CN107589188B - 阀切换技术联用色谱分离同时检测饮料中的糖类、甜味剂和防腐剂的方法 - Google Patents

阀切换技术联用色谱分离同时检测饮料中的糖类、甜味剂和防腐剂的方法 Download PDF

Info

Publication number
CN107589188B
CN107589188B CN201710787050.2A CN201710787050A CN107589188B CN 107589188 B CN107589188 B CN 107589188B CN 201710787050 A CN201710787050 A CN 201710787050A CN 107589188 B CN107589188 B CN 107589188B
Authority
CN
China
Prior art keywords
column
dionex
detection
preservatives
valve switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710787050.2A
Other languages
English (en)
Other versions
CN107589188A (zh
Inventor
陈梅兰
朱仙娜
沈燕飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Shuren University
Original Assignee
Zhejiang Shuren University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Shuren University filed Critical Zhejiang Shuren University
Priority to CN201710787050.2A priority Critical patent/CN107589188B/zh
Publication of CN107589188A publication Critical patent/CN107589188A/zh
Application granted granted Critical
Publication of CN107589188B publication Critical patent/CN107589188B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Alcoholic Beverages (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明公开了一种阀切换技术联用色谱分离同时检测饮料中的糖类、甜味剂和防腐剂的方法。样品经过前处理后进样
Figure DDA0001398325670000011
AS11‑HC(4×250mm)阴离子分离柱,通过设置合适的阀切换时间,在AS11‑HC柱上保留较弱的糖类物质先洗出并被收集在定量环中。收集在定量环中的糖类物质经二次切换被NaOH淋洗液冲洗冲入
Figure DDA0001398325670000012
PA10(4×250mm)柱中分离电化学检测。保留在
Figure DDA0001398325670000013
AS11‑HC(4×250mm)柱中的防腐剂和甜味剂随着淋洗液洗出,紫外检测器检测。本发明的方法可广泛应用于食品生产和饮料行业中的生产工艺质量控制或最终成品的成分检测。

Description

阀切换技术联用色谱分离同时检测饮料中的糖类、甜味剂和 防腐剂的方法
技术领域
本发明属于检测技术领域,具体涉及一种阀切换技术联用色谱分离同时检测饮料中的糖类、甜味剂和防腐剂的方法。
背景技术
饮料的主要原料是饮用水或矿泉水,果汁、蔬菜汁或植物的根、茎、叶、花和果实的抽提液。主要含甜味剂、酸味剂、香精、香料、食用色素、乳化剂、起泡剂、稳定剂和防腐剂等食品添加剂。防腐剂因能抑制微生物的生长繁殖,防止饮料腐败变质而延长保质期,而被广泛添加使用。但目前食品添加剂超量、超范围使用的现象很多,苯甲酸、山梨酸和对羟基苯甲酸酯类是使用最广泛的防腐剂。许多研究表明,人体食用防腐剂过量的食品会对人体造成潜在的危害。糖类既是生命体的基本原料和主要结构成分,也是生命体维持生命活动主要的能量来源,更是饮料的呈味物质。除此之外,糖类能与蛋白质结合形成糖蛋白,在生命活动中发挥重要作用。苯甲酸、山梨酸、安赛蜜、糖精钠,如图1所示,4种添加剂是饮料中关注较多的。苯甲酸和山梨酸作为防腐剂,应用比较广泛;安赛蜜和糖精钠是各类饮料中常用的甜味剂。对于甜味剂和防腐剂的使用限量,我国都有严格的规定。目前,糖类检测方法有高效液相法,离子色谱-脉冲安培法,液相色谱-示差折光检测法,核磁共振氢谱法毛细管电泳法等需要对他们进行单独测定,而甜味剂和防腐剂一般是通过紫外检测器进行检测。但在实际检测过程中发现中,有些糖类、甜味剂及防腐剂有紫外吸收而无电化学响应,而有些有电化学信号却无紫外吸收,因此在分析测试中,饮料中的防腐剂、甜味剂和糖需要分别对其进行测定。现有的技术手段无法做到一次性完成,检测过程繁琐,单独测定不仅会造成人力财力的浪费,而且无法满足某些对检测时效性较强应用的需求。
发明内容
本发明的目的在于解决现有技术中糖类、甜味剂及防腐剂无法同时检测的问题,并提供一种阀切换技术联用色谱分离同时检测饮料中的糖类、甜味剂和防腐剂的方法。
本发明所采用的具体技术方案如下:
阀切换技术联用色谱分离同时检测饮料中的糖类、甜味剂和防腐剂的方法,步骤为:将经过前处理的样品装载到六通阀1的定量环中,样品随着淋洗液进入连接高效液相色谱仪的Dionex IonPac AG11-HC(4mm×50mm,括号中数字代表型号,下同)保护柱和DionexIonPac AS11-HC(4mm×250mm)分析柱中,葡萄糖、果糖和蔗糖在AS11-HC柱中保留较弱,通过设置六通阀2的阀切换时间,使三种糖被全部切换收集于六通阀2的定量环中;一定时间后再次切换六通阀2,将定量环中的三种糖经淋洗液冲入到Dionex CarboPac PA10(4×50mm) 保护柱和Dionex CarboPac PA10(4×250mm)分析柱中,经分离后由电化学检测器检测;保留在IonPac AS11-HC分析柱中的亚硝酸盐、苯甲酸、山梨酸、安赛蜜、糖精钠五种物质随着淋洗液的淋洗被冲出色谱柱,进入紫外检测器检测。
作为优选,六通阀2的第一次阀切换时间为第2.3min,第二次阀切换时间为第3.3min。
作为优选,在样品检测的过程中,Dionex CarboPac PA10(4×50mm)保护柱和Dionex CarboPac PA10(4×250mm)分析柱中的淋洗条件为:流速1.0mL/min,柱温35℃,以45mmol/L的氢氧化钠淋洗液等度洗脱;Dionex IonPac AG11-HC (4mm×50mm)保护柱和Dionex IonPac AS11-HC(4mm×250mm)分析柱中的淋洗条件为:流速1.0mL/min,柱温35℃,以水和200mmol/L的氢氧化钠溶液混合成流动相进行梯度洗脱。
作为优选,电化学检测器的检测波形为Carbohydrates Standard Quad。
作为优选,紫外检测器检测波长为230nm。
本发明相对于现有技术而言,在0.5-2.5的线性范围内,方法的回归系数r2 ≥0.9990,重现性RSD≤6.72%,回收率为80.0%-120.0%。本方法可广泛应用于食品生产和饮料行业中的生产工艺质量控制或最终成品的成分检测。
附图说明
图1为4种添加剂的化学结构,图中a苯甲酸;b山梨酸;c安赛蜜;d糖精钠;
图2为色谱系统的工作过程;图中六通阀不同孔之间实线代表连通,虚线代表不连通,下同;
图3为1mg/L葡萄糖,果糖和蔗糖混合标准样品色谱图,图中1-葡萄糖, 2-果糖,3-蔗糖;
图4为亚硝酸,山梨酸,苯甲酸,安赛蜜和糖精钠混合标准样品色谱图, C=1.0mg/L,图中1-亚硝酸,2-山梨酸,3-苯甲酸,4-安赛蜜,5-糖精钠;
图5为葡萄糖,果糖和蔗糖混合溶液的色谱图,C=2.0mg/L;
图6为3种糖的第二个切换时间与峰面积的关系,C=1.0mg/L;
图7为3种糖的第一个切换时间与峰面积的关系,C=1.0mg/L;
图8为蛇草水电化学检测信号图,图中1-蔗糖;
图9为蛇草水紫外检测信号图;
图10为二锅头电化学检测信号图,图中1-蔗糖;
图11为二锅头紫外检测信号图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步阐述和说明。本发明中各个实施方式的技术特征在没有相互冲突的前提下,均可进行相应组合。
阀切换技术联用色谱分离同时检测饮料中的糖类、甜味剂和防腐剂的方法,其具体步骤为:将经过前处理的样品装载到六通阀1的定量环中,样品随着淋洗液进入连接高效液相色谱仪的Dionex IonPac AG11-HC(4mm×50mm)保护柱和Dionex IonPac AS11-HC(4mm×250mm)分析柱中,葡萄糖、果糖和蔗糖在 AS11-HC柱中保留较弱,通过设置六通阀2的阀切换时间(本实施例中选择 2.3min),使三种糖被全部切换收集于六通阀2的定量环中;一定时间后(本实施例中选择3.3min)再次切换六通阀2,将定量环中的三种糖经淋洗液冲入到 Dionex CarboPac PA10(4×50mm)保护柱和Dionex CarboPac PA10(4×250mm) 分析柱中,经分离后由电化学检测器检测;保留在IonPac AS11-HC分析柱中的亚硝酸盐、苯甲酸、山梨酸、安赛蜜、糖精钠五种物质随着淋洗液的淋洗被冲出色谱柱,进入紫外检测器检测。
下面详细阐述上述技术方案的理论依据和效果。
1 实验部分
1.1 仪器与试剂
仪器:ICS-5000型离子色谱仪(金电极,电化学检测器,美国赛默飞有限公司);安捷伦1200高液液相色谱仪带紫外检测器;数显恒温水浴锅HH-1型(金坛市江南仪器厂);电子分析天平BS-224S型(赛多利斯科学仪器有限公司);戴安梯度泵GP50(戴安中国有限公司)。
试剂:苯甲酸、亚硝酸钠(分析纯,购自上海振兴试剂厂)、安赛蜜、山梨酸、糖精钠(98%)(购自源叶生物);葡萄糖(分析纯,购自天津市永大化学试剂有限公司)、D-果糖(高纯,99%)(购自源叶生物)、蔗糖(分析纯,购自广州市金华大化学试剂有限公司)。实验用水为超纯水(Millipore,Molsheim, France,电阻率18.2MΩ·cm)。
实验样品:红星二锅头(酒精度:56%vol)、东方树叶乌龙茶原味茶饮料、哇哈哈苏打水饮品、崂山白花蛇草水,购自当地超市。下文简称它们为二锅头、乌龙茶、苏打水和蛇草水。
1.2 溶液制备
标准储备溶液:苯甲酸、亚硝酸钠、安赛蜜、山梨酸、糖精钠由分析纯试剂配置成浓度为1000mg/L的贮备液,葡萄糖、果糖、蔗糖由分析纯试剂配置成浓度为1000mg/L的贮备液,储存于4℃冰箱备用。
标准混合溶液:分别移取一定量的上述标准储备溶液至10mL的容量瓶中,用超纯水定容,配得浓度均为0.50mg/L、1.00mg/L、1.50mg/L、2.00mg/L、2.50 mg/L的混合标准溶液系列备用。
样品溶液的配制:样品溶液的处理:把饮料或二锅头置于试管中,放置于 80℃水浴中加热20分钟,并搅拌,以除去CO2气体或乙醇,以减少两者对实验分析的影响。样品冷却至室温,过0.45μm微孔滤膜后进样分析。
1.3 色谱条件
色谱系统的工作过程如图2,在连接时尽量缩短仪器单元与单元之间的连接线,以减少死体积。图中a是将样品装载到六通阀1中的25μL定量环中;样品随着淋洗液进入分析柱
Figure BDA0001398325650000051
AS11-HC中,五种物质(亚硝酸盐、苯甲酸、山梨酸、安赛蜜、糖精钠)在AS11-HC上面有保留,三种糖(葡萄糖、果糖、蔗糖)在AS11-HC柱中保留较弱,在2.3min被洗出通过阀2切换收集于定量环中,如图中b所示;3.3min后,再次切换阀2,收集在定量环中的物质经淋洗液冲入到
Figure BDA0001398325650000052
PA10(4×250mm)分析柱中,经分离后电化学检测。而保留在 AS11-HC中待测物经冲洗后进入紫外检测器检测,如图中c所示。分析完成后,系统切换到原始状态,如图中d所示。
电化学检测条件:保护柱Dionex CarboPacTMPA10(4×50mm),分析柱Dionex
Figure BDA0001398325650000053
PA10(4×250mm),流速1.0mL/min,柱温35℃。以45mmol/L的氢氧化钠淋洗液等度洗脱,电化学检测。电化学检测器的波形为:Carbohydrates (Standard Quad)。
紫外检测物质分离条件:保护柱
Figure BDA0001398325650000054
AG11-HC(4×50mm),分析柱
Figure BDA0001398325650000055
AS11-HC(4×250mm);流动相:水(A)和200mmol/L的氢氧化钠溶液(B),梯度淋洗条件见表1,进样量25μL,柱温35℃。紫外检测器检测波长为230nm。
表1 防腐剂及甜味剂的梯度淋洗程序
Figure BDA0001398325650000056
2 结果与分析
2.1 淋洗条件的优化
在样品检测的过程中,通过对不同的流动相条件进行试验,最终确定用 DionexCarboPacTMPA10(4×50mm)保护柱,Dionex
Figure BDA0001398325650000057
PA10(4×250mm) 分析柱用45mmol/L的NaOH淋洗液,流速1.0mL/min等度淋洗用来分离三种糖:葡萄糖、果糖和蔗糖,色谱图见图3。Dionex IonPac AG11-HC(4mm×50mm) 保护柱和Dionex IonPac AS11-HC(4mm×250mm)分析柱,根据表1的梯度淋洗条件,以1.0mL/min的流速梯度淋洗五种防腐剂、甜味剂:亚硝酸盐、苯甲酸、山梨酸、安赛蜜、糖精钠,色谱图见图4。
2.2 切换时间的选择
为确定合适的阀切换时间,首先要知道糖类物质的大致出峰时间。保护柱
Figure BDA0001398325650000061
AG11-HC(4×50mm)和分析柱
Figure BDA0001398325650000062
AS11-HC(4×250mm)后面直接连接电化学检测器和紫外检测器,采用表1的梯度淋洗,观察2mg/L糖类、防腐剂和甜味剂标准混合溶液的出峰情况,由于如图5所示,从图中可以看出, 3种糖类物质保留非常弱,在2.4min左右开始冲出,在3.3min左右已全部被冲出,几种防腐剂和甜味剂约在6min后出峰,见图4。
其次,以防系统压力过高,本发明选用定量环代替富集柱收集阀切换出的液体,定量环的长度是保证收集是否完全的一个因素,太短可能导致前期收集的液体流出,太长导致峰展宽。我们的计算方法是:首先确定需要收集的液体的量,根据切换的时间及流速可推算出切换的量,然后根据使用的绿色peek管的直径及长度得到收集环的容积,收集环的容积要略大于切换的量,以保证收集完全,最终确定定量环的长度为418cm。为了获得更准确的切换时间,对1.0mg/L标准混合溶液进行一系列的测试。首先在第一个切换时间为2.4min的条件下,分别测试第二个切换时间为3.1min、3.2min、3.3min、3.4min、3.6min时标准混合溶液的出峰情况,得到各个糖和防腐剂、甜味剂的时间与峰面积关系如图6所示。
由该图6可知,3.3min时,富集效果最好,因此选择3.3min为第二个切换时间。然后固定第二个切换时间为3.3min,分别测试2.0min、2.2min、2.3min、 2.4min、2.6min时标准混合溶液的出峰情况,得到切换时间与峰面积关系如图9 所示。由该曲线图可知,2.3min时,富集效果最好,因此选择2.3min为第一个切换时间。
2.3 标准曲线、重现性和检出限
分别配制各检测物质0.5mg/L,1.0mg/L,1.5mg/L,2.0mg/L,2.5mg/L的系列浓度,按上述的色谱条件进样,得到峰面积和浓度的线性方程。对浓度为1.0 mg/L的标准溶液重复进样8次求得方法的重现性及3倍信噪比,得方法的检出限(S/N),结果见表2。可见,该方法在0.5-2.5mg/L线性范围内有较好的相关系数、检出限及重现性。
表2 线性关系及检出限
Figure BDA0001398325650000071
2.4 样品分析及回收率实验
取适量的样品置于试管中,放置80℃水浴中加热20min以除去气泡或乙醇,冷却至室温后过0.45μm微孔滤膜,滤液进上述的阀切换色谱系统。蛇草水和二锅头的色谱图见图8-图11。以同样的方法进行加标测定,平行进样三次,测定加标回收率,实验结果见表3-表5。
表3 二锅头白酒加标回收率
Figure BDA0001398325650000072
表4 蛇草水加标回收率
Figure BDA0001398325650000081
表5 苏打水加标回收率
Figure BDA0001398325650000082
由此可见,本方法采用阀切换联用
Figure BDA0001398325650000083
AS11-HC(4×250mm)分离,紫外检测和
Figure BDA0001398325650000084
PA10(4×250mm)分离电化学检测同时检测饮料中的3种糖和5种防腐剂、甜味剂。该方法简单方便,整体性完整,重现性理想,回收率高,测定数据准确可靠,可以广泛应用于食品生产和饮料行业中的生产工艺质量控制或最终成品的成分检测。
以上所述的实施例只是本发明的一种较佳的方案,然其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (1)

1.一种阀切换技术联用色谱分离同时检测饮料中的糖类、甜味剂和防腐剂的方法,其特征在于,将经过前处理的样品装载到六通阀1的定量环中,样品随着淋洗液进入连接高效液相色谱仪的Dionex IonPac AG11-HC 4 mm×50 mm保护柱和Dionex IonPac AS11-HC 4mm×250 mm分析柱中,葡萄糖、果糖和蔗糖在AS11-HC柱中不保留,通过设置六通阀2的阀切换时间,使三种糖被全部切换收集于六通阀2的定量环中;一定时间后再次切换六通阀2,将定量环中的三种糖经淋洗液冲入到Dionex CarboPac PA10 4×50mm保护柱和DionexCarboPac PA10 4×250mm分析柱中,经分离后由电化学检测器检测;保留在IonPac AS11-HC分析柱中的亚硝酸盐、苯甲酸、山梨酸、安赛蜜、糖精钠五种物质随着淋洗液的淋洗被冲出色谱柱,进入紫外检测器检测;
其中,六通阀2的第一次阀切换时间为第2.3 min,第二次阀切换时间为第3.3 min;
在样品检测的过程中,Dionex CarboPac PA10 4×50mm保护柱和Dionex CarboPacPA10 4×250mm分析柱中的淋洗条件为:流速1.0mL/min,柱温35℃,以45mmol/L的氢氧化钠淋洗液等度洗脱;Dionex IonPac AG11-HC 4 mm×50 mm保护柱和Dionex IonPac AS11-HC4 mm×250 mm分析柱中的淋洗条件为:流速1.0mL/min,柱温35℃,以水和200mmol/L的氢氧化钠溶液混合成流动相进行梯度洗脱;
电化学检测器的检测波形为Carbohydrates Standard Quad;
紫外检测器检测波长为230 nm。
CN201710787050.2A 2017-09-04 2017-09-04 阀切换技术联用色谱分离同时检测饮料中的糖类、甜味剂和防腐剂的方法 Active CN107589188B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710787050.2A CN107589188B (zh) 2017-09-04 2017-09-04 阀切换技术联用色谱分离同时检测饮料中的糖类、甜味剂和防腐剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710787050.2A CN107589188B (zh) 2017-09-04 2017-09-04 阀切换技术联用色谱分离同时检测饮料中的糖类、甜味剂和防腐剂的方法

Publications (2)

Publication Number Publication Date
CN107589188A CN107589188A (zh) 2018-01-16
CN107589188B true CN107589188B (zh) 2020-03-17

Family

ID=61050715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710787050.2A Active CN107589188B (zh) 2017-09-04 2017-09-04 阀切换技术联用色谱分离同时检测饮料中的糖类、甜味剂和防腐剂的方法

Country Status (1)

Country Link
CN (1) CN107589188B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108490107A (zh) * 2018-03-09 2018-09-04 山东省分析测试中心 一种用于复杂样品循环分离的液相色谱仪及工作方法
CN109270192B (zh) * 2018-12-02 2024-02-02 太湖流域水文水资源监测中心(太湖流域水环境监测中心) 用于水产品磺胺类抗生素检测的前处理装置、方法和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103616448A (zh) * 2013-11-29 2014-03-05 中山鼎晟生物科技有限公司 一种食品添加剂的检测方法和系统
CN106290603A (zh) * 2016-07-19 2017-01-04 浙江树人大学 一种利用阀切换方法同时检测植物中的无机阴离子、有机酸和三种植物素的方法与应用
CN106680388A (zh) * 2016-12-15 2017-05-17 天津量信检验认证技术有限公司 一种同时检测食品中防腐剂、甜味剂、着色剂的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103616448A (zh) * 2013-11-29 2014-03-05 中山鼎晟生物科技有限公司 一种食品添加剂的检测方法和系统
CN106290603A (zh) * 2016-07-19 2017-01-04 浙江树人大学 一种利用阀切换方法同时检测植物中的无机阴离子、有机酸和三种植物素的方法与应用
CN106680388A (zh) * 2016-12-15 2017-05-17 天津量信检验认证技术有限公司 一种同时检测食品中防腐剂、甜味剂、着色剂的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Artificial sweeteners in beverages by ultra performance liquid chromatography with photodiode array and liquid chromatography tandem mass spectrometry;Lorenzo, RA 等;《FOOD CONTROL》;20140626;第47卷;第43-52页 *
离子色谱-脉冲安培检测器分析饮料中单糖和二糖;刘晓玲等;《光谱实验室》;20100523;第27卷(第2期);第441-445页 *
紫外检测一离子色谱法测定食品中的硝酸盐和亚硝酸盐;王心宇等;《化学分析计量》;20070902;第11卷(第2期);第28-29页 *
高效液相色谱法同时检测饮料中十二种食品添加剂;赵笑虹等;《食品工业科技》;20100114;第30卷(第11期);第294-295页,第298页 *
高效液相色谱法同时测定饮料中合成色素、甜味剂和防腐剂;罗志刚等;《实用预防医学》;20101017;第17卷(第8期);第1656-1658页 *

Also Published As

Publication number Publication date
CN107589188A (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
Agius et al. Quantification of sugars and organic acids in tomato fruits
AU2019468883B2 (en) Method for quality control and chromatographic fingerprinting of epimedium compound product
Preti et al. Fast determination of biogenic amines in beverages by a core–shell particle column
US20200240967A1 (en) Method for product quality control and fingerprint detection of epimedium brevicornu complex
Rizzolo et al. HPLC assay of ascorbic acid in fresh and processed fruit and vegetables
CN103267821A (zh) 一种葡萄果实糖分hplc-elsd测定方法
CN107589188B (zh) 阀切换技术联用色谱分离同时检测饮料中的糖类、甜味剂和防腐剂的方法
CN107202836B (zh) 一种茶叶鲜样中茶氨酸含量的快速分析方法
CN110108830B (zh) 一种同时对蓝靛果中9种花青素进行定性和定量检测的方法
Sammani et al. Development of an on-line lab-on-valve micro-solid phase extraction system coupled to liquid chromatography for the determination of flavonoids in citrus juices
Gomis et al. Application of HPLC to characterization and control of individual acids in apple extracts and ciders
CN103852531A (zh) 一种利用hplc-elsd测定啤酒中麦芽低聚糖的方法
CN107345946B (zh) 用于法庭科学毒品检测的甲卡西酮标准物质的纯化制备方法
CN106404956B (zh) 高效液相色谱-串联质谱内标法同时检测葡萄酒和/或果酒中四种有机酸的方法及其应用
Mataix et al. Determination of anthocyanins in wine based on flow-injection, liquid–solid extraction, continuous evaporation and high-performance liquid chromatography–photometric detection
Corradini et al. High performance anion-exchange chromatography with pulsed amperometric detection of nutritionally significant carbohydrates
Fa et al. Color and alcohol removal for the simultaneous detection of amino acids and sugars in wine by two-dimensional ion chromatography
CN111089926A (zh) 一种在线凝胶净化测定苯并[a]芘及其代谢产物的系统和方法
CN106290603A (zh) 一种利用阀切换方法同时检测植物中的无机阴离子、有机酸和三种植物素的方法与应用
Calull et al. A method for the determination of histamine in wine by HPLC with precolumn derivatization with phenylisothiocyanate
Young Automated colorimetric measurement of free arginine in peanuts as a means to evaluate maturity and flavor
CN111175416B (zh) 一种同时检测山茱萸中7种成分的方法
CN112630327B (zh) 一种肉苁蓉活性成分的快速检测方法
Marcé et al. Determination of major carboxylic acids in wine by an optimized HPLC method with linear gradient elution
CN107064391B (zh) 一种测定玉兰亚属植物中玉米素的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant