CN107573938A - 一种稀土掺杂磷灰石荧光纳米点的制备方法和应用 - Google Patents

一种稀土掺杂磷灰石荧光纳米点的制备方法和应用 Download PDF

Info

Publication number
CN107573938A
CN107573938A CN201710729912.6A CN201710729912A CN107573938A CN 107573938 A CN107573938 A CN 107573938A CN 201710729912 A CN201710729912 A CN 201710729912A CN 107573938 A CN107573938 A CN 107573938A
Authority
CN
China
Prior art keywords
earth
fluorescent nano
nano dot
ion
apatite fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710729912.6A
Other languages
English (en)
Other versions
CN107573938B (zh
Inventor
韩颖超
邢庆国
何王美
戴红莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201710729912.6A priority Critical patent/CN107573938B/zh
Publication of CN107573938A publication Critical patent/CN107573938A/zh
Application granted granted Critical
Publication of CN107573938B publication Critical patent/CN107573938B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种稀土掺杂磷灰石荧光纳米点的制备方法和应用,首先配制含聚丙烯酸、钙离子、稀土离子的胶体溶液并用氨水调节其pH至4‑9;然后将其与磷酸根离子溶液按比例混合并用氨水调节pH至9‑10,得到乳白色悬浮液;最后将悬浮液加热进行水热处理,经离心、洗涤得到稀土掺杂磷灰石荧光纳米点。本发明实现了稀土掺杂磷灰石荧光纳米点的可控化制备,将其尺寸控制在2.0‑10nm,并且具有良好的水悬浮稳定性和荧光性能,可作为生物成像剂应用于体内外荧光成像。

Description

一种稀土掺杂磷灰石荧光纳米点的制备方法和应用
技术领域
本发明涉及纳米点材料制备技术领域,具体涉及一种稀土掺杂磷灰石荧光纳米点的制备方法及该荧光纳米点材料在体内外荧光成像领域的应用。
背景技术
癌症的早期诊断是实现有效治疗的关键,荧光纳米粒子可以实现对肿瘤细胞的标记和早期诊断。荧光纳米粒子主要有:高分子荧光纳米粒子、半导体量子点、镧系掺杂纳米粒子,前两种纳米粒子存在光学稳定性低和有毒性等不足,阻碍了其在体内外荧光成像的应用,而镧系掺杂纳米粒子已发展成为可替代高分子荧光纳米粒子和半导体量子点的新纳米粒子,其特点是斯托克斯位移、尖发射带宽和很好抗光淬灭特性。
磷灰石因具有良好的生物相容性,在组织工程、药物载体以及其他生物领域中有着广泛的应用。同时,磷灰石是一种能够实现稀土离子掺杂的良好基质材料,稀土掺杂磷灰石的纳米粒子不仅保持很好的生物相容性,而且具有较强荧光稳定性、高灵敏度和多色光检测等优点,因此,稀土掺杂磷灰石荧光纳米粒子可作为良好的生物成像剂应用于体内外荧光成像。
目前,稀土掺杂磷灰石荧光纳米粒子的合成方法主要有:共沉淀法、溶胶-凝胶法、乳液法、水热法等,一般要经过热处理来增强其结晶度,从而提高其荧光性能。但是,热处理过程往往会导致纳米粒子出现团聚、尺寸增加等问题,从而影响其作为荧光成像剂的使用。因此有必要进一步探讨稀土掺杂磷灰石纳米粒子可控合成技术,在获得高荧光性能的同时降低其颗粒尺寸。
三维尺寸都小于10nm的荧光纳米点,其小尺寸有利于细胞吞噬。因此,探讨稀土掺杂磷灰石荧光纳米点的合成方法,调控使得其三维尺寸都在10nm以下,有望获得一种高性能的稀土掺杂磷灰石生物成像剂。
发明内容
本发明的目的在于克服现有稀土掺杂磷灰石荧光纳米粒子合成方法中存在的上述缺陷,提供一种尺寸可控的稀土掺杂磷灰石荧光纳米点的制备方法。采用该方法制备得到的荧光纳米点材料尺寸在2.0-10nm之间,形貌近似为球形且尺寸分布均匀,并且具有良好的水悬浮稳定性和荧光性能,可作为生物成像剂应用于体内外荧光成像。
为实现上述目的,本发明所采用的技术方案如下:
一种稀土掺杂磷灰石荧光纳米点的制备方法,其特征在于,包括以下步骤:(a)配制含聚丙烯酸、钙离子、稀土离子的胶体溶液并调节其pH;(b)配制含磷酸根离子的溶液,将其与步骤(a)所得胶体溶液按比例混合,调节pH得到悬浮液;(c)悬浮液加热进行水热反应,分离得到稀土掺杂磷灰石荧光纳米点。
按照上述方案,步骤(a)所述胶体溶液中聚丙烯酸的浓度为4-8mg/mL,钙离子和稀土离子的总浓度为0.0334-0.1002mol/L,稀土离子的摩尔数占(钙离子+稀土离子)总摩尔数的4%-17%。
进一步的,步骤(a)所述胶体溶液中聚丙烯酸中的羧酸根与(钙离子+稀土离子)的摩尔比为0.46-0.92。
按照上述方案,步骤(b)中所配制的含磷酸根离子溶液的浓度为0.02-0.06mol/L,混合所得悬浮液中钙离子和稀土离子的总浓度为磷酸根离子浓度的1.50-1.67倍。
按照上述方案,水热反应的温度为60-180℃。
按照上述方案,步骤(a)中用氨水调节胶体溶液的pH至4.0-9.0,步骤(b)中用氨水调节悬浮液的pH至9.0-10.0。
按照上述方案,所述稀土离子为Eu3+、Tb3+、Yb3+中的一种。
按照上述方案,所述稀土掺杂磷灰石荧光纳米点的尺寸为2.0-10nm。
上述稀土掺杂磷灰石荧光纳米点作为生物成像剂用于体内外荧光成像的应用。
与现有技术相比,本发明具有以下有益效果:(1)本发明基于PAA链中的羧酸根(COO-)与钙离子和稀土离子形成络合物,在水热处理过程中,PAA可抑制稀土掺杂磷灰石晶核的形成和长大,实现晶粒尺寸的可控制备,此外PAA的空间位阻效应可以降低颗粒的团聚,提高产物的悬浮稳定性;(2)实现了稀土掺杂磷灰石荧光纳米点的可控化制备,并将其尺寸调控在2.0-10nm范围内,制得的荧光纳米点形貌近似为球形且尺寸分布均匀,具有良好的水悬浮稳定性和荧光性能,可作为生物成像剂应用于体内外荧光成像。
附图说明
图1为实施例1中稀土掺杂磷灰石荧光纳米点透射电镜图和粒径分布直方图;
图2为实施例2中稀土掺杂磷灰石荧光纳米点透射电镜图和粒径分布直方图;
图3为实施例3中稀土掺杂磷灰石荧光纳米点透射电镜图和粒径分布直方图;
图4为实施例4中稀土掺杂磷灰石荧光纳米点透射电镜图和粒径分布直方图;
图5为实施例2中稀土掺杂磷灰石荧光纳米点在水中悬浮2周后的图片;
图6为实施例1-4中稀土掺杂磷灰石荧光纳米点的荧光发射和激发光谱图(图中a、b、c和d分别对应于实施例1、2、3和4);
图7为应用例1中稀土掺杂磷灰石荧光纳米点的组织成像图片。
具体实施方式
下面通过具体实验过程对本发明做进一步的解释说明,本领域普通技术人员应当明白,以下说明不会对本发明构成任何限制。
下述实施过程中所用的材料、试剂等,如无特殊说明,均可从普通商业途径得到。
实施例1
配置15ml聚丙烯酸与钙离子、稀土离子的胶体溶液并用氨水调节pH=9.0,搅拌15min。其中,Eu3+/(Ca2++Eu3+)的摩尔分数为4%。将15ml磷酸根离子溶液与得到的胶体溶液混合,用氨水调节pH=9.7并剧烈搅拌30min,得到乳白色悬浮液。其中,(Ca2++Eu3+)/P摩尔分数为1.67,聚丙烯酸中羧酸根与(Ca2++Eu3+)的摩尔比为0.92,(Ca2++Eu3+)、PO4 3-和PAA浓度分别为0.0501M,0.03M和4mg/ml。将所得到的乳白色悬浮液在60℃条件下水热处理1h(平均升温速率为12℃/min),经离心、洗涤到稀土掺杂磷灰石荧光纳米点。
本实施例制得的稀土掺杂磷灰石荧光纳米点透射电镜图和粒径分布直方图如图1所示。图1显示,60℃条件下所得到荧光纳米点形貌为均匀球形且平均直径约为2.0nm。其荧光光谱图(图6-a)分别在394nm、470nm和593nm、617nm、699nm处有强的激发和发射峰。
实施例2
配置15ml聚丙烯酸与钙离子、稀土离子的胶体溶液并用氨水调节pH=5.0,搅拌15min。其中,Eu3+/(Ca2++Eu3+)的摩尔分数为4%。将15ml磷酸根离子溶液与得到的胶体溶液混合,用氨水调节pH=9.7并剧烈搅拌30min,得到乳白色悬浮液。其中,(Ca2++Eu3+)/P摩尔分数为1.67,聚丙烯酸中羧酸根与(Ca2++Eu3+)的摩尔比为0.92,(Ca2++Eu3+)、PO4 3-和PAA浓度分别为0.0501M,0.03M和4mg/ml。将所得到的乳白色悬浮液移入高压反应釜中,在180℃条件下水热处理1h(平均升温速率为5.1℃/min),即得到稀土掺杂磷灰石荧光纳米点悬浮液。经离心、洗涤得到稀土掺杂磷灰石荧光纳米点。
本实施例制得的稀土掺杂磷灰石荧光纳米点透射电镜图和粒径分布直方图如图2所示。图2显示,180℃条件下所得到荧光纳米点形貌为球形且平均直径约为2.2nm。图5显示,该荧光纳米点在水中悬浮2周后仍保持良好的悬浮稳定性。其荧光光谱图(图6-b)分别在394nm、470nm、526nm和593nm、617nm、699nm处有强的激发和发射峰。
实施例3
配置15ml聚丙烯酸与钙离子、稀土离子的胶体溶液并用氨水调节pH=9.0,搅拌15min。其中,Eu3+/(Ca2++Eu3+)的摩尔分数为4%。将15ml磷酸根离子溶液与得到的胶体溶液混合,用氨水调节pH=9.7并剧烈搅拌30min,得到乳白色悬浮液。其中,(Ca2++Eu3+)/P摩尔分数为1.67,聚丙烯酸中羧酸根与(Ca2++Eu3+)的摩尔比为0.46,(Ca2++Eu3+)、PO4 3-和PAA浓度分别为0.0501M,0.03M和2mg/ml。将所得到的乳白色悬浮液移入高压反应釜中,在120℃条件下水热处理1h(平均升温速率为10℃/min),经离心、洗涤得到稀土掺杂磷灰石荧光纳米点。
本实施例制得的稀土掺杂磷灰石荧光纳米点透射电镜图和粒径分布直方图如图3所示。图3显示,所得到荧光纳米点形貌为球形且平均直径约为4.2nm。其荧光光谱图(图6-c)分别在394nm、470nm和593nm、617nm、699nm处有强的激发和发射峰。
实施例4
配置15ml聚丙烯酸与钙离子、稀土离子的胶体溶液并用氨水调节pH=9.0,搅拌15min。其中,Eu3+/(Ca2++Eu3+)的摩尔分数为4%。将15ml磷酸根离子溶液与得到的胶体溶液混合,用氨水调节pH=9.7并剧烈搅拌30min,得到乳白色悬浮液。其中,(Ca2++Eu3+)/P摩尔分数为1.67,聚丙烯酸中羧酸根与(Ca2++Eu3+)的摩尔比为0.92,(Ca2++Eu3+)、PO4 3-和PAA浓度分别为0.0501M,0.03M和4mg/ml。将所得到的乳白色悬浮液移入高压反应釜中,在120℃条件下水热处理1h(平均升温速率为10℃/min),经离心、洗涤得到稀土掺杂磷灰石荧光纳米点。
本实施例制得的稀土掺杂磷灰石荧光纳米点透射电镜图和粒径分布直方图如图4所示。图4显示,所得到荧光纳米点形貌近似为球形且平均直径约为8.8nm。其荧光光谱图(图6-d)分别在394nm、470nm和593nm、617nm、699nm处有强的激发和发射峰。
实施例5
配置15ml聚丙烯酸与钙离子、稀土离子的胶体溶液并用氨水调节pH=5.0,搅拌15min。其中,Tb3+/(Ca2++Tb3+)的摩尔分数为17%。将15ml磷酸根离子溶液与得到的胶体溶液混合,用氨水调节pH=9.7并剧烈搅拌30min,得到乳白色悬浮液。其中,(Ca2++Tb3+)/P摩尔分数为1.67,聚丙烯酸中羧酸根与(Ca2++Eu3+)的摩尔比为0.92,(Ca2++Tb3+)、PO4 3-和PAA浓度分别为0.0501M,0.03M和4mg/ml。将所得到的乳白色悬浮液移入高压反应釜中,在180℃条件下水热处理1h(平均升温速率为5.1℃/min),即得到稀土掺杂磷灰石荧光纳米点悬浮液。
实施例6
配置15ml聚丙烯酸与钙离子、稀土离子的胶体溶液并用氨水调节pH=5.0,搅拌15min。其中,Yb3+/(Ca2++Yb3+)的摩尔分数为4%。将15ml磷酸根离子溶液与得到的胶体溶液混合,用氨水调节pH=9.7并剧烈搅拌30min,得到乳白色悬浮液。其中,(Ca2++Yb3+)/P摩尔分数为1.67,聚丙烯酸中羧酸根与(Ca2++Eu3+)的摩尔比为0.46,(Ca2++Yb3+)、PO4 3-和PAA浓度分别为0.0501M,0.03M和2mg/ml。将所得到的乳白色悬浮液移入高压反应釜中,在60℃条件下水热处理1h(平均升温速率为10℃/min),即得到稀土掺杂磷灰石荧光纳米点悬浮液。
应用例1
实施例3合成的稀土掺杂磷酸钙荧光纳米点在组织成像中的应用。建立小鼠皮下移植瘤模型(Hela细胞),取200ul实施例3中合成的荧光纳米点悬浮液,通过尾静脉注射入小鼠体内,4h后按照动物试验操作规范及相关规定,将小白鼠处死并取出其组织(心、肝、脾、肺、肾、肿瘤、胰腺)进行荧光成像观察。本实验使用SPECTRAL Lago X小动物活体成像系统,成像过程中所用的激发和发射波长分别为465和610nm。图7为该实施例中小白鼠组织的成像图像,可以看出,该荧光纳米点在肝脏,肿瘤,肺,肾和胰腺中有较强的信号,而在心,脾中没有明显的信号;其中,在肿瘤中的荧光信号强度最强,说明其具有肿瘤靶向能力。由此表明,该荧光纳米点在肿瘤标记荧光成像方面具有潜在的应用价值。

Claims (9)

1.一种稀土掺杂磷灰石荧光纳米点的制备方法,其特征在于,包括以下步骤:(a)配制含聚丙烯酸、钙离子、稀土离子的胶体溶液并调节其pH;(b)配制含磷酸根离子的溶液,将其与步骤(a)所得胶体溶液按比例混合,调节pH得到悬浮液;(c)悬浮液加热进行水热反应,分离得到稀土掺杂磷灰石荧光纳米点。
2.根据权利要求1所述的一种稀土掺杂磷灰石荧光纳米点的制备方法,其特征在于:步骤(a)所述胶体溶液中聚丙烯酸的浓度为4-8mg/mL,钙离子和稀土离子的总浓度为0.0334-0.1002mol/L,稀土离子的摩尔数占(钙离子+稀土离子)总摩尔数的4%-17%。
3.根据权利要求1所述的一种稀土掺杂磷灰石荧光纳米点的制备方法,其特征在于:步骤(a)所述胶体溶液中聚丙烯酸中的羧酸根与(钙离子+稀土离子)的摩尔比为0.46-0.92。
4.根据权利要求1所述的一种稀土掺杂磷灰石荧光纳米点的制备方法,其特征在于:步骤(b)中所配制的含磷酸根离子溶液的浓度为0.02-0.06mol/L,混合所得悬浮液中钙离子和稀土离子的总浓度为磷酸根离子浓度的1.50-1.67倍。
5.根据权利要求1所述的一种稀土掺杂磷灰石荧光纳米点的制备方法,其特征在于:水热反应的温度为60-180℃。
6.根据权利要求1所述的一种稀土掺杂磷灰石荧光纳米点的制备方法,其特征在于:步骤(a)中用氨水调节胶体溶液的pH至4.0-9.0,步骤(b)中用氨水调节悬浮液的pH至9.0-10.0。
7.根据权利要求1所述的一种稀土掺杂磷灰石荧光纳米点的制备方法,其特征在于:所述稀土离子为Eu3+、Tb3+、Yb3+中的一种。
8.根据权利要求1-7任一项所述的一种稀土掺杂磷灰石荧光纳米点的制备方法,其特征在于:所述稀土掺杂磷灰石荧光纳米点的尺寸为2.0-10nm。
9.权利要求1所述稀土掺杂磷灰石荧光纳米点作为生物成像剂用于体内外荧光成像的应用。
CN201710729912.6A 2017-08-23 2017-08-23 一种稀土掺杂磷灰石荧光纳米点的制备方法和应用 Active CN107573938B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710729912.6A CN107573938B (zh) 2017-08-23 2017-08-23 一种稀土掺杂磷灰石荧光纳米点的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710729912.6A CN107573938B (zh) 2017-08-23 2017-08-23 一种稀土掺杂磷灰石荧光纳米点的制备方法和应用

Publications (2)

Publication Number Publication Date
CN107573938A true CN107573938A (zh) 2018-01-12
CN107573938B CN107573938B (zh) 2020-08-04

Family

ID=61034963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710729912.6A Active CN107573938B (zh) 2017-08-23 2017-08-23 一种稀土掺杂磷灰石荧光纳米点的制备方法和应用

Country Status (1)

Country Link
CN (1) CN107573938B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114911129A (zh) * 2022-07-11 2022-08-16 上海传芯半导体有限公司 掩模基版、光掩模版及其制备方法
US11921123B2 (en) 2018-12-21 2024-03-05 Wuhan University Of Technology Quantitative detection method of rare earth doped calcium phosphate fluorescent nanoparticles in organisms

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANGMEI HE: "Sol-gel synthesis of biocompatible Eu3+/Gd3+ co-doped calcium phosphate nanocrystals for cell bioimaging", 《JOURNAL OF LUMINESCENCE》 *
陶婷婷: "羟基磷灰石纳米材料的制备与表征", 《中国优秀硕士学位论文全文数据库》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11921123B2 (en) 2018-12-21 2024-03-05 Wuhan University Of Technology Quantitative detection method of rare earth doped calcium phosphate fluorescent nanoparticles in organisms
CN114911129A (zh) * 2022-07-11 2022-08-16 上海传芯半导体有限公司 掩模基版、光掩模版及其制备方法
CN114911129B (zh) * 2022-07-11 2022-10-25 上海传芯半导体有限公司 掩模基版、光掩模版及其制备方法

Also Published As

Publication number Publication date
CN107573938B (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
Wang et al. Recent progress in biomedical applications of persistent luminescence nanoparticles
Escudero et al. Microwave-assisted synthesis of biocompatible europium-doped calcium hydroxyapatite and fluoroapatite luminescent nanospindles functionalized with poly (acrylic acid)
CN103525417B (zh) 一种铕掺杂羟基磷灰石荧光纳米粒子的制备方法
US10870798B2 (en) Homogeneous persistent luminescence nanocrystals and methods of preparation and application thereof
CN102020258B (zh) 一种磁性荧光羟基磷灰石纳米复合结构的制备方法
Becerro et al. Ligand-free synthesis of tunable size Ln: BaGdF5 (Ln= Eu3+ and Nd3+) nanoparticles: luminescence, magnetic properties, and biocompatibility
CN108743948B (zh) 超声一锅法制备碳点-羟基磷灰石纳米复合物及其修饰方法和应用
CN111423880A (zh) 一种磁性荧光介孔二氧化硅复合纳米材料及其制备方法
He et al. Sol-gel synthesis of biocompatible Eu3+/Gd3+ co-doped calcium phosphate nanocrystals for cell bioimaging
CN103820102A (zh) 一种磁、发光双功能纳米核壳结构羟基磷灰石颗粒的制备方法
Xing et al. Ultrasound-assisted synthesis and characterization of heparin-coated Eu3+ doped hydroxyapatite luminescent nanoparticles
Misiak et al. Biofunctionalized upconverting CaF 2: Yb, Tm nanoparticles for Candida albicans detection and imaging
CN103540310A (zh) 用于多形貌稀土上转换发光纳米晶表面直接介孔修饰的制备方法
Chávez-García et al. Upconversion rare earth nanoparticles functionalized with folic acid for bioimaging of MCF-7 breast cancer cells
CN106118628B (zh) 一种具有核壳结构的上转换荧光纳米材料的制备方法
CN107573938A (zh) 一种稀土掺杂磷灰石荧光纳米点的制备方法和应用
Qin et al. Hydrothermal synthesis of superparamagnetic and red luminescent bifunctional Fe3O4@ Mn2+-doped NaYF4: Yb/Er core@ shell monodisperse nanoparticles and their subsequent ligand exchange in water
Yan et al. Fabrication and evaluation of chitosan/NaYF4: Yb3+/Tm3+ upconversion nanoparticles composite beads based on the gelling of Pickering emulsion droplets
Karthi et al. Synthesis and characterization of Nd3+: Yb3+ co-doped near infrared sensitive fluorapatite nanoparticles as a bioimaging probe
Hu et al. A facile synthesis of NaYF 4: Yb 3+/Er 3+ nanoparticles with tunable multicolor upconversion luminescence properties for cell imaging
CN105018086B (zh) 稀土掺杂磷酸钙荧光纳米粒子及其制备方法和应用
CN104237503A (zh) 一种线粒体靶向荧光标记磁性纳米材料及其制备方法和应用
Sun et al. Energy recruitment via lanthanide-chelate to boost the persistent luminescence of nanophosphor for contrast-enhanced tumor navigation
Syamchand et al. Fluorescein-labeled fluoroapatite nanocrystals codoped with Yb (III) and Ho (III) for trimodal (downconversion, upconversion and magnetic resonance) imaging of cancer cells
Heng et al. DNA aptamer functionalized monodisperse Eu/Mn-WH nanoparticle for in vivo magnetic resonance and fluorescence imaging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant