表上根据国际纯化学和应用化学联合会(International Union of Pure and Applied Chemistry;IUPAC)所规定的18族元素。举例而言,在一些实施例中,吹驱气体G2可为氦、氖、氩、氪、氙或上述的任意组合,但本发明并不以此为限。
如上所述,由于排气通道140连通制程腔体110的下腔体110b与排气管路130,因此,被注入至下腔体110b中的吹驱气体G2,将可以通过排气通道140而流动至排气管路130,继而离开制程设备100。而且,在制程设备100运作时,由于制程气体G1被注入至制程腔体110的上腔体110a中,使得上腔体110a中的压力增加,因此,通过维持排气管路130处于低压的状态,至少部分的吹驱气体G2将会流动至压力相对较低的排气管路130,而不会流动至压力相对较高的上腔体110a。
为了维持排气管路130处于低压的状态,举例而言,如图1所示,排气管路130更可连接抽气装置135。抽气装置135能够通过抽气的方式,把气流带走,以使排气管路130维持于低压的状态。而且,除了能够维持排气管路130处于低压的状态之外,在抽气装置135的作用下,吹驱气体G2通过排气管路130离开制程设备100的速度也会加快。
另外,在一些实施例中,排气管路130亦连通制程腔体110的上腔体110a。当制程气体G1被注入至制程腔体110的上腔体110a中后,至少部分的制程气体G1会发生化学反应而沉积于晶圆200的表面上,而未被使用的制程气体G1以及制程气体G1在沉积过程中所产生的副产物,则会通过排气管路130而离开制程设备100。相似地,由于吹驱气体G2被注入至制程腔体110的下腔体110b中,使得下腔体110b中的压力增加,因此,通过维持排气管路130处于低压的状态,大部分的制程气体G1将会流动至压力相对较低的排气管路130,而不会流动至压力相对较高的下腔体110b。而且,如上所述,在抽气装置135的作用下,制程气体G1通过排气管路130离开制程设备100的速度也会加快。
更具体而言,如上所述,由于吹驱气体G2流动至上腔体110a的机会降低,因此,吹驱气体G2因流动至上腔体110a而于上腔体110a中产生紊流(Turbulent Flow)的机会也会降低。如此一来,制程气体G1于上腔体110a中受到紊流影响的程度也将会降低,而能够实质上保持以层流(Laminar Flow)的方式稳定地流动。如此一来,当制程气体G1自上腔体110a沉积于晶圆200的表面上时,由于紊流影响的程度降低,制程气体G1沉积于晶圆200表面上的均匀度将会提高,亦即,晶圆200表面上所形成的薄膜厚度不一的程度将会降低。换句话说,排气通道140能够使制程气体G1于上腔体110a中实质保持以层流的方式稳定地流动,将有利于晶圆200在制程设备100中进行化学气相沉积,而制程气体G1沉积于晶圆200表面上的薄膜,也能够得到更佳的品质控制。
另外,从结构上而言,如图1所示,制程腔体110包含至少一上腔壁111、至少一下腔壁112以及至少一衬垫113。上腔壁111位于晶圆承托位置121上方,下腔壁112则位于晶圆承托位置121下方。也就是说,被晶圆承托装置120承托于晶圆承托位置121的晶圆200,是位于上腔壁111与下腔壁112之间。上腔体110a位于上腔壁111与晶圆承托位置121之间,而下腔体110b则位于下腔壁112与晶圆承托位置121之间。衬垫113介于上腔壁111与下腔壁112之间,且排气通道140位于衬垫113中。
换句话说,当制程设备100运作时,被注入制程腔体110的下腔体110b中的吹驱气体G2,是通过位于衬垫113中的排气通道140而流动至排气管路130,继而离开制程设备100。
更具体而言,衬垫113包含至少一上衬垫113a以及至少一下衬垫113b。也就是说,上衬垫113a与下衬垫113b共同形成衬垫113。上衬垫113a介于上腔壁111与下腔壁112之间。下衬垫113b则介于上衬垫113a与下腔壁112之间,亦即上衬垫113a相对地介于下衬垫113b与上腔壁111之间。下衬垫113b具有至少一吹驱气体排气通道于其中,吹驱气体排气通道亦即上述的排气通道140,也就是说,排气通道140位于下衬垫113b中。再者,如上所述,排气通道140连通排气管路130,亦即排气管路130连通吹驱气体排气通道。
换句话说,当制程设备100运作时,被注入制程腔体110的下腔体110b中的吹驱气体G2,是通过位于下衬垫113b中的排气通道140而流动至排气管路130,继而离开制程设备100。
进一步而言,衬垫113的上衬垫113a与下衬垫113b共同定义制程气体排气通道114于其中,排气管路130更连通制程气体排气通道114。更具体而言,如图1所示,制程腔体110的上腔体110a连通制程气体排气通道114,因此,位于上腔体110a中的制程气体G1,在制程设备100运作时,是通过上衬垫113a与下衬垫113b共同定义的制程气体排气通道114而流动至排气管路130,继而离开制程设备100。
为了要向制程腔体110的上腔体110a供应制程气体G1,在一些实施例中,制程设备100还包含制程气体源150。如图1所示,制程设备100包含制程气体入口180,制程气体源150通过制程气体入口180连通制程腔体110的上腔体110a,因此,制程气体G1能够被注入至上腔体110a中。更具体而言,制程气体源150通过制程气体入口180连通上腔体110a的位置,是远离制程气体排气通道114,故此,当制程气体源150通过制程气体入口180把制程气体G1注入至上腔体110a中后,制程气体G1将朝制程气体排气通道114的方向以实质层流的方式稳定地流动于晶圆200与上腔壁111之间,并在至少部分的制程气体G1发生化学反应而沉积于晶圆200的表面上后,未被使用的制程气体G1以及制程气体G1在沉积过程中所产生的副产物,会通过上衬垫113a与下衬垫113b共同定义的制程气体排气通道114而流动至排气管路130,继而离开制程设备100。在一些实施例中,更具体而言,制程气体入口180是通过衬垫113的上衬垫113a与下衬垫113b之间而与制程腔体110的上腔体110a连通。换句话说,上衬垫113a与下衬垫113b之间于制程气体入口180与上腔体110a之间具有通道,使得制程气体入口180与上腔体110a能够连通。
另一方面,为了要向制程腔体110的下腔体110b供应吹驱气体G2,在一些实施例中,制程设备100还包含吹驱气体源160。如图1所示,制程设备100包含吹驱气体入口190,吹驱气体源160通过吹驱气体入口190连通制程腔体110的下腔体110b,因此,吹驱气体G2能够被注入至下腔体110b中。更具体而言,吹驱气体源160通过吹驱气体入口190连通下腔体110b的位置,是远离上腔体110a,且吹驱气体入口190至少部分朝向位于晶圆承托位置121的晶圆200。
再者,在一些实施例中,制程设备100还包含预热单元170。预热单元170可呈环状,且至少部分围绕晶圆承托装置120设置,更具体而言,预热单元170与晶圆承托装置120的基座123之间具有间隙G。如图1所示,围绕基座123的间隙G连通制程腔体110的上腔体110a与下腔体110b,而预热单元170更连接衬垫113的下衬垫113b。预热单元170配置以热辐射的方式提供热能,借此提升制程腔体110的上腔体110a以及位于晶圆承托位置121的晶圆200的温度。
如上所述,由于制程腔体110的上腔体110a的压力相对较高,而排气管路130的压力相对较低,因此,大部分的吹驱气体G2实质上会避免从制程腔体110的下腔体110b通过围绕晶圆200的间隙G而流动至制程腔体110的上腔体110a。由于大部分的吹驱气体G2实质上会避免通过间隙G而流动至上腔体110a,因此吹驱气体G2将不会在上腔体110a靠近间隙G的位置产生有意义的紊流。如此一来,制程气体G1于上腔体110a中接近间隙G的流动形态,将实质上不会受到吹驱气体G2的影响,而能实质保持以层流的方式稳定地流动。如此一来,当制程气体G1自上腔体110a沉积于晶圆200的表面上时,由于上腔体110a靠近间隙G的位置没有产生有意义的紊流,因此制程气体G1将实质上不会于靠近间隙G的位置受到紊流的带动而不均匀地沉积于晶圆200的表面上,故此,也实质上不会导致于晶圆200的表面上尤其是靠近间隙G的位置形成厚度不一的薄膜,造成生产品质的降低。换句话说,排气通道140能够使制程气体G1于上腔体110a中实质保持以层流的方式稳定地流动,将有利于晶圆200在制程设备100中进行化学气相沉积制程,例如磊晶成长制程,而制程气体G1沉积于晶圆200的表面上的结晶层,也能够得到更佳的品质控制。
当制程设备100运作时,预热单元170会以热辐射的方式提供热能,借此提升制程腔体110的上腔体110a以及位于晶圆承托位置121的晶圆200的温度,而上腔体110a及晶圆200在受热后上升的温度,有利于制程气体G1在晶圆200的表面上形成薄膜。在实务的应用中,预热单元170可将晶圆200的温度加热至约1000~1200℃左右,但本发明并不以此为限。
为了要测量晶圆200表面的温度,在一些实施例中,制程设备100更可设有高温计195。举例而言,如图1所示,高温计195可位于上腔体110a中接近上腔壁111的位置。由于预热单元170可呈环状且至少部分围绕晶圆承托装置120设置,因此,预热单元170将不会位于晶圆200与高温计195之间,阻挡高温计195接收来自晶圆200的热辐射能量。
如上所述,当制程设备100运作时,预热单元170会以热辐射的方式提供热能,使得制程腔体110的上腔体110a以及位于晶圆承托位置121的晶圆200的温度上升。为使制程能够在稳定的环境条件下进行,并减低衬垫113的下衬垫113b于高温下向上腔体110a释放出不必要物质的机会,下衬垫113b的材质可选用具有耐高温特性的材料,例如二氧化硅。二氧化硅为酸性氧化物,其具有硬度大、耐高温、耐震及电性绝缘等性能,且二氧化硅的化学性质不活泼,不容易与水和大部分酸性溶液发生反应,因此,包含二氧化硅的下衬垫113b具有稳定的特性,且下衬垫113b在高温下向制程腔体110释放出不必要物质的机会也会降低。另外,在一些实施例中,下衬垫113b亦可包含石英,石英亦为硅的氧化物之一。
另一方面,为了避免制程气体G1因意外地进入下腔体110b,而与衬垫113的下衬垫113b产生化学反应,下衬垫113b的材质可选用具有耐酸特性的材料,例如:二氧化硅、石英或上述的任意组合。如此一来,即使制程气体G1因意外地进入下腔体110b,甚至与下衬垫113b产生接触,制程气体G1也不会与下衬垫113b产生有意义的化学作用,并对下衬垫113b造成有意义的破坏。如此一来,下衬垫113b的使用寿命得以有效延长。
相似地,上衬垫113a的材质亦可选用具有耐高温及/或耐酸特性的材料,例如:二氧化硅、石英或上述的任意组合。此外,为了减低晶圆承托装置120于高温下释放出不必要物质的机会,晶圆承托装置120的材质亦可包含石英,但本发明并不以此为限。
请参照图2,其绘示图1的下衬垫113b的立体示意图。如图2所示,排气通道140可呈长形,并沿下衬垫113b的周向CD延伸。在实务的应用中,排气通道140的大小为约40%~160%的排气管路130的大小,例如约50%、约100%或约150%的排气管路130的大小,但本发明并不以此为限。在一些实施例中,排气通道140的数量可为多个,且分别连通下腔体110b与排气管路130。
请参照图3,其绘示依照本发明多个实施例的化学气相沉积(Chemical VaporDeposition;CVD)制程300的流程图。进一步而言,除了上述的制程设备100之外,本发明的另一方面在于提供一种化学气相沉积制程300,如图3所示,图3的化学气相沉积制程300包含下列步骤(应了解到,在一些实施例中所提及的步骤,除特别叙明其顺序者外,均可依实际需要调整其前后顺序,甚至可同时或部分同时执行):
(1)导引至少一制程气体G1进入至少一晶圆200上方的上腔体110a(步骤310);
(2)导引至少一吹驱气体进G2进入晶圆200下方的下腔体110b(步骤320);以及
(3)导引至少部分位于下腔体110b中的吹驱气体G2进入排气管路130(步骤330)。
通过导引至少部分位于下腔体110b中的吹驱气体G2进入排气管路130,至少此部分的吹驱气体G2将不会流动至上腔体110a,因此吹驱气体G2因流动至上腔体110a而于上腔体110a中产生紊流(Turbulent Flow)的现象将可减轻。如此一来,制程气体G1于上腔体110a中流动的形态,将实质上不会受到吹驱气体G2的影响,而能实质保持以层流(LaminarFlow)的方式稳定地流动。如此一来,当制程气体G1自上腔体110a沉积于晶圆200的表面上时,由于上腔体110a中紊流所产生的影响降低,因此制程气体G1沉积于晶圆200表面上的均匀度将得以提高。换句话说,图3所绘示的化学气相沉积制程300,能够使制程气体G1于上腔体110a中实质上保持以层流的方式稳定地流动,有利于控制产品的均匀度。
综上所述,本发明上述的多个实施例所揭露的技术方案至少具有以下优点:
(1)由于排气通道连通制程腔体的下腔体与排气管路,因此,被注入至制程腔体的下腔体中的吹驱气体,将可以通过排气通道而流动至排气管路,继而离开制程设备。而且,在制程设备运作时,由于制程气体被注入至制程腔体的上腔体中,会使得上腔体中的压力增加,因此,通过维持排气管路处于低压的状态,至少部分的吹驱气体将会流动至压力相对较低的排气管路,而不会流动至压力相对较高的上腔体。
(2)由于吹驱气体流动至上腔体的机会降低,因此,吹驱气体因流动至上腔体而于上腔体中产生紊流(Turbulent Flow)的机会也会降低。如此一来,制程气体于上腔体中受到紊流影响的程度也将会降低,而能够实质上保持以层流(Laminar Flow)的方式稳定地流动。如此一来,当制程气体自上腔体沉积于晶圆的表面上时,由于紊流影响的程度降低,制程气体沉积于晶圆表面上的均匀度将会提高,亦即,晶圆表面上所形成的薄膜厚度不一的程度将会降低。换句话说,排气通道能够使制程气体于上腔体中实质保持以层流的方式稳定地流动,将有利于晶圆在制程设备中进行化学气相沉积,而制程气体沉积于晶圆表面上的薄膜,也能够得到更佳的品质控制。
虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何熟悉此技艺者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视所附的权利要求书所界定的范围为准。

Claims (10)

1.一种制程设备,其特征在于,包含:
一制程腔体;
一晶圆承托装置,位于该制程腔体中,该晶圆承托装置具有一晶圆承托位置,该晶圆承托位置将该制程腔体区分为位于该晶圆承托位置上方的一上腔体,与位于该晶圆承托位置下方的一下腔体;
至少一排气管路;以及
至少一排气通道,连通该下腔体与该排气管路。
2.根据权利要求1所述的制程设备,其特征在于,该排气管路连通该上腔体。
3.根据权利要求1所述的制程设备,其特征在于,该制程腔体包含:
至少一上腔壁,位于该晶圆承托位置上方;
至少一下腔壁,位于该晶圆承托位置下方;以及
至少一衬垫,介于该上腔壁与该下腔壁之间,且该排气通道位于该衬垫中。
4.根据权利要求1所述的制程设备,其特征在于,该制程腔体包含:
至少一上腔壁,位于该晶圆承托位置上方;
至少一下腔壁,位于该晶圆承托位置下方;
至少一上衬垫,介于该上腔壁与该下腔壁之间;以及
至少一下衬垫,介于该上衬垫与该下腔壁之间,且该排气通道位于该下衬垫中。
5.根据权利要求1所述的制程设备,其特征在于,还包含:
一制程气体源,连通该上腔体。
6.根据权利要求1所述的制程设备,其特征在于,还包含:
一吹驱气体源,连通该下腔体。
7.一种制程设备,其特征在于,包含:
一上腔壁;
一下腔壁;
至少一上衬垫,介于该上腔壁与该下腔壁之间;
至少一下衬垫,介于该上衬垫与该下腔壁之间,该下衬垫具有至少一吹驱气体排气通道于其中;以及
一排气管路,连通该吹驱气体排气通道。
8.根据权利要求7的制程设备,其特征在于,该上衬垫与该下衬垫共同定义一制程气体排气通道于其中,该排气管路更连通该制程气体排气通道。
9.一种化学气相沉积制程,其特征在于,包含:
导引至少一制程气体进入至少一晶圆上方的一上腔体;
导引至少一吹驱气体进入该晶圆下方的一下腔体;以及
导引至少部分位于该下腔体中的该吹驱气体进入一排气管路。
10.根据权利要求9所述的化学气相沉积制程,其特征在于,该吹驱气体包含惰性气体。
CN201610574665.2A 2016-07-21 2016-07-21 制程设备及化学气相沉积制程 Active CN107641796B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610574665.2A CN107641796B (zh) 2016-07-21 2016-07-21 制程设备及化学气相沉积制程

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610574665.2A CN107641796B (zh) 2016-07-21 2016-07-21 制程设备及化学气相沉积制程

Publications (2)

Publication Number Publication Date
CN107641796A true CN107641796A (zh) 2018-01-30
CN107641796B CN107641796B (zh) 2020-10-02

Family

ID=61109424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610574665.2A Active CN107641796B (zh) 2016-07-21 2016-07-21 制程设备及化学气相沉积制程

Country Status (1)

Country Link
CN (1) CN107641796B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112663027A (zh) * 2020-12-02 2021-04-16 鑫天虹(厦门)科技有限公司 可减少前驱物沉积的原子层沉积设备与制程方法
CN113005428A (zh) * 2019-12-20 2021-06-22 台湾积体电路制造股份有限公司 薄膜沉积系统以及沉积薄膜的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959438A (zh) * 2011-11-17 2014-07-30 株式会社Eugene科技 供应具有相位差的反应性气体的基板处理装置
CN104025259A (zh) * 2012-01-04 2014-09-03 株式会社Eugene科技 包括处理单元的基板处理装置
JP3204579U (ja) * 2015-03-25 2016-06-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated エピタキシャル成長装置用のチャンバ構成要素
CN105679666A (zh) * 2013-06-21 2016-06-15 应用材料公司 用于半导体处理腔室的吸收反射体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959438A (zh) * 2011-11-17 2014-07-30 株式会社Eugene科技 供应具有相位差的反应性气体的基板处理装置
CN104025259A (zh) * 2012-01-04 2014-09-03 株式会社Eugene科技 包括处理单元的基板处理装置
CN105679666A (zh) * 2013-06-21 2016-06-15 应用材料公司 用于半导体处理腔室的吸收反射体
JP3204579U (ja) * 2015-03-25 2016-06-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated エピタキシャル成長装置用のチャンバ構成要素

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113005428A (zh) * 2019-12-20 2021-06-22 台湾积体电路制造股份有限公司 薄膜沉积系统以及沉积薄膜的方法
CN113005428B (zh) * 2019-12-20 2023-10-10 台湾积体电路制造股份有限公司 薄膜沉积系统以及沉积薄膜的方法
CN112663027A (zh) * 2020-12-02 2021-04-16 鑫天虹(厦门)科技有限公司 可减少前驱物沉积的原子层沉积设备与制程方法

Also Published As

Publication number Publication date
CN107641796B (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
US6881295B2 (en) Air-tight vessel equipped with gas feeder uniformly supplying gaseous component around plural wafers
US9873941B2 (en) Film-forming manufacturing apparatus and method
US9039411B2 (en) Thermal treatment apparatus
JP5562409B2 (ja) 半導体装置の製造方法及び基板製造方法及び基板処理装置
JP2008041915A (ja) 熱処理装置及び熱処理方法
JP2006319301A (ja) 触媒化学気相蒸着装置
WO2005095680A1 (ja) 半導体単結晶製造装置および黒鉛るつぼ
US8114216B2 (en) Semiconductor single crystal growth method having improvement in oxygen concentration characteristics
US10870581B2 (en) Reaction furnace for producing polycrystalline silicon, apparatus for producing polycrystalline silicon, method for producing polycrystalline silicon, and polycrystalline silicon rod or polycrystalline silicon ingot
KR101704147B1 (ko) 다결정 실리콘 제조 장치 및 다결정 실리콘 제조 방법
JP5919482B2 (ja) 触媒化学気相成膜装置、それを用いた成膜方法及び触媒体の表面処理方法
US10760161B2 (en) Inject insert for EPI chamber
JP5921754B2 (ja) 蒸着法によって半導体ウエハ上に層を堆積させる装置
CN107641796A (zh) 制程设备及化学气相沉积制程
CN103732808A (zh) 碳化硅单晶制造设备
US9263261B2 (en) Method for supplying source gas for producing polycrystalline silicon and polycrystalline silicon
US9738530B2 (en) Polycrystalline silicon deposition method
JP2005039123A (ja) 化学気相成長装置
KR100966370B1 (ko) 화학 기상 증착 장치
JP2002261028A (ja) 半導体装置の製造用基板載置治具と縦型炉の組合わせ、基板載置治具、及び半導体装置の製造方法
JP2011184213A (ja) シリコン単結晶の製造方法
JP5524758B2 (ja) 結晶成長装置
US9534290B2 (en) Apparatus for deposition of polycrystalline silicon comprising uniformly spaced filament rods and gas inlet orifices, and process for deposition of polycrystalline silicon using same
TWI609988B (zh) 製程設備及化學氣相沉積製程
JP2000349030A (ja) 気相反応装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant