CN107622959A - 一种tcad仿真中mos电容cv特性曲线的校准方法 - Google Patents

一种tcad仿真中mos电容cv特性曲线的校准方法 Download PDF

Info

Publication number
CN107622959A
CN107622959A CN201710822297.3A CN201710822297A CN107622959A CN 107622959 A CN107622959 A CN 107622959A CN 201710822297 A CN201710822297 A CN 201710822297A CN 107622959 A CN107622959 A CN 107622959A
Authority
CN
China
Prior art keywords
mos capacitance
tcad
actual
characteristic
emulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710822297.3A
Other languages
English (en)
Other versions
CN107622959B (zh
Inventor
师沛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Micro Well Electronic Technology Co Ltd
Original Assignee
Shanghai Micro Well Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Micro Well Electronic Technology Co Ltd filed Critical Shanghai Micro Well Electronic Technology Co Ltd
Priority to CN201710822297.3A priority Critical patent/CN107622959B/zh
Publication of CN107622959A publication Critical patent/CN107622959A/zh
Application granted granted Critical
Publication of CN107622959B publication Critical patent/CN107622959B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种TCAD仿真中MOS电容CV特性曲线的校准方法,包括:建立TCAD工艺仿真程序并运行,得到MOS电容的仿真器件结构;进行实际流片,得到相应尺寸的MOS电容器件;对MOS电容器件进行测试,获得实际MOS电容CV特性曲线,计算得到栅氧厚度拟合值和实际沟道掺杂浓度;根据栅氧厚度拟合值和实际沟道掺杂浓度,对TCAD仿真中的栅氧厚度和沟道掺杂浓度进行校准,得到TCAD仿真中MOS电容CV特性曲线;将TCAD仿真中MOS电容CV特性曲线与实际测试结果进行对比和调整,获得硅禁带中的快速表面态分布;进一步调整硅和二氧化硅界面的固定电荷,以调整TCAD仿真中的阈值电压。本发明能够使TCAD仿真结果复现MOS电容CV特性曲线的测量结果。

Description

一种TCAD仿真中MOS电容CV特性曲线的校准方法
技术领域
本发明涉及半导体器件的TCAD仿真技术领域,更具体地,涉及一种在TCAD仿真中对MOS电容CV特性曲线进行校准的方法。
背景技术
集成电路工艺和器件的计算机辅助设计(TCAD)是集成电路器件设计和虚拟制造的重要组成部分,并成为集成电路工艺和器件特性快速分析的有力工具。
TCAD主要包括工艺仿真和器件仿真。其中,工艺仿真主要是利用实际工艺流程,得到器件结构及杂质分布、结深等;器件仿真主要是利用器件物理模型和相应测试条件,在器件结构上仿真得到器件特性参数和曲线等。
应用TCAD能缩短集成电路工艺和器件的开发周期,节省试制成本,并能获取实验很难得到的信息,深化工艺和器件的物理研究。目前,利用TCAD仿真平台对工艺及器件物理特性进行仿真的技术,己广泛应用于半导体工艺和器件设计中。
然而,随着集成电路特征尺寸的不断缩小,集成电路制造工艺和器件结构特性趋于复杂。这导致在TCAD仿真的实际应用中,仿真结果的“失真”越来越严重:工艺仿真中物理模型参数的不准,导致最终杂质分布和实际的差异越来越大;器件仿真中得到的电学参数也出现较大误差。这些问题极大地影响了TCAD仿真的可信度和精度,使得TCAD仿真结果无法为实际工艺和器件的研发提供有效指导。
因此,为了TCAD仿真能对器件设计和工艺优化提供准确的指导,对TCAD工具使用的物理模型参数进行校准是必要的。对于现代集成电路中使用最广泛的MOS晶体管器件,大面积MOS电容的校准是其中重要的一步。
通常,校准MOS电容CV特性曲线需要通过二次离子质谱仪(SIMS)测试得到栅区下方的阱区杂质分布曲线,并且需要通过电流泵等方法获得衬底硅和栅氧二氧化硅间快速表面态(Fast Surface State)分布,其测试步骤繁琐、耗时长,且成本较高。
发明内容
本发明的目的在于克服现有技术存在的上述缺陷,提供一种TCAD仿真中MOS电容CV特性曲线的校准方法。
为实现上述目的,本发明的技术方案如下:
一种TCAD仿真中MOS电容CV特性曲线的校准方法,包括以下步骤:
步骤S01:建立TCAD工艺仿真程序,并运行得到MOS电容的仿真器件结构;
步骤S02:进行实际流片,制作得到相应尺寸的MOS电容器件;
步骤S03:对所得MOS电容器件进行测试,获得实际MOS电容CV特性曲线,并计算得到栅氧厚度拟合值和实际沟道掺杂浓度;
步骤S04:根据栅氧厚度拟合值和实际沟道掺杂浓度,对TCAD仿真中的栅氧厚度和沟道掺杂浓度进行校准,得到TCAD仿真中MOS电容CV特性曲线;
步骤S05:将TCAD仿真中MOS电容CV特性曲线与实际测试结果进行对比和调整,获得硅禁带中的快速表面态分布;
步骤S06:进一步调整硅和二氧化硅界面的固定电荷,以调整TCAD仿真中的阈值电压。
优选地,步骤S01中,根据CMOS实际工艺流程、具体工艺参数以及版图尺寸信息,建立TCAD工艺仿真程序。
优选地,步骤S02中,按照所述CMOS实际工艺流程和具体工艺参数,并利用与所述版图尺寸信息匹配的版图进行实际流片。
优选地,步骤S03中,对所得MOS电容器件的栅极进行CV特性测试,获得实际MOS电容CV特性曲线,并由实际MOS电容CV特性曲线得到MOS电容器件的积累区电容,进而计算得到栅氧厚度拟合值,用于步骤S04中对TCAD器件仿真中的栅氧厚度进行校准。
优选地,步骤S03中,利用实际MOS电容CV特性曲线,计算得到实际沟道掺杂浓度,用于步骤S04中对TCAD工艺仿真中氧化和扩散的物理模型参数进行调整,以使工艺仿真中得到的校准后沟道掺杂浓度与实际沟道掺杂浓度相符。
优选地,步骤S04中,通过对TCAD工艺仿真中硅和二氧化硅之间扩散和氧化物理模型的边界条件参数进行校准,以使得工艺仿真中得到的校准后沟道掺杂浓度与实际沟道掺杂浓度相符。
优选地,所述边界条件参数包括描述不同材料界面偏析的界面陷阱模型中的陷阱密度和硅氧化过程中间隙的注入速率。
优选地,还包括:步骤S03中,利用实际MOS电容CV特性曲线得到MOS电容器件的反型区电容,确定对TCAD工艺仿真中多晶硅栅极掺杂浓度的校准。
优选地,步骤S05中,将TCAD仿真中MOS电容CV特性曲线与实际测试结果进行对比和调整,包括:通过调整硅禁带中靠近价带的指数分布快速表面态的浓度大小,以调整TCAD仿真中MOS电容CV特性曲线的左半部分形状与实际CV特性曲线的左半部分形状对准;通过调整硅禁带中靠近导带的指数分布快速表面态的浓度大小,以调整TCAD仿真中MOS电容CV特性曲线的右半部分形状与实际CV特性曲线的右半部分形状对准。
优选地,步骤S06中,通过调整阈值电压,以使TCAD仿真中MOS电容CV特性曲线的底部与实际CV特性曲线的底部对准。
从上述技术方案可以看出,本发明通过借助TCAD仿真工具,仅利用CV特性曲线即可同时确定MOS电容的沟道掺杂浓度、栅氧电学厚度,以及硅和栅氧二氧化硅间固定电荷和快速表面态分布,使得TCAD仿真结果能够复现MOS电容CV特性曲线的测量结果。本发明能够校准TCAD仿真中大面积MOS电容栅极CV特性曲线,具有所需测试步骤简单、花费少的优点,便于在测试条件有限时开展工作。
附图说明
图1是本发明一较佳实施例的一种TCAD仿真中MOS电容CV特性曲线的校准方法流程图;
图2是现有的一种硅-二氧化硅界面中的快速表面态在硅禁带中的U型分布示意图;
图3是多晶硅栅极掺杂浓度对MOS管栅极CV特性曲线反型区部分形状的影响示意图;
图4是硅禁带中靠近价带的指数分布快速表面态浓度大小对栅极CV特性曲线左半部分形状的影响示意图;
图5是硅禁带中靠近导带的指数分布快速表面态浓度大小对栅极CV特性曲线右半部分形状的影响示意图;
图6是未经校准的TCAD仿真结果和实际测试所得栅极CV特性曲线之间的差异示意图;
图7是最终校准的TCAD仿真结果和实际测试所得栅极CV特性曲线比较示意图。
具体实施方式
下面结合附图,对本发明的具体实施方式作进一步的详细说明。
需要说明的是,在下述的具体实施方式中,在详述本发明的实施方式时,为了清楚地表示本发明的结构以便于说明,特对附图中的结构不依照一般比例绘图,并进行了局部放大、变形及简化处理,因此,应避免以此作为对本发明的限定来加以理解。
在以下本发明的具体实施方式中,请参阅图1,图1是本发明一较佳实施例的一种TCAD仿真中MOS电容CV特性曲线的校准方法流程图。如图1所示,本发明的一种TCAD仿真中MOS电容CV特性曲线的校准方法,包括以下步骤:
步骤S01:建立TCAD工艺仿真程序,并运行得到MOS电容的仿真器件结构。
MOS电容栅极CV特性曲线的TCAD仿真结果决定于工艺仿真中的阱区注入杂质分布(主要是沟道参杂分布)、栅氧化层厚度、多晶硅栅极参杂以及硅和栅氧二氧化硅间固定电荷和快速表面态分布。其中,通过工艺仿真得到的栅氧化层厚度、多晶硅栅极参杂浓度误差较小,沟道参杂浓度、固定电荷和快速表面态分布误差较大,需要通过栅极CV特性曲线仔细确定。
首先,根据CMOS实际工艺流程、具体工艺参数以及版图尺寸信息,建立TCAD工艺仿真程序。其中,CMOS实际工艺流程包括但不限于以下前道工艺:浅沟槽隔离、双阱注入、热退火工艺、氧化工艺、多晶硅栅极形成工艺、轻掺杂漏注入工艺、源漏注入工艺和接触孔形成工艺等。由该工艺仿真程序运行得到大面积MOS管(MOS电容)的仿真器件结构。所谓大面积,是根据器件工艺结点和栅氧厚度决定的,本例中使用的约的栅氧厚度至少需要60μm×60μm的MOS管栅极大小。
步骤S02:进行实际流片,制作得到相应尺寸的MOS电容器件。
接着,按照上述的CMOS实际工艺流程和具体工艺参数,并利用与所述版图尺寸信息匹配的版图进行实际流片,制作得到相应尺寸的MOS电容(MOS管)器件。
步骤S03:对所得MOS电容器件进行测试,获得实际MOS电容CV特性曲线,并计算得到栅氧厚度拟合值和实际沟道掺杂浓度。
然后,在实际的器件测试结构上进行CV特性测试,即对得到的MOS电容器件的栅极(通常采用多晶硅)进行CV特性测试(例如进行低频CV特性测试,测试时所加的交流小信号频率通常在10kHz以下),获得实际MOS电容CV特性曲线。
之后,再由实际MOS电容CV特性曲线得到MOS电容器件的积累区电容,进而通过积累区电容计算得到栅氧厚度拟合值。栅氧厚度拟合值用于步骤S04中对TCAD器件仿真中的栅氧厚度(或栅氧平均介电常数)进行校准。栅氧厚度tOX满足公式一:
tOX=εOXA/Caccu 公式一
其中,εOX是栅介质(栅氧)介电常数,A是多晶硅栅极总面积,Caccu是积累区电容。
同时,可利用TCAD,以及利用实际MOS电容CV特性曲线,得到MOS电容器件的反型区电容,即MOS管栅极CV特性曲线中右端反型区部分所体现的形态,如图3所示。通过对反型区电容进行调整,就可以调整MOS管栅极CV特性曲线中反型区部分的高低(如图示箭头所指),从而就可确定对TCAD工艺仿真中多晶硅栅极掺杂浓度的校准。
还可利用实际MOS电容CV特性曲线,计算得到实际沟道掺杂浓度,用于对TCAD工艺仿真中氧化和扩散的物理模型参数进行调整,以使工艺仿真中得到的校准后沟道掺杂浓度与实际沟道掺杂浓度相符。方法如下:
a)通过实际MOS电容CV特性曲线作出1/C^2-V曲线,通过线性回归计算1/C^2-V曲线线性部分斜率kslope
b)计算沟道掺杂浓度NC,其满足公式二:
NC=2/qεsiA2kslope 公式二
其中,εsi是半导体介电常数,A是多晶硅栅极总面积,q是基本电荷。
步骤S04:根据栅氧厚度拟合值和实际沟道掺杂浓度,对TCAD仿真中的栅氧厚度和沟道掺杂浓度进行校准,得到TCAD仿真中MOS电容CV特性曲线。
进行沟道掺杂浓度校准时,可根据得到的实际沟道掺杂浓度,调整工艺仿真中氧化和扩散的物理模型参数。其中,由于硅内部物理模型参数较为准确,因而通常无需校准;实际上可通过对TCAD工艺仿真中硅和二氧化硅之间扩散和氧化物理模型的边界条件参数进行校准,来使得工艺仿真中得到的校准后沟道掺杂浓度与实际沟道掺杂浓度相符。
上述的边界条件参数可包括:描述不同材料界面偏析的界面陷阱模型中的陷阱密度和硅氧化过程中间隙的注入速率等。
步骤S05:将TCAD仿真中MOS电容CV特性曲线与实际测试结果进行对比和调整,获得硅禁带中的快速表面态分布。
很多文献指出,硅-二氧化硅界面中的快速表面态在硅禁带中会呈现U型分布,如图2所示。这一U型分布可以看作是由两个单调性相反的指数分布(Nt_left、Nt_right)的总和所构成。硅-二氧化硅界面中的快速表面态类型为施主。根据TCAD仿真,栅极CV特性曲线的左半部分形状会受到禁带中靠近价带的指数分布快速表面态浓度Nt_left的影响,而其右半部分形状会受禁带中靠近导带的指数分布快速表面态浓度Nt_right的影响。可以认为,硅-二氧化硅界面中的快速表面态浓度Dit≈Nt_left+Nt_right
图4、图5分别直观地展示了表面态浓度Nt_left、Nt_right的大小分布对栅极CV特性曲线形状的不同影响。以NMOS为例,图4说明Nt_left的浓度大小对栅极CV特性曲线“胖瘦”的影响;可以看出,随着表面态浓度的增加,栅极CV特性曲线变得越来越瘦。图5说明Nt_right浓度大小对栅极CV特性曲线亚阈值区域(即右半部分形状)斜率的影响。同样可以看出,随着表面态浓度的增加,亚阈值区域斜率变得越来越大。
图6用图示详细说明了校准方法。可以看出,通过调整硅禁带中靠近价带的指数分布快速表面态浓度Nt_left的大小,可以调整TCAD仿真中MOS电容CV特性曲线(未经校准)的“胖瘦”,使CV特性曲线左半部分形状与实际CV特性曲线的左半部分形状对准。通过调整硅禁带中靠近导带的指数分布快速表面态浓度Nt_right的大小,可以调整TCAD仿真中MOS电容CV特性曲线亚阈值区域的斜率,使CV特性曲线右半部分形状与实际CV特性曲线的右半部分形状对准。并且,通过对栅氧厚度进行校准,可以调整积累区电容之间存在的差异,使TCAD仿真中MOS电容CV特性曲线左端部分与实际CV特性曲线相吻合。通过对多晶硅栅极掺杂浓度进行校准,可以调整反型区电容之间存在的差异,使TCAD仿真中MOS电容CV特性曲线右端部分与实际CV特性曲线相吻合。通过对沟道掺杂浓度进行校准,可以调整电容最小值之间存在的差异,使TCAD仿真中MOS电容CV特性曲线下方部分与实际CV特性曲线相吻合。
步骤S06:进一步调整硅和二氧化硅界面的固定电荷,以调整TCAD仿真中的阈值电压。
如图6所示,适当调整硅-二氧化硅界面的固定电荷,可对MOS管的阈值电压进行微调,以缩小曲线底部电容极值处的电压差异,使得TCAD仿真中MOS电容CV特性曲线的最底部与实际CV特性曲线相对准。图7是最终校准后的结果,可以看出,经调整后的TCAD仿真中MOS电容CV特性曲线与实际CV特性曲线两者间的吻合度很高,从而使得TCAD仿真中大面积MOS电容栅极CV特性曲线得到精确校准。
综上所述,本发明通过借助TCAD仿真工具,仅利用CV特性曲线即可同时确定MOS电容的沟道掺杂浓度、栅氧电学厚度,以及硅和栅氧二氧化硅间固定电荷和快速表面态分布,使得TCAD仿真结果能够复现MOS电容CV特性曲线的测量结果。本发明能够校准TCAD仿真中大面积MOS电容栅极CV特性曲线,具有所需测试步骤简单、花费少的优点,便于在测试条件有限时开展工作。
以上所述的仅为本发明的优选实施例,所述实施例并非用以限制本发明的专利保护范围,因此凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。

Claims (10)

1.一种TCAD仿真中MOS电容CV特性曲线的校准方法,其特征在于,包括以下步骤:
步骤S01:建立TCAD工艺仿真程序,并运行得到MOS电容的仿真器件结构;
步骤S02:进行实际流片,制作得到相应尺寸的MOS电容器件;
步骤S03:对所得MOS电容器件进行测试,获得实际MOS电容CV特性曲线,并计算得到栅氧厚度拟合值和实际沟道掺杂浓度;
步骤S04:根据栅氧厚度拟合值和实际沟道掺杂浓度,对TCAD仿真中的栅氧厚度和沟道掺杂浓度进行校准,得到TCAD仿真中MOS电容CV特性曲线;
步骤S05:将TCAD仿真中MOS电容CV特性曲线与实际测试结果进行对比和调整,获得硅禁带中的快速表面态分布;
步骤S06:进一步调整硅和二氧化硅界面的固定电荷,以调整TCAD仿真中的阈值电压。
2.根据权利要求1所述的TCAD仿真中MOS电容CV特性曲线的校准方法,其特征在于,步骤S01中,根据CMOS实际工艺流程、具体工艺参数以及版图尺寸信息,建立TCAD工艺仿真程序。
3.根据权利要求2所述的TCAD仿真中MOS电容CV特性曲线的校准方法,其特征在于,步骤S02中,按照所述CMOS实际工艺流程和具体工艺参数,并利用与所述版图尺寸信息匹配的版图进行实际流片。
4.根据权利要求1或3所述的TCAD仿真中MOS电容CV特性曲线的校准方法,其特征在于,步骤S03中,对所得MOS电容器件的栅极进行CV特性测试,获得实际MOS电容CV特性曲线,并由实际MOS电容CV特性曲线得到MOS电容器件的积累区电容,进而计算得到栅氧厚度拟合值,用于步骤S04中对TCAD器件仿真中的栅氧厚度进行校准。
5.根据权利要求1或3所述的TCAD仿真中MOS电容CV特性曲线的校准方法,其特征在于,步骤S03中,利用实际MOS电容CV特性曲线,计算得到实际沟道掺杂浓度,用于步骤S04中对TCAD工艺仿真中氧化和扩散的物理模型参数进行调整,以使工艺仿真中得到的校准后沟道掺杂浓度与实际沟道掺杂浓度相符。
6.根据权利要求5所述的TCAD仿真中MOS电容CV特性曲线的校准方法,其特征在于,步骤S04中,通过对TCAD工艺仿真中硅和二氧化硅之间扩散和氧化物理模型的边界条件参数进行校准,以使得工艺仿真中得到的校准后沟道掺杂浓度与实际沟道掺杂浓度相符。
7.根据权利要求6所述的TCAD仿真中MOS电容CV特性曲线的校准方法,其特征在于,所述边界条件参数包括描述不同材料界面偏析的界面陷阱模型中的陷阱密度和硅氧化过程中间隙的注入速率。
8.根据权利要求5所述的TCAD仿真中MOS电容CV特性曲线的校准方法,其特征在于,还包括:步骤S03中,利用实际MOS电容CV特性曲线得到MOS电容器件的反型区电容,确定对TCAD工艺仿真中多晶硅栅极掺杂浓度的校准。
9.根据权利要求1所述的TCAD仿真中MOS电容CV特性曲线的校准方法,其特征在于,步骤S05中,将TCAD仿真中MOS电容CV特性曲线与实际测试结果进行对比和调整,包括:通过调整硅禁带中靠近价带的指数分布快速表面态的浓度大小,以调整TCAD仿真中MOS电容CV特性曲线的左半部分形状与实际CV特性曲线的左半部分形状对准;通过调整硅禁带中靠近导带的指数分布快速表面态的浓度大小,以调整TCAD仿真中MOS电容CV特性曲线的右半部分形状与实际CV特性曲线的右半部分形状对准。
10.根据权利要求1或9所述的TCAD仿真中MOS电容CV特性曲线的校准方法,其特征在于,步骤S06中,通过调整阈值电压,以使TCAD仿真中MOS电容CV特性曲线的底部与实际CV特性曲线的底部对准。
CN201710822297.3A 2017-09-13 2017-09-13 一种tcad仿真中mos电容cv特性曲线的校准方法 Active CN107622959B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710822297.3A CN107622959B (zh) 2017-09-13 2017-09-13 一种tcad仿真中mos电容cv特性曲线的校准方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710822297.3A CN107622959B (zh) 2017-09-13 2017-09-13 一种tcad仿真中mos电容cv特性曲线的校准方法

Publications (2)

Publication Number Publication Date
CN107622959A true CN107622959A (zh) 2018-01-23
CN107622959B CN107622959B (zh) 2019-12-06

Family

ID=61088453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710822297.3A Active CN107622959B (zh) 2017-09-13 2017-09-13 一种tcad仿真中mos电容cv特性曲线的校准方法

Country Status (1)

Country Link
CN (1) CN107622959B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109977564A (zh) * 2019-03-29 2019-07-05 上海华虹宏力半导体制造有限公司 一种提高soi工艺二极管模型适用性的方法及系统
CN110728110A (zh) * 2019-10-25 2020-01-24 上海华虹宏力半导体制造有限公司 一种提高mos器件模型精度的方法
CN112098799A (zh) * 2020-11-09 2020-12-18 四川立泰电子有限公司 Mosfet器件交流动态参数测试校准装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110601A (zh) * 2010-12-03 2011-06-29 复旦大学 制备可测量mos电容器低频cv曲线的器件结构的方法
CN102184879A (zh) * 2011-05-03 2011-09-14 中国科学院上海微系统与信息技术研究所 一种soi场效应晶体管的tcad仿真校准方法
US20140247067A1 (en) * 2012-08-29 2014-09-04 Peking University Testing structure and method for interface trap density of gate oxide
CN106934121A (zh) * 2016-12-30 2017-07-07 北京华大九天软件有限公司 一种测试器件模型仿真结果正确性的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110601A (zh) * 2010-12-03 2011-06-29 复旦大学 制备可测量mos电容器低频cv曲线的器件结构的方法
CN102184879A (zh) * 2011-05-03 2011-09-14 中国科学院上海微系统与信息技术研究所 一种soi场效应晶体管的tcad仿真校准方法
US20140247067A1 (en) * 2012-08-29 2014-09-04 Peking University Testing structure and method for interface trap density of gate oxide
CN106934121A (zh) * 2016-12-30 2017-07-07 北京华大九天软件有限公司 一种测试器件模型仿真结果正确性的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109977564A (zh) * 2019-03-29 2019-07-05 上海华虹宏力半导体制造有限公司 一种提高soi工艺二极管模型适用性的方法及系统
CN110728110A (zh) * 2019-10-25 2020-01-24 上海华虹宏力半导体制造有限公司 一种提高mos器件模型精度的方法
CN112098799A (zh) * 2020-11-09 2020-12-18 四川立泰电子有限公司 Mosfet器件交流动态参数测试校准装置及方法
CN112098799B (zh) * 2020-11-09 2021-02-12 四川立泰电子有限公司 Mosfet器件交流动态参数测试校准装置及方法

Also Published As

Publication number Publication date
CN107622959B (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
Galup-Montoro MOSFET modeling for circuit analysis and design
Chauhan et al. BSIM6: Analog and RF compact model for bulk MOSFET
Gildenblat et al. PSP: An advanced surface-potential-based MOSFET model for circuit simulation
CN107679261B (zh) 一种mos器件源漏与衬底间寄生电阻的建模方法
US8667440B2 (en) TCAD emulation calibration method of SOI field effect transistor
CN102968538B (zh) Mos晶体管psp失配模型的建模方法
CN107622959A (zh) 一种tcad仿真中mos电容cv特性曲线的校准方法
CN102142057A (zh) 应用于mosfet电学仿真的bsim4应力模型
Kushwaha et al. RF modeling of FDSOI transistors using industry standard BSIM-IMG model
CN105138803A (zh) 一种考虑温度效应的通用失配模型及其提取方法
Kabaoğlu et al. Statistical MOSFET modeling methodology for cryogenic conditions
CN105226054B (zh) 一种通用失配模型及其提取方法
CN108388728A (zh) Mos器件spice局域失配模型
CN108038322A (zh) 一种spice集中模型的建模方法及系统
CN104716065B (zh) 金属氧化物半导体场效应晶体管电容‑电压特性修正方法
Wu et al. An improved surface-potential-based model for MOSFETs considering the carrier Gaussian distribution
Severi et al. Accurate channel length extraction by split CV measurements on short-channel MOSFETs
Gupta et al. Modeling of cylindrical surrounding gate MOSFETs including the fringing field effects
CN108875200B (zh) 通用型wpe优化模型及其提取方法
CN102915394B (zh) 一种应用于mosfet电学仿真的psp应力的建模方法
Kushwaha et al. Modeling of threshold voltage for operating point using industry standard BSIM-IMG model
Chen et al. A three-parameters-only MOSFET subthreshold current CAD model considering back-gate bias and process variation
US20240232468A1 (en) Device leakage current model and method for extracting the same
Chen et al. DC and RF Small Signal Modeling of 28nm Planar MOSFET
CN115544937A (zh) 一种部分耗尽型soi mosfet体区电阻的计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant