CN107547024B - 一种无轴承永磁同步电机无速度传感器 - Google Patents

一种无轴承永磁同步电机无速度传感器 Download PDF

Info

Publication number
CN107547024B
CN107547024B CN201710932504.0A CN201710932504A CN107547024B CN 107547024 B CN107547024 B CN 107547024B CN 201710932504 A CN201710932504 A CN 201710932504A CN 107547024 B CN107547024 B CN 107547024B
Authority
CN
China
Prior art keywords
module
neural network
permanent magnet
magnet synchronous
average value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710932504.0A
Other languages
English (en)
Other versions
CN107547024A (zh
Inventor
杜伟
朱熀秋
华逸舟
黄磊
孙玉坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhong inspection and Testing Center
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201710932504.0A priority Critical patent/CN107547024B/zh
Publication of CN107547024A publication Critical patent/CN107547024A/zh
Application granted granted Critical
Publication of CN107547024B publication Critical patent/CN107547024B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

本发明公开一种测量无轴承永磁同步电机转速的无速度传感器,由一个神经网络左逆系统、4个延时模块和一个微分器组成,第一、第二个延时模块的输入分别是无轴承永磁同步电机定子的转矩绕组在α‑β坐标系上的电压分量,输出分别是在t时刻50个电压分量的平均值;第三、第四个延时模块的输入分别是转矩绕组在α‑β坐标系上的电流分量,输出分别是在t时刻50个电流分量的平均值,神经网络左逆系统输出的是无轴承永磁同步电机的转子角速度;延时模块通过对样本数据的帅选与过滤,减少神经网络学习次数与拟合失败的风险,神经网络左逆系统可以有效实现对非线性强耦合的电机转速系统的逼近拟合,避免了传统机械式速度传感器的安装与维护。

Description

一种无轴承永磁同步电机无速度传感器
技术领域
本发明属于无轴承永磁同步电机领域,具体是无轴承永磁同步电机的无速度传感器的结构,用于无轴承永磁同步电机的控制系统中,测量无轴承永磁同步电机的转速。
背景技术
无轴承永磁同步电机是一种高转速、高精度及无需润滑的新型特种电机,在航天航空,化工制造,半导体工业及其他需要特殊环境的领域中应用广泛。目前无轴承永磁同步电机的控制方法大多采用矢量控制方法,这种方法需要通过获得转子速度来实现磁通的精确位置,从而实现转矩和悬浮力之间的解耦控制和电机稳定运行。传统的电机速度检测都采用光电标码盘等机械式的速度传感器来检测,然而,采用这种机械式的速度传感器具有诸多缺点,不仅存在安装与维护上的诸多不易,而且提高了电机成本和降低了系统的稳定性,限制了无轴承永磁同步电机在恶劣环境下的使用,更关键的在于高速和超高速无轴承永磁同步电机的运行速度范围和精度要求是传统机械式速度传感器无法满足的。
无速度传感器是通过检测电机控制系统中易于得到的非转速参数,通过控制算法来获得转速参数,即利用易于检测到的定子电压、电流等的物理量进行速度估计以取代传统的机械式速度传感器,从而实现无速度传感器的高精度控制。对于普通永磁同步电机而言,目前已经提出的无速度传感器辨识方法包括:卡尔曼滤波法、高频注入法及模型参考自适应法等,其中卡尔曼滤波法算法复杂,同时也要求系统和观测值必须为线性化,有很大的局限性;高频注入法虽低速性能较好,但易受电机负载干扰:模型参考自适应方法则容易受到电机参数影响,同时也存在模型精确度和稳定性不足的缺陷。
中国专利公开号为CN102130647A的文献中提出一种采用静态神经网络左逆算法实现对无轴承异步电机的速度辨识方法,但该方法不仅要求输入信号较多,同时缺少对输入信号的滤波处理,这会严重影响速度辨识的精确度,其次所用静态神经网络缺少必要的反馈和动态结构,影响系统动态性能。中国专利公开号为CN102629848A的文献中提出一种采用支持向量机实现电机的速度辨识方法,但是支持向量机的缺点在于结构的复杂和运算量大,对实际应用中数字处理芯片提出了较高的要求,费时较多。
发明内容
本发明的目的在于综合逆系统、神经网络和延时控制的技术优点,提出一种结构简单稳定、具有良好动态性能的无轴承永磁同步电机无速度传感器,以准确实现无轴承永磁同步电机全转速范围内转速检测。
本发明一种无轴承永磁同步电机无速度传感器采用的技术方案是:其由一个神经网络左逆系统、4个延时模块和一个微分器组成,4个延时模块的输出端均连接神经网络左逆系统的输入端,其中第四个延时模块的输出端还经微分器连接神经网络左逆系统的输入端;4个延时模块的输入端连接无轴承永磁同步电机;第一、第二个延时模块的输入分别是无轴承永磁同步电机定子的转矩绕组在α-β坐标系上的电压分量u、u,输出分别是在t时刻50个电压分量u、u的平均值
Figure GDA0002293648000000021
第三、第四个延时模块的输入分别是转矩绕组在α-β坐标系上的电流分量i、i,输出分别是在t时刻50个电流分量i、i的平均值
Figure GDA0002293648000000022
Figure GDA0002293648000000023
神经网络左逆系统输出的是无轴承永磁同步电机的转子角速度ω;4个延时模块各自均由判断模块、存储模块和计算模块依次串接组成,计算模块的输出反馈给判断模块;4个判断模块的输入分别对应的是电压分量u、u和电流分量i、i,4个计算模块的输出分别对应的是平均值
Figure GDA0002293648000000024
判断模块将输入的电压分量u与计算模块反馈的平均值
Figure GDA0002293648000000025
进行比较、将输入的电压分量u与计算模块反馈的平均值
Figure GDA0002293648000000026
进行比较、将输入的电流分量i与计算模块反馈的平均值
Figure GDA0002293648000000027
进行比较以及将输入的电流分量i与计算模块反馈的平均值
Figure GDA0002293648000000028
进行比较,如果电压分量u与计算模块反馈的平均值
Figure GDA0002293648000000029
的差值的绝对值小于误差范围,则电压分量u存入存储模块中,如果电压分量u与计算模块反馈的平均值
Figure GDA00022936480000000210
的差值的绝对值小于误差范围,则电压分量u存入存储模块中,如果电流分量i与计算模块反馈的平均值
Figure GDA00022936480000000211
的差值的绝对值小于误差范围,则电流分量i存入存储模块中,如果电流分量i与计算模块反馈的平均值
Figure GDA00022936480000000212
的差值的绝对值小于误差范围,则电流分量i存入存储模块中,对存储模块中的分量重新赋值,反之则舍弃。
本发明的有益效果是:
1、针对一般神经网络的权值调整与学习过分依赖于样本数据与经验的缺陷,本发明采用的是延时模块,通过对样本数据的筛选与过滤,去除其中的因偶然因素造成的周期性的杂波信号,使得样本数据更加可靠准确,减少神经网络学习次数与拟合失败的风险。
2、本发明采用的神经网络左逆系统,工作原理简单,并可以有效实现对非线性强耦合的电机转速系统的逼近拟合,同时该神经网络可以由数字控制芯片编程得到,控制方便,避免了传统机械式速度传感器的安装与维护,降低了电机控制成本。
3、本发明在辨识无轴承永磁同步电机在负载变化下的速度上具有巨大的优势,使无轴承永磁同步电机控制更加简单方便,提高其临界转速,从而实现无轴承永磁同步电机在高速超高速运行下的稳定运行与控制。
附图说明
图1是本发明所述的无轴承永磁同步电机无速度传感器7与无轴承永磁同步电机1的串联结构示意图;
图2是图1中第一个延时模块3的构造原理示意图;
图3是图1中第二个延时模块4的构造原理示意图;
图4是图1中第三个延时模块5的构造原理示意图;
图5是图1中第四个延时模块6的构造原理示意图;
图中:1.无轴承永磁同步电机;2.神经网络左逆系统;3、4、5、6.延时模块;7.无轴承永磁同步电机无速度传感器;31、41、51、61.计算模块;32、42、52、62.判断模块;33、43、53、63.存储模块。
具体实施方式
参见图1,本发明无轴承永磁同步电机无速度传感器7由一个神经网络左逆系统2、4个延时模块3、4、5、6和一个微分器S组成,4个延时模块3、4、5、6的输出端均连接神经网络左逆系统2的输入端,第四个延时模块6的输出端还经微分器S连接神经网络左逆系统2的输入端。4个延时模块3、4、5、6的输入端连接无轴承永磁同步电机1。
第一个延时模块3的输入是无轴承永磁同步电机1定子的转矩绕组在α-β坐标系上的电压分量u,第一个延时模块3的输出是在t时刻50个电压分量u的平均值
Figure GDA0002293648000000031
第二个延时模块4的输入是无轴承永磁同步电机1定子的转矩绕组在α-β坐标系上的电压分量u,第二个延时模块4的输出是在t时刻50个电压分量u的平均值
Figure GDA0002293648000000032
第三个延时模块5的输入是无轴承永磁同步电机1定子的转矩绕组在α-β坐标系上的电流分量i,第三个延时模块5的输出是在t时刻50个电流分量i的平均值
Figure GDA0002293648000000033
第四个延时模块6的输入是无轴承永磁同步电机1定子的转矩绕组在α-β坐标系上的电流分量i,第四个延时模块6的输出是在t时刻50个电流分量i的平均值
Figure GDA0002293648000000034
该平均值
Figure GDA0002293648000000035
经微分器S后输出微分值
Figure GDA0002293648000000036
至神经网络左逆系统2中。神经网络左逆系统2输出的是无轴承永磁同步电机1的转子角速度ω。
因此,本发明无轴承永磁同步电机无速度传感器7具有4个输入,1个输出。其中,电压分量u信号是无轴承永磁同步电机无速度传感器7的第1个输入,输入到第一个延时模块3中;电压分量u信号是无轴承永磁同步电机无速度传感器7的第2个输入,输入到第二个延时模块4中;电流分量i信号是无轴承永磁同步电机无速度传感器7的第3个输入,输入到第三个延时模块5中;电流分量i信号是无轴承永磁同步电机无速度传感器7的第4个输入,输入到第四个延时模块6中。转子角速度ω为无轴承永磁同步电机无速度传感器7的输出信号。第一个延时模块3的输出是神经网络左逆系统2的第一个输入;第二延时模块4的输出是神经网络左逆系统2的第二个输入;第三个延时模块5的输出是神经网络左逆系统2的第三个输入;第四个延时模块6的输出是神经网络左逆系统2的第四个输入,第四个延时模块6的输出经过一个微分器S的输出是神经网络左逆系统2的第五个输入。
参见图2,第一个延时模块3由判断模块32、存储模块33和计算模块31组成,判断模块32、存储模块33和计算模块31依次串接,计算模块31的输出端连接判断模块32的输入端。判断模块32的输入是电压分量u,计算模块31的输出是50个电压分量u的平均值
Figure GDA0002293648000000041
计算模块31的输出端连接神经网络左逆系统2的输入端,同时计算模块31输出的平均值
Figure GDA0002293648000000042
再反馈给判断模块32。
第一个延时模块3工作时,在t时刻,先对无轴承永磁同步电机1进行采样,得到电压分量u,将电压分量u作为判断信号输入判断模块32中,与此时计算模块31反馈给判断模块32的平均值
Figure GDA0002293648000000043
进行比较,来判断电压分量u是否可以进入存储模块33中:如果
Figure GDA0002293648000000044
那么电压分量u存入存储模块33中,反之,则存储模块33舍弃该电压分量u,其中λ1代表误差范围,一般取0.05。最终存储模块33中存有50个电压分量u(t)样本{u(1),u(2),u(3),....u(50)}。判断模块32根据判断结果来更新存储模块33中的50个电压分量u(t):如果电压分量u存入存储模块33中,那么对存储模块33中的电压分量样本重新赋值,规则如下:将u(2)的值赋予u(1),将u(3)的值赋予u(2),以此类推,直至将u(50)的值赋予u(49),最后将u(t)的值赋予u(50),这样存储模块33中的电压样本被更新了一次。如果经过判断模块33后,电压分量u不能进入存储模块33中,那么存储模块33中的样本值不变。其中,存储模块33在t=0时刻,设定初始电压样本{u(1),u(2),u(3),....u(50)}的值都为0。然后,由计算模块31计算存储模块33中这50个电压分量u(t)样本的平均值
Figure GDA0002293648000000045
该平均值
Figure GDA0002293648000000046
作为计算模块31的输出信号:
Figure GDA0002293648000000051
该平均值
Figure GDA0002293648000000052
既作为神经网络左逆系统2的输入,同时又反馈给判断模块32。如此,第一个延时模块3反复采样、比较、更新、计算和反馈,便可以同时实现对无轴承永磁同步电机1的电压分量u的采集和过滤工作,其中通过判断模块33除去过大或者过小的信号,通过计算模块31可避免周期性杂波信号的影响。
参见图3,第二个延时模块4的结构与第一延时模块3类似,由判断模块42、存储模块43和计算模块41组成,判断模块42、存储模块43和计算模块41依次串接,计算模块41的输出端连接判断模块42的输入端。所不同的是判断模块42的输入是电压分量u,计算模块41的输出是t时刻50个电压分量u的平均值
Figure GDA0002293648000000053
计算模块41的输出端连接神经网络左逆系统2的输入端,同时计算模块41输出的平均值
Figure GDA0002293648000000054
再反馈给判断模块42。
参见图4,第三个延时模块4的结构与第一延时模块3也类似,由判断模块52、存储模块53和计算模块51组成,判断模块52、存储模块53和计算模块51依次串接,计算模块51的输出端连接判断模块52的输入端。所不同的是判断模块52的输入是电流分量i,计算模块51的输出是t时刻50个电流分量i的平均值
Figure GDA0002293648000000055
计算模块51的输出端连接神经网络左逆系统2的输入端,同时计算模块51输出的平均值
Figure GDA0002293648000000056
再反馈给判断模块52。
参见图5,第四个延时模块4的结构与第一延时模块3也类似,由判断模块62、存储模块63和计算模块61组成。所不同的是判断模块62的输入是电流分量i,计算模块61的输出是t时刻50个电流分量i的平均值
Figure GDA0002293648000000057
计算模块61的输出端分别连接神经网络左逆系统2和微分器S的输入端,平均值
Figure GDA0002293648000000058
经微分器S得到一阶微分值
Figure GDA0002293648000000059
第四个延时模块6同时将平均值
Figure GDA00022936480000000510
和一阶微分值
Figure GDA00022936480000000511
输出至神经网络左逆系统2中。计算模块61同时将计算模块61输出的平均值
Figure GDA00022936480000000512
再反馈给判断模块62。
第二、第三、第四个延时模块4、5、6的工作原理与第一个延时模块3工作原理雷同,不再赘述。第二、第三、第四个延时模块4、5、6分别实现对无轴承永磁同步电机1的电压分量u、电流分量i、i的采集和过滤工作,除去过大或者过小的信号,避免周期性杂波信号的影响。
参见图1,神经网络左逆系统2是具有5个输入、1个输出和8个隐含节点结构的逆系统,将其与4个延时模块3、4、5、6和一个微分器S串联,以电压分量平均值
Figure GDA0002293648000000061
电流分量平均值
Figure GDA0002293648000000062
和一阶微分值
Figure GDA0002293648000000063
分别作为第1、2、3、4、5个输入信号,以无轴承永磁同步电机1的转子角速度ω为输出信号。
神经网络左逆系统2的工作原理如下:无轴承永磁同步电机1在α-β坐标系下的数学模型为:
Figure GDA0002293648000000064
Figure GDA0002293648000000065
Figure GDA0002293648000000066
式中:u、u分别是转矩绕组在α-β坐标系上的电压分量,i、i分别是转矩绕组在α-β坐标系上的电流分量,
Figure GDA0002293648000000067
分别是转矩绕组在α-β坐标系上的电流分量i、i的一阶导数,p1是电机转矩绕组极对数,r1是电机定子电阻,ψ是电机的转子磁链,L1是定子绕组的电感系数,J是转动惯量,θ是转子角度,
Figure GDA0002293648000000068
是θ的一阶导数,ω是转子角速度,TL是负载转矩,T是电磁转矩。
如果无轴承永磁同步电机1内部含有这样一个转速子系统:它以转速为输入量,以可测变量电压和电流为输出量,并且它是左可逆的,那么根据左逆系统原理,就可以构建一个左逆系统与无轴承永磁同步电机1左串联,实现转速的无传感检测。而在无轴承永磁同步电机1的数学模型中,选取上式(1-1)和(1-2)作为转速子系统的数学模型,然后选取电流i、i和电压u、u为可测输出变量,转子角速度ω为输入变量,通过逆系统分析和反函数定理,其一阶雅可比矩阵为:
Figure GDA0002293648000000069
所以该转速子系统的数学模型是左可逆的,其左逆模型的五个理论上的输入变量为电流分量i、i
Figure GDA00022936480000000610
和电压分量u、u,输出变量为转子角速度ω,其非线性函数表达如下:
Figure GDA00022936480000000611
为提高信号的准确度和可靠性,其左逆模型的输入量i、i
Figure GDA0002293648000000071
u、u都是经过延时模块3、4、5、6和微分器S处理过的,所以神经网络左逆系统2的实际数学模型表达为:
Figure GDA0002293648000000072
虽然神经网络左逆系统2理论上是证明存在的,但是由于系统参数过多和非线性,因此求其具体解析式是十分复杂困难的,而神经网络不依赖具体的解析表达式,并具有逼近任意非线性函数的能力,因此,本发明采用一个5输入,1输出并包含8个隐含层的神经网络来构建左逆系统。
然后,对无轴承永磁同步电机1施加电压分量u、u信号,并通过霍尔传感器检测电流分量i、i信号,以及通过光电标码盘采集转子角速度ω,然后对电流分量i采用数值微分法得到一阶电流微分值
Figure GDA0002293648000000073
信号,得到神经网络左逆系统2的训练样本
Figure GDA0002293648000000074
并对神经网络左逆系统2参数采用BP算法进行线下训练,在经过500左右轮次的训练之后,神经网络左逆系统2对数据的拟合误差小于0.001,可以用来构建无轴承永磁同步电机无速度传感器7。
本发明工作时,将无轴承永磁同步电机无速度传感器7串联于无轴承永磁同步电机1,对无轴承永磁同步电机1的电压、电流分量u、u、i、i分别通过4个延时模块3、4、5、6和一个微分器S进行采样,分析和处理,除去里面所包含的偶然性杂波和周期性杂波,再通过神经网络左逆系统2,根据左逆系统工作原理,得到无轴承永磁同步电机1的转子角速度ω的再现,从而实现无轴承永磁同步电机1的无速度传感器的转速测量。

Claims (3)

1.一种无轴承永磁同步电机的无速度传感器,其特征是:其由一个神经网络左逆系统、4个延时模块和一个微分器组成,4个延时模块的输出端均连接神经网络左逆系统的输入端,其中第四个延时模块的输出端还经微分器连接神经网络左逆系统的输入端;4个延时模块的输入端连接无轴承永磁同步电机;第一、第二个延时模块的输入分别是无轴承永磁同步电机定子的转矩绕组在α-β坐标系上的电压分量u、u,输出分别是在t时刻50个电压分量u、u的平均值
Figure FDA0002293647990000011
第三、第四个延时模块的输入分别是转矩绕组在α-β坐标系上的电流分量i、i,输出分别是在t时刻50个电流分量i、i的平均值
Figure FDA0002293647990000012
神经网络左逆系统输出的是无轴承永磁同步电机的转子角速度ω;4个延时模块各自均由判断模块、存储模块和计算模块依次串接组成,计算模块的输出反馈给判断模块;4个判断模块的输入分别对应的是电压分量u、u和电流分量i、i,4个计算模块的输出分别对应的是平均值
Figure FDA0002293647990000013
判断模块将输入的电压分量u与计算模块反馈的平均值
Figure FDA0002293647990000014
进行比较、将输入的电压分量u与计算模块反馈的平均值
Figure FDA0002293647990000015
进行比较、将输入的电流分量i与计算模块反馈的平均值
Figure FDA0002293647990000016
进行比较以及将输入的电流分量i与计算模块反馈的平均值
Figure FDA0002293647990000017
进行比较,如果电压分量u与计算模块反馈的平均值
Figure FDA0002293647990000018
的差值的绝对值小于误差范围,则电压分量u存入存储模块中,如果电压分量u与计算模块反馈的平均值
Figure FDA0002293647990000019
的差值的绝对值小于误差范围,则电压分量u存入存储模块中,如果电流分量i与计算模块反馈的平均值
Figure FDA00022936479900000110
的差值的绝对值小于误差范围,则电流分量i存入存储模块中,如果电流分量i与计算模块反馈的平均值
Figure FDA00022936479900000111
的差值的绝对值小于误差范围,则电流分量i存入存储模块中,对存储模块中的分量重新赋值,反之则舍弃。
2.根据权利要求1所述的一种无轴承永磁同步电机的无速度传感器,其特征是:平均值
Figure FDA00022936479900000112
经微分器得到一阶微分值
Figure FDA00022936479900000113
平均值
Figure FDA00022936479900000114
和一阶微分值
Figure FDA00022936479900000115
输出至神经网络左逆系统中。
3.根据权利要求2所述的一种无轴承永磁同步电机的无速度传感器,其特征是:神经网络左逆系统是具有5个输入、1个输出和8个隐含节点结构的逆系统,其数学模型表达为
Figure FDA00022936479900000116
CN201710932504.0A 2017-10-10 2017-10-10 一种无轴承永磁同步电机无速度传感器 Active CN107547024B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710932504.0A CN107547024B (zh) 2017-10-10 2017-10-10 一种无轴承永磁同步电机无速度传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710932504.0A CN107547024B (zh) 2017-10-10 2017-10-10 一种无轴承永磁同步电机无速度传感器

Publications (2)

Publication Number Publication Date
CN107547024A CN107547024A (zh) 2018-01-05
CN107547024B true CN107547024B (zh) 2020-03-31

Family

ID=60966939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710932504.0A Active CN107547024B (zh) 2017-10-10 2017-10-10 一种无轴承永磁同步电机无速度传感器

Country Status (1)

Country Link
CN (1) CN107547024B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109617463B (zh) * 2018-12-20 2021-04-30 东南大学溧阳研究院 基于bp神经网络的永磁同步电机低速段转子位置观测器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227160A (zh) * 2007-11-30 2008-07-23 江苏大学 神经网络广义逆无轴承永磁同步电机解耦控制器构造方法
US7456537B1 (en) * 2004-12-17 2008-11-25 The University Of Toledo Control system for bearingless motor-generator
CN102130647A (zh) * 2011-01-10 2011-07-20 江苏大学 检测无轴承异步电机转速的无速度传感器构造方法
CN103259479A (zh) * 2013-05-28 2013-08-21 江苏大学 一种永磁同步电机神经网络左逆状态观测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258290A (ja) * 2000-03-08 2001-09-21 Akira Chiba 磁束検出ベアリングレス回転機の独立制御システム構成法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7456537B1 (en) * 2004-12-17 2008-11-25 The University Of Toledo Control system for bearingless motor-generator
CN101227160A (zh) * 2007-11-30 2008-07-23 江苏大学 神经网络广义逆无轴承永磁同步电机解耦控制器构造方法
CN102130647A (zh) * 2011-01-10 2011-07-20 江苏大学 检测无轴承异步电机转速的无速度传感器构造方法
CN103259479A (zh) * 2013-05-28 2013-08-21 江苏大学 一种永磁同步电机神经网络左逆状态观测方法

Also Published As

Publication number Publication date
CN107547024A (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
CN105119549B (zh) 一种电机定子电阻辨识方法
CN109873586B (zh) 一种基于高阶滑模观测器的电机机械参数辨识方法及系统
CN111505500B (zh) 一种工业领域基于滤波的电机智能故障检测方法
CN103259479A (zh) 一种永磁同步电机神经网络左逆状态观测方法
CN112511059B (zh) 一种永磁同步电机高精度位置估算方法
CN104009696B (zh) 一种基于滑模控制的交互式模型参考自适应速度与定子电阻的辨识方法
CN102664583A (zh) 感应电机矢量控制系统中转子磁链的观测方法
CN109510539B (zh) 一种基于增益矩阵的模型预测磁链控制系统及方法
CN107681937B (zh) 一种基于神经网络的超高速永磁同步电机速度观测方法
CN107547024B (zh) 一种无轴承永磁同步电机无速度传感器
CN114629389A (zh) 一种电机正余弦编码器的位置速度信息解码方案
CN106849801B (zh) 一种无轴承异步电机转速估计方法
CN109004875A (zh) 永磁同步电机转子位置传感器零角度计算方法和标定方法
CN109687792B (zh) 面向矢量控制系统的牵引电机转子参数在线辨识优化方法
CN107404271B (zh) 一种异步电机参数在线识别系统及方法
CN206989972U (zh) 一种抑制干扰与温漂的霍尔信号采样磁电编码器
CN107681941B (zh) 一种无轴承永磁同步电机无径向位移传感器的构造方法
CN111510041B (zh) 一种永磁同步电机的运行状态评估方法及系统
Messaoudi et al. MRAS and Luenberger Observer Based Sensorless Indirect
CN106330016B (zh) 一种交流伺服电机的速度检测方法及系统
CN114029954A (zh) 一种异构伺服的力反馈估计方法
Boggarpu et al. New learning algorithm for high-quality velocity measurement from low-cost optical encoders
CN111865172B (zh) 一种伺服系统电机转速精确估算方法
CN109194235B (zh) 无轴承异步电机的ls-svm径向位移自检测方法
CN109672380A (zh) 五自由度无轴承永磁同步电机悬浮力子系统解耦控制器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211210

Address after: 212200 No. 168, Zhongdian Avenue, Yangzhong City, Nantong City, Jiangsu Province

Patentee after: Yangzhong inspection and Testing Center

Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301

Patentee before: JIANGSU University

TR01 Transfer of patent right
CP02 Change in the address of a patent holder

Address after: 212200 No. 168, Zhongdian Avenue, Yangzhong City, Zhenjiang City, Jiangsu Province

Patentee after: Yangzhong inspection and Testing Center

Address before: 212200 No. 168, Zhongdian Avenue, Yangzhong City, Nantong City, Jiangsu Province

Patentee before: Yangzhong inspection and Testing Center

CP02 Change in the address of a patent holder