CN107543787A - 滤网使用寿命的确定方法及装置、净化器、计算机存储介质 - Google Patents

滤网使用寿命的确定方法及装置、净化器、计算机存储介质 Download PDF

Info

Publication number
CN107543787A
CN107543787A CN201710774531.XA CN201710774531A CN107543787A CN 107543787 A CN107543787 A CN 107543787A CN 201710774531 A CN201710774531 A CN 201710774531A CN 107543787 A CN107543787 A CN 107543787A
Authority
CN
China
Prior art keywords
filter screen
service life
clarifier
dust
run time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710774531.XA
Other languages
English (en)
Inventor
邹丁山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midea Group Co Ltd
GD Midea Environment Appliances Manufacturing Co Ltd
Original Assignee
Midea Group Co Ltd
GD Midea Environment Appliances Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midea Group Co Ltd, GD Midea Environment Appliances Manufacturing Co Ltd filed Critical Midea Group Co Ltd
Priority to CN201710774531.XA priority Critical patent/CN107543787A/zh
Publication of CN107543787A publication Critical patent/CN107543787A/zh
Priority to PCT/CN2018/084770 priority patent/WO2019041849A1/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials

Abstract

本发明公开了一种滤网使用寿命的确定方法及装置、净化器、计算机存储介质,所述方法包括:检测净化器中风机的运行功率,并确定出所述风机的运行功率衰减百分比参数;基于所述风机的运行功率衰减百分比参数,确定所述净化器中滤网的粉尘脏赌程度;基于所述滤网的粉尘脏赌程度,确定出所述滤网的使用寿命;输出用于指示所述滤网的使用寿命的第一提示信息;当所述滤网的使用寿命小于等于第一预设阈值时,输出用于指示更换滤网的第二提示信息。

Description

滤网使用寿命的确定方法及装置、净化器、计算机存储介质
技术领域
本发明涉及净化器技术领域,尤其涉及一种滤网使用寿命的确定方法及装置、净化器、计算机存储介质。
背景技术
滤网是净化器的重要组成部件,滤网性能的好坏直接影响了净化器的净化效果。对于滤网而言,其使用寿命是用户较为关心的一项指标。
目前,滤网的使用寿命都是按传统的寿命计算方法得到,例如:倒计时法、加速减速法等等。以倒计时法为例,将滤网插入净化器后,手动操作计时器使时间清零,而后,计时器从某个固定的时间开始倒计时,待到计时器为零时,提醒用户更换滤网。滤网在不同的使用环境下,通过这种单一的寿命计算方法计算出的使用寿命基本相差不大,甚至更换一个已经报废的滤网也会计算得到相同的使用寿命,可见,现有的寿命计算方法不能有效体现滤网的真实使用寿命。
发明内容
为解决上述技术问题,本发明实施例提供了一种滤网使用寿命的确定方法及装置、净化器、计算机存储介质。
本发明实施例提供的滤网使用寿命的确定方法,包括:
检测净化器中风机的运行功率,并确定出所述风机的运行功率衰减百分比参数;
基于所述风机的运行功率衰减百分比参数,确定所述净化器中滤网的粉尘脏赌程度;
基于所述滤网的粉尘脏赌程度,确定出所述滤网的使用寿命。
本发明实施例中,将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
所述方法还包括:
计算所述净化器中的滤网的净化百分比参数,并基于所述滤网的净化百分比参数确定出所述滤网的第二使用寿命;
确定所述第一使用寿命对应的第一权重值,以及所述第二使用寿命对应的第二权重值;
基于所述第一权重值以及所述第二权重值,对所述第一使用寿命和所述第二使用寿命进行加权求和,得到所述滤网的使用寿命。
本发明实施例中,将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
所述方法还包括:
计算所述净化器中的滤网的运行时间百分比参数,并基于所述滤网的运行时间百分比参数确定出所述滤网的第三使用寿命;
确定所述第一使用寿命对应的第一权重值,以及所述第三使用寿命对应的第三权重值;
基于所述第一权重值以及所述第三权重值,对所述第一使用寿命和所述第三使用寿命进行加权求和,得到所述滤网的使用寿命。
本发明实施例中,将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
所述方法还包括:
计算净化器中的滤网的净化效率,并基于所述滤网的净化效率确定出所述滤网的第四使用寿命;
确定所述第一使用寿命对应的第一权重值,以及所述第四使用寿命对应的第四权重值;
基于所述第一权重值以及所述第四权重值,对所述第一使用寿命和所述第四使用寿命进行加权求和,得到所述滤网的使用寿命。
本发明实施例中,将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
计算所述净化器中的滤网的运行时间百分比参数,并基于所述滤网的运行时间百分比参数确定出所述滤网的第三使用寿命;
计算净化器中的滤网的净化效率,并基于所述滤网的净化效率确定出所述滤网的第四使用寿命;
确定所述第一使用寿命对应的第一权重值,确定所述第三使用寿命对应的第三权重值以及所述第四使用寿命对应的第四权重值;
基于所述第一权重值、所述第三权重值以及所述第四权重值,对所述第一使用寿命、所述第三使用寿命和所述第四使用寿命进行加权求和,得到所述滤网的使用寿命。
本发明实施例中,所述计算所述净化器中的滤网的净化百分比参数,并基于所述滤网的净化百分比参数确定出所述滤网的第二使用寿命,包括:
获取净化器中滤网的总净化量,以及计算所述滤网的累积净化量;
基于所述滤网的总净化量和所述滤网的累积净化量,确定所述滤网的净化百分比参数;
基于所述滤网的净化百分比参数,确定出所述滤网的第二使用寿命。
本发明实施例中,所述获取净化器中滤网的总净化量,以及计算所述滤网的累积净化量,包括:
获取所述净化器中滤网的最大容尘量(CCM),将所述CCM作为所述滤网的总净化量;
基于所述净化器所处环境的粉尘浓度值、所述净化器的适用面积参数以及所述滤网的运行时间,计算所述滤网的累积净化量。
本发明实施例中,所述计算所述净化器中的滤网的运行时间百分比参数,并基于所述滤网的运行时间百分比参数确定出所述滤网的第三使用寿命,包括:
获取净化器中滤网的总净化量,并基于所述滤网的总净化量计算所述滤网的总使用寿命;
基于所述滤网的总使用寿命、所述净化器所处环境的粉尘浓度值以及所述滤网的实际运行时间,确定所述滤网的等效运行时间;
基于所述滤网的等效运行时间以及所述滤网的总使用寿命,确定所述滤网的运行时间百分比参数;
基于所述滤网的运行时间百分比参数,确定出所述滤网的第三使用寿命。
本发明实施例中,所述获取净化器中滤网的总净化量,并基于所述滤网的总净化量计算所述滤网的总使用寿命,包括:
获取所述净化器中滤网的CCM,将所述CCM作为所述滤网的总净化量;
基于以下公式计算所述滤网的总使用寿命:T=CCM/{(0.48×CG-28)×S×2.4};
其中,T为所述滤网的总使用寿命,CG为标准环境的粉尘浓度值,S为所述净化器的适用面积参数。
本发明实施例中,所述基于所述滤网的总使用寿命、所述净化器所处环境的粉尘浓度值以及所述滤网的实际运行时间,确定所述滤网的等效运行时间,包括:
基于以下公式计算所述滤网的等效运行时间:teq=(CN/CG)×t;
其中,teq为所述滤网的等效运行时间,CN为所述净化器所处环境的粉尘浓度值,CG为标准环境的粉尘浓度值,t为所述滤网的实际运行时间。
本发明实施例中,所述计算净化器中的滤网的净化效率,并基于所述滤网的净化效率确定出所述滤网的第四使用寿命,包括:
利用设置于所述净化器出风口的第一粉尘传感器检测所述出风口处的第一粉尘浓度值,以及利用设置于所述净化器进风口的第二粉尘传感器检测所述进风口处的第二粉尘浓度值;
基于所述第一粉尘浓度值和所述第二粉尘浓度值,确定所述净化器中的滤网的净化效率;
基于所述滤网的净化效率,确定出所述滤网的第四使用寿命。
本发明实施例中,所述方法还包括:
输出用于指示所述滤网的使用寿命的第一提示信息。
本发明实施例中,所述方法还包括:
当所述滤网的使用寿命小于等于第一预设阈值时,输出用于指示更换滤网的第二提示信息。
本发明实施例提供的滤网使用寿命的确定装置,包括:
检测模块,用于检测净化器中风机的运行功率,并确定出所述风机的运行功率衰减百分比参数;
第一确定模块,用于基于所述风机的运行功率衰减百分比参数,确定所述净化器中滤网的粉尘脏赌程度;
第二确定模块,用于基于所述滤网的粉尘脏赌程度,确定出所述滤网的使用寿命。
本发明实施例中,所述第二确定模块,还用于将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
所述装置还包括:
第一计算模块,用于计算所述净化器中的滤网的净化百分比参数,并基于所述滤网的净化百分比参数确定出所述滤网的第二使用寿命;
第三确定模块,用于确定所述第一使用寿命对应的第一权重值,以及所述第二使用寿命对应的第二权重值;
第一加权模块,用于基于所述第一权重值以及所述第二权重值,对所述第一使用寿命和所述第二使用寿命进行加权求和,得到所述滤网的使用寿命。
本发明实施例中,所述第二确定模块,还用于将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
所述装置还包括:
第二计算模块,用于计算所述净化器中的滤网的运行时间百分比参数,并基于所述滤网的运行时间百分比参数确定出所述滤网的第三使用寿命;
第四确定模块,用于确定所述第一使用寿命对应的第一权重值,以及所述第三使用寿命对应的第三权重值;
第二加权模块,用于基于所述第一权重值以及所述第三权重值,对所述第一使用寿命和所述第三使用寿命进行加权求和,得到所述滤网的使用寿命。
本发明实施例中,所述第二确定模块,还用于将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
所述装置还包括:
第三计算模块,用于计算净化器中的滤网的净化效率,并基于所述滤网的净化效率确定出所述滤网的第四使用寿命;
第五确定模块,用于确定所述第一使用寿命对应的第一权重值,以及所述第四使用寿命对应的第四权重值;
第三加权模块,用于基于所述第一权重值以及所述第四权重值,对所述第一使用寿命和所述第四使用寿命进行加权求和,得到所述滤网的使用寿命。
本发明实施例中,所述第二确定模块,还用于将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
所述装置还包括:
第二计算模块,用于计算所述净化器中的滤网的运行时间百分比参数,并基于所述滤网的运行时间百分比参数确定出所述滤网的第三使用寿命;
第三计算模块,用于计算净化器中的滤网的净化效率,并基于所述滤网的净化效率确定出所述滤网的第四使用寿命;
第六确定模块,用于确定所述第一使用寿命对应的第一权重值,确定所述第三使用寿命对应的第三权重值以及所述第四使用寿命对应的第四权重值;
第四加权模块,用于基于所述第一权重值、所述第三权重值以及所述第四权重值,对所述第一使用寿命、所述第三使用寿命和所述第四使用寿命进行加权求和,得到所述滤网的使用寿命。
本发明实施例中,所述第一计算模块,具体用于获取净化器中滤网的总净化量,以及计算所述滤网的累积净化量;基于所述滤网的总净化量和所述滤网的累积净化量,确定所述滤网的净化百分比参数;基于所述滤网的净化百分比参数,确定出所述滤网的第二使用寿命。
本发明实施例中,所述第一计算模块,具体用于获取所述净化器中滤网的CCM,将所述CCM作为所述滤网的总净化量;基于所述净化器所处环境的粉尘浓度值、所述净化器的适用面积参数以及所述滤网的运行时间,计算所述滤网的累积净化量。
本发明实施例中,所述第二计算模块,具体用于获取净化器中滤网的总净化量,并基于所述滤网的总净化量计算所述滤网的总使用寿命;基于所述滤网的总使用寿命、所述净化器所处环境的粉尘浓度值以及所述滤网的实际运行时间,确定所述滤网的等效运行时间;基于所述滤网的等效运行时间以及所述滤网的总使用寿命,确定所述滤网的运行时间百分比参数;基于所述滤网的运行时间百分比参数,确定出所述滤网的第三使用寿命。
本发明实施例中,所述第二计算模块,具体用于获取所述净化器中滤网的CCM,将所述CCM作为所述滤网的总净化量;
基于以下公式计算所述滤网的总使用寿命:T=CCM/{(0.48×CG-28)×S×2.4};
其中,T为所述滤网的总使用寿命,CG为标准环境的粉尘浓度值,S为所述净化器的适用面积参数。
本发明实施例中,所述第二计算模块,具体用于基于以下公式计算所述滤网的等效运行时间:teq=(CN/CG)×t;
其中,teq为所述滤网的等效运行时间,CN为所述净化器所处环境的粉尘浓度值,CG为标准环境的粉尘浓度值,t为所述滤网的实际运行时间。
本发明实施例中,所述装置还包括:
第一粉尘传感器,用于检测所述出风口处的第一粉尘浓度值;
第二粉尘传感器,用于检测所述进风口处的第二粉尘浓度值;
所述第三计算模块,具体用于基于所述第一粉尘浓度值和所述第二粉尘浓度值,确定所述净化器中的滤网的净化效率;基于所述滤网的净化效率,确定出所述滤网的第四使用寿命。
本发明实施例中,所述装置还包括:
第一输出模块,用于输出用于指示所述滤网的使用寿命的第一提示信息。
本发明实施例中,所述装置还包括:
第二输出模块,用于当所述滤网的使用寿命小于等于第一预设阈值时,输出用于指示更换滤网的第二提示信息。
本发明实施例提供的净化器上设置有滤网,其特征在于,所述净化器包括上述的滤网使用寿命的确定装置。
本发明实施例提供的计算机存储介质上存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现上述的滤网使用寿命的确定方法。
本发明实施例的技术方案中,检测净化器中风机的运行功率,并确定出所述风机的运行功率衰减百分比参数;基于所述风机的运行功率衰减百分比参数,确定所述净化器中滤网的粉尘脏赌程度;基于所述滤网的粉尘脏赌程度,确定出所述滤网的使用寿命。采用本发明实施例的技术方案,通过风机的运行功率衰减百分比参数,确定滤网的粉尘脏赌程度,然后,通过滤网的粉尘脏赌程度,确定出滤网的使用寿命,这种滤网使用寿命的确定方式更加符合滤网的真实使用寿命。
附图说明
图1为本发明实施例的滤网使用寿命的确定方法的流程示意图一;
图2为本发明实施例的滤网使用寿命的确定方法的流程示意图二;
图3为本发明实施例的滤网使用寿命的确定方法的流程示意图三;
图4为本发明实施例的滤网使用寿命的确定方法的流程示意图四;
图5为本发明实施例的滤网使用寿命的确定方法的流程示意图五;
图6为本发明实施例的第一使用寿命的确定方法的流程示意图;
图7为本发明实施例的第二使用寿命的确定方法的流程示意图;
图8为本发明实施例的第三使用寿命的确定方法的流程示意图;
图9为本发明实施例的第四使用寿命的确定方法的流程示意图;
图10为本发明实施例的滤网使用寿命的确定装置的结构组成示意图一;
图11为本发明实施例的滤网使用寿命的确定装置的结构组成示意图二;
图12为本发明实施例的滤网使用寿命的确定装置的结构组成示意图三;
图13为本发明实施例的滤网使用寿命的确定装置的结构组成示意图四;
图14为本发明实施例的滤网使用寿命的确定装置的结构组成示意图五。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
图1为本发明实施例的滤网使用寿命的确定方法的流程示意图一,如图1所示,所述滤网使用寿命的确定方法包括以下步骤:
步骤101:检测净化器中风机的运行功率,并确定出所述风机的运行功率衰减百分比参数。
本发明实施例的技术方案应用在净化器中,净化器的组成部件主要包括:前盖、滤网、风机、后盖,其中,前盖上设置有进风口,后盖上设置有出风口,风机作用而产生的风流由进风口穿过滤网流向出风口,这样,在出风口流出的风就是被滤网净化过的风。当然,净化器还可以具有更多的部件以实现更为丰富的功能,例如,在滤网与风机之间设置有用于吸附细微颗粒和异味高分子的高性能材料和活性炭材料,还可以设置有用于祛味消烟的TiO2层以及用于祛味杀菌的紫外灯等等。
本发明实施例中,净化器的滤网的种类并不做限制,滤网可以是颗粒物滤网,也可以是有机物滤网。其中,颗粒物滤网又分为粗效滤网和细颗粒物滤网;有机物滤网分为除甲醛滤网、除臭滤网、活性炭滤网、超级光矿化滤网等等。每一种滤网主要针对的污染源都不相同,过滤的原理也不相同。
本发明实施例中,通过检测风机的反馈电流,可以计算出风机的运行功率,风机的运行功率计算公式为:P=W/t=UI,其中,P为运行功率,U为风机两侧的电压,I为通过风机的电流。
实际应用中,风机的运行功率衰减百分比参数=(风机的额定运行功率-风机当前的运行功率)/风机的额定运行功率×100%,其中,风机当前的运行功率/风机的额定运行功率×100%是当前风机的运行功率百分比参数。这里,风机的额定运行功率是指净化器中安装一个新的滤网时,所对应的风机的运行功率。例如,新滤网使用时风机的运行功率是1000w,当滤网由于覆盖粉尘而产生脏赌时,风机的功率会衰减到200W~300W,也即风机的运行功率衰减百分比参数为70%~80%。
步骤102:基于所述风机的运行功率衰减百分比参数,确定所述净化器中滤网的粉尘脏赌程度。
本发明实施例中,根据风机的运行功率衰减百分比参数,可以确定出滤网的粉尘脏赌程度,这里所依据的是:同一个滤网在使用过程中,滤网的粉尘脏赌程度越大,运行功率衰减百分比参数就会越大。
实际应用中,对具有一定规格的滤网进行测试,记录其运行功率衰减百分比参数与粉尘脏赌程度之间的对应关系,并记录到数据库中。当在某个时刻计算得到风机的运行功率衰减百分比参数时,可以在数据库中确定出与之对应的粉尘脏赌程度。这里,对于同一个滤网而言,其粉尘脏赌程度可以直接通过滤网上覆盖的粉尘累积量来表征。
当然,也可以对运行功率衰减百分比参数与粉尘脏赌程度的历史数据进行统计,模拟出一个数学函数来表征运行功率衰减百分比参数与粉尘脏赌程度之间的关系,这样,当在某个时刻计算得到风机的运行功率衰减百分比参数时,可以根据模拟出的数学函数直接计算出与之对应的粉尘脏赌程度。
步骤103:基于所述滤网的粉尘脏赌程度,确定出所述滤网的使用寿命。
本发明实施例中,所述滤网的粉尘脏赌程度越大,则所述滤网的使用寿命越小;所述滤网的粉尘脏赌程度越小,则所述滤网的使用寿命越大。
假设粉尘脏赌程度为x,x=(滤网的粉尘累积量/滤网的总粉尘累积量)×100%。由于滤网的粉尘累积量小于等于滤网的总粉尘累积量,因此x的取值范围为0至1。
具体地,将所述粉尘脏赌程度的取值范围(也即0至1)划分为N个数值范围,N为整数且N≥2,其中,每个所述数值范围均对应一个使用寿命;在所述N个数值范围中确定出计算得到的所述粉尘脏赌程度所属的数值范围,作为目标数值范围;确定出所述目标数值范围对应的使用寿命,作为所述滤网的使用寿命。
例如:将0至1划分为5个数值范围,分别为(0,20%],(20%,40%],(40%,60%],(60%,80%],(80,100%),其中,(80,100%)对应的使用寿命为3个月,(60%,80%]对应的使用寿命为半年,(40%,60%]对应的使用寿命为1年半,(20%,40%]对应的使用寿命为2年,(0,20%]对应的使用寿命为3年。假设x属于(0,20%],则滤网的使用寿命为3年。当然,本发明实施例中滤网的使用寿命的确定方法并不局限于此。
本发明实施例的技术方案通过风机的运行功率衰减百分比参数来确定滤网的使用寿命,这种滤网使用寿命的确定方式更加符合滤网的真实使用寿命。
在本发明一实施方式中,本发明实施例的技术方案还包括如下步骤:
步骤104:输出用于指示所述滤网的使用寿命的第一提示信息。
具体地,基于所述滤网的使用寿命,确定出位于所述净化器上的进度条中待显示的指示单元的个数,其中,所述进度条包括N个能够进行显示的指示单元;控制所述进度条按照所确定出的指示单元的个数进行显示,以提示所述滤网的使用寿命。例如:进度条包括5个能够进行显示的指示单元,这5个指示单元排列成一排或者一列形成进度条。滤网的使用寿命越大,则待显示的指示单元的个数越多,同理,滤网的使用寿命越小,则待显示的指示单元的个数越少。进度条显示1个指示单元对应的使用寿命为3个月,进度条显示2个指示单元对应的使用寿命为半年,进度条显示3个指示单元对应的使用寿命为1年半,进度条显示4个指示单元对应的使用寿命为2年,进度条显示5个指示单元对应的使用寿命为3年。假设滤网的使用寿命为3年,则进度条显示5个指示单元。当然,滤网的使用寿命还可以是连续的数值,这种情况下可以直接通过文字方式来提示滤网的使用寿命。
步骤105:当所述滤网的使用寿命小于等于第一预设阈值时,输出用于指示更换滤网的第二提示信息。
本发明实施例中,假设第一预设阈值为2年,随着时间的推移滤网的使用寿命不断减小,当滤网的使用寿命小于2年时,通过第二提示信息向用户提示需要更换滤网。在一实施方式中,当滤网的使用寿命为滤网的总使用寿命(如两年半)时,还可以输出滤网报废的提示信息。
当用户看到第二提示信息更换滤网后,继续执行本发明实施例的上述步骤101至步骤105,可见,本发明实施例的技术方案能够自动识别滤网的使用寿命,当用户更换一个新的滤网或者更换一个不是报废的滤网时,先前指示更换滤网的提示信息或者滤网报废的信息自动取消,大大提升了用户的使用体验。
图2为本发明实施例的滤网使用寿命的确定方法的流程示意图二,如图2所示,所述滤网使用寿命的确定方法包括以下步骤:
步骤201:计算所述净化器中的风机的运行功率衰减百分比参数,并基于所述风机的运行功率衰减百分比参数确定出所述滤网粉尘脏赌程度;基于所述滤网的粉尘脏赌程度,确定出所述滤网的第一使用寿命。
本发明实施例的技术方案应用在净化器中,净化器的组成部件主要包括:前盖、滤网、风机、后盖,其中,前盖上设置有进风口,后盖上设置有出风口,风机作用而产生的风流由进风口穿过滤网流向出风口,这样,在出风口流出的风就是被滤网净化过的风。当然,净化器还可以具有更多的部件以实现更为丰富的功能,例如,在滤网与风机之间设置有用于吸附细微颗粒和异味高分子的高性能材料和活性炭材料,还可以设置有用于祛味消烟的TiO2层以及用于祛味杀菌的紫外灯等等。
本发明实施例中,净化器的滤网的种类并不做限制,滤网可以是颗粒物滤网,也可以是有机物滤网。其中,颗粒物滤网又分为粗效滤网和细颗粒物滤网;有机物滤网分为除甲醛滤网、除臭滤网、活性炭滤网、超级光矿化滤网等等。每一种滤网主要针对的污染源都不相同,过滤的原理也不相同。
本发明实施例中,滤网的第一使用寿命具体通过以下过程计算得到:检测净化器中风机的运行功率,并确定出所述风机的运行功率衰减百分比参数;基于所述风机的运行功率衰减百分比参数,确定所述净化器中滤网的粉尘脏赌程度;基于所述滤网的粉尘脏赌程度,确定出所述滤网的使用寿命。
这里,通过检测风机的反馈电流,可以计算出风机的运行功率,风机的运行功率计算公式为:P=W/t=UI,其中,P为运行功率,U为风机两侧的电压,I为通过风机的电流。
实际应用中,风机的运行功率衰减百分比参数=(风机的额定运行功率-风机当前的运行功率)/风机的额定运行功率×100%,其中,风机当前的运行功率/风机的额定运行功率×100%是当前风机的运行功率百分比参数。这里,风机的额定运行功率是指净化器中安装一个新的滤网时,所对应的风机的运行功率。例如,新滤网使用时风机的运行功率是1000w,当滤网由于覆盖粉尘而产生脏赌时,风机的功率会衰减到200W~300W,也即风机的运行功率衰减百分比参数为70%~80%。
这里,根据风机的运行功率衰减百分比参数,可以确定出滤网的粉尘脏赌程度,这里所依据的是:同一个滤网在使用过程中,滤网的粉尘脏赌程度越大,运行功率衰减百分比参数就会越大。
实际应用中,对具有一定规格的滤网进行测试,记录其运行功率衰减百分比参数与粉尘脏赌程度之间的对应关系,并记录到数据库中。当在某个时刻计算得到风机的运行功率衰减百分比参数时,可以在数据库中确定出与之对应的粉尘脏赌程度。这里,对于同一个滤网而言,其粉尘脏赌程度可以直接通过滤网上覆盖的粉尘累积量来表征。
当然,也可以对运行功率衰减百分比参数与粉尘脏赌程度的历史数据进行统计,模拟出一个数学函数来表征运行功率衰减百分比参数与粉尘脏赌程度之间的关系,这样,当在某个时刻计算得到风机的运行功率衰减百分比参数时,可以根据模拟出的数学函数直接计算出与之对应的粉尘脏赌程度。
本发明实施例中,所述滤网的粉尘脏赌程度越大,则所述滤网的使用寿命越小;所述滤网的粉尘脏赌程度越小,则所述滤网的使用寿命越大。
步骤202:计算所述净化器中的滤网的净化百分比参数,并基于所述滤网的净化百分比参数确定出所述滤网的第二使用寿命。
本发明实施例中,滤网的第二使用寿命具体通过以下过程计算得到:取净化器中滤网的总净化量,以及计算所述滤网的累积净化量;基于所述滤网的总净化量和所述滤网的累积净化量,确定所述滤网的净化百分比参数;基于所述滤网的净化百分比参数,确定出所述滤网的第二使用寿命。
这里,获取所述净化器中滤网的CCM,将所述CCM作为所述滤网的总净化量;基于所述净化器所处环境的粉尘浓度值、所述净化器的适用面积参数以及所述滤网的运行时间,计算所述滤网的累积净化量。
步骤203:确定所述第一使用寿命对应的第一权重值,以及所述第二使用寿命对应的第二权重值。
本发明实施例中,第一使用寿命对应的第一权重值以及第二使用寿命对应的第二权重值可以基于净化器所处环境的温度、湿度、光照强度、粉尘浓度值、净化器各部件的工作状态来确定。
步骤204:基于所述第一权重值以及所述第二权重值,对所述第一使用寿命和所述第二使用寿命进行加权求和,得到所述滤网的使用寿命。
假设第一权重值为k1,第二权重值为k2,第一使用寿命为t1,第二使用寿命为t2,则滤网的使用寿命为t=k1×t1+k2×t2,其中,k1+k2=1,k1和k2均为大于0且小于1的数。
本发明实施例中,通过对两种参数计算得到的使用寿命进行加权求和,能够得到更为准确的使用寿命,由于滤网的净化百分比参数与环境的粉尘浓度值以及滤网的运行时间有关,因而这种滤网使用寿命的确定方式更加符合滤网的真实使用寿命。
步骤205:输出用于指示所述滤网的使用寿命的第一提示信息。
本发明实施例中,可以通过但不局限于以下方式输出用于指示所述滤网的使用寿命的第一提示信息:
方式一:通过进度条来输出用于指示所述滤网的使用寿命的第一提示信息。
具体地,基于所述滤网的使用寿命,确定出位于所述净化器上的进度条中待显示的指示单元的个数,其中,所述进度条包括N个能够进行显示的指示单元;控制所述进度条按照所确定出的指示单元的个数进行显示,以提示所述滤网的使用寿命。例如:进度条包括5个能够进行显示的指示单元,这5个指示单元排列成一排或者一列形成进度条。滤网的使用寿命越大,则待显示的指示单元的个数越多,同理,滤网的使用寿命越小,则待显示的指示单元的个数越少。进度条显示1个指示单元对应的使用寿命为3个月,进度条显示2个指示单元对应的使用寿命为半年,进度条显示3个指示单元对应的使用寿命为1年半,进度条显示4个指示单元对应的使用寿命为2年,进度条显示5个指示单元对应的使用寿命为3年。假设滤网的使用寿命为3年,则进度条显示5个指示单元。
方式二:通过显示屏上的文字来输出用于指示所述滤网的使用寿命的第一提示信息。
具体地,滤网的使用寿命可以是连续的数值,这种情况下可以直接通过文字方式来提示滤网的使用寿命。
步骤206:当所述滤网的使用寿命小于等于第一预设阈值时,输出用于指示更换滤网的第二提示信息。
本发明实施例中,假设第一预设阈值为2年,随着时间的推移滤网的使用寿命不断减小,当滤网的使用寿命小于2年时,通过第二提示信息向用户提示需要更换滤网。在一实施方式中,当滤网的使用寿命为滤网的总使用寿命(如两年半)时,还可以输出滤网报废的提示信息。
当用户看到第二提示信息更换滤网后,继续执行本发明实施例的上述步骤201至步骤206,可见,本发明实施例的技术方案能够自动识别滤网的使用寿命,当用户更换一个新的滤网或者更换一个不是报废的滤网时,先前指示更换滤网的提示信息或者滤网报废的信息自动取消,大大提升了用户的使用体验。
图3为本发明实施例的滤网使用寿命的确定方法的流程示意图三,如图3所示,所述滤网使用寿命的确定方法包括以下步骤:
步骤301:计算所述净化器中的风机的运行功率衰减百分比参数,并基于所述风机的运行功率衰减百分比参数确定出所述滤网粉尘脏赌程度;基于所述滤网的粉尘脏赌程度,确定出所述滤网的第一使用寿命。
本发明实施例的技术方案应用在净化器中,净化器的组成部件主要包括:前盖、滤网、风机、后盖,其中,前盖上设置有进风口,后盖上设置有出风口,风机作用而产生的风流由进风口穿过滤网流向出风口,这样,在出风口流出的风就是被滤网净化过的风。当然,净化器还可以具有更多的部件以实现更为丰富的功能,例如,在滤网与风机之间设置有用于吸附细微颗粒和异味高分子的高性能材料和活性炭材料,还可以设置有用于祛味消烟的TiO2层以及用于祛味杀菌的紫外灯等等。
本发明实施例中,净化器的滤网的种类并不做限制,滤网可以是颗粒物滤网,也可以是有机物滤网。其中,颗粒物滤网又分为粗效滤网和细颗粒物滤网;有机物滤网分为除甲醛滤网、除臭滤网、活性炭滤网、超级光矿化滤网等等。每一种滤网主要针对的污染源都不相同,过滤的原理也不相同。
本发明实施例中,滤网的第一使用寿命具体通过以下过程计算得到:检测净化器中风机的运行功率,并确定出所述风机的运行功率衰减百分比参数;基于所述风机的运行功率衰减百分比参数,确定所述净化器中滤网的粉尘脏赌程度;基于所述滤网的粉尘脏赌程度,确定出所述滤网的使用寿命。
这里,通过检测风机的反馈电流,可以计算出风机的运行功率,风机的运行功率计算公式为:P=W/t=UI,其中,P为运行功率,U为风机两侧的电压,I为通过风机的电流。
实际应用中,风机的运行功率衰减百分比参数=(风机的额定运行功率-风机当前的运行功率)/风机的额定运行功率×100%,其中,风机当前的运行功率/风机的额定运行功率×100%是当前风机的运行功率百分比参数。这里,风机的额定运行功率是指净化器中安装一个新的滤网时,所对应的风机的运行功率。例如,新滤网使用时风机的运行功率是1000w,当滤网由于覆盖粉尘而产生脏赌时,风机的功率会衰减到200W~300W,也即风机的运行功率衰减百分比参数为70%~80%。
这里,根据风机的运行功率衰减百分比参数,可以确定出滤网的粉尘脏赌程度,这里所依据的是:同一个滤网在使用过程中,滤网的粉尘脏赌程度越大,运行功率衰减百分比参数就会越大。
实际应用中,对具有一定规格的滤网进行测试,记录其运行功率衰减百分比参数与粉尘脏赌程度之间的对应关系,并记录到数据库中。当在某个时刻计算得到风机的运行功率衰减百分比参数时,可以在数据库中确定出与之对应的粉尘脏赌程度。这里,对于同一个滤网而言,其粉尘脏赌程度可以直接通过滤网上覆盖的粉尘累积量来表征。
当然,也可以对运行功率衰减百分比参数与粉尘脏赌程度的历史数据进行统计,模拟出一个数学函数来表征运行功率衰减百分比参数与粉尘脏赌程度之间的关系,这样,当在某个时刻计算得到风机的运行功率衰减百分比参数时,可以根据模拟出的数学函数直接计算出与之对应的粉尘脏赌程度。
本发明实施例中,所述滤网的粉尘脏赌程度越大,则所述滤网的使用寿命越小;所述滤网的粉尘脏赌程度越小,则所述滤网的使用寿命越大。
步骤302:计算所述净化器中的滤网的运行时间百分比参数,并基于所述滤网的运行时间百分比参数确定出所述滤网的第三使用寿命。
本发明实施例中,滤网的第三使用寿命具体通过以下过程计算得到:获取净化器中滤网的总净化量,并基于所述滤网的总净化量计算所述滤网的总使用寿命;基于所述滤网的总使用寿命、所述净化器所处环境的粉尘浓度值以及所述滤网的实际运行时间,确定所述滤网的等效运行时间;基于所述滤网的等效运行时间以及所述滤网的总使用寿命,确定所述滤网的运行时间百分比参数;基于所述滤网的运行时间百分比参数,确定出所述滤网的第三使用寿命。
这里,滤网的总使用寿命通过以下过程得到:获取所述净化器中滤网的最大容尘量CCM,将所述CCM作为所述滤网的总净化量;基于以下公式计算所述滤网的总使用寿命:T=CCM/{(0.48×CG-28)×S×2.4};
其中,T为所述滤网的总使用寿命,CG为标准环境的粉尘浓度值,S为所述净化器的适用面积参数。
这里,滤网的等效运行时间通过以下过程得到:基于以下公式计算所述滤网的等效运行时间:teq=(CN/CG)×t;其中,teq为所述滤网的等效运行时间,CN为所述净化器所处环境的粉尘浓度值,CG为标准环境的粉尘浓度值,t为所述滤网的实际运行时间。
步骤303:确定所述第一使用寿命对应的第一权重值,以及所述第三使用寿命对应的第三权重值。
本发明实施例中,第一使用寿命对应的第一权重值以及第三使用寿命对应的第三权重值可以基于净化器所处环境的温度、湿度、光照强度、粉尘浓度值、净化器各部件的工作状态来确定。
步骤304:基于所述第一权重值以及所述第三权重值,对所述第一使用寿命和所述第三使用寿命进行加权求和,得到所述滤网的使用寿命。
假设第一权重值为k1,第三权重值为k3,第一使用寿命为t1,第二使用寿命为t3,则滤网的使用寿命为t=k1×t1+k3×t3,其中,k1+k3=1,k1和k3均为大于0且小于1的数。
本发明实施例中,通过对两种参数计算得到的使用寿命进行加权求和,能够得到更为准确的使用寿命,由于滤网的运行时间百分比参数与环境的粉尘浓度值有关,滤网的净化百分比参数与环境的粉尘浓度值以及滤网的运行时间有关,因而这种滤网使用寿命的确定方式更加符合滤网的真实使用寿命。
步骤305:输出用于指示所述滤网的使用寿命的第一提示信息。
本发明实施例中,可以通过但不局限于以下方式输出用于指示所述滤网的使用寿命的第一提示信息:
方式一:通过进度条来输出用于指示所述滤网的使用寿命的第一提示信息。
具体地,基于所述滤网的使用寿命,确定出位于所述净化器上的进度条中待显示的指示单元的个数,其中,所述进度条包括N个能够进行显示的指示单元;控制所述进度条按照所确定出的指示单元的个数进行显示,以提示所述滤网的使用寿命。例如:进度条包括5个能够进行显示的指示单元,这5个指示单元排列成一排或者一列形成进度条。滤网的使用寿命越大,则待显示的指示单元的个数越多,同理,滤网的使用寿命越小,则待显示的指示单元的个数越少。进度条显示1个指示单元对应的使用寿命为3个月,进度条显示2个指示单元对应的使用寿命为半年,进度条显示3个指示单元对应的使用寿命为1年半,进度条显示4个指示单元对应的使用寿命为2年,进度条显示5个指示单元对应的使用寿命为3年。假设滤网的使用寿命为3年,则进度条显示5个指示单元。
方式二:通过显示屏上的文字来输出用于指示所述滤网的使用寿命的第一提示信息。
具体地,滤网的使用寿命可以是连续的数值,这种情况下可以直接通过文字方式来提示滤网的使用寿命。
步骤306:当所述滤网的使用寿命小于等于第一预设阈值时,输出用于指示更换滤网的第二提示信息。
本发明实施例中,假设第一预设阈值为2年,随着时间的推移滤网的使用寿命不断减小,当滤网的使用寿命小于2年时,通过第二提示信息向用户提示需要更换滤网。在一实施方式中,当滤网的使用寿命为滤网的总使用寿命(如两年半)时,还可以输出滤网报废的提示信息。
当用户看到第二提示信息更换滤网后,继续执行本发明实施例的上述步骤301至步骤306,可见,本发明实施例的技术方案能够自动识别滤网的使用寿命,当用户更换一个新的滤网或者更换一个不是报废的滤网时,先前指示更换滤网的提示信息或者滤网报废的信息自动取消,大大提升了用户的使用体验。
图4为本发明实施例的滤网使用寿命的确定方法的流程示意图四,如图4所示,所述滤网使用寿命的确定方法包括以下步骤:
步骤401:计算所述净化器中的风机的运行功率衰减百分比参数,并基于所述风机的运行功率衰减百分比参数确定出所述滤网粉尘脏赌程度;基于所述滤网的粉尘脏赌程度,确定出所述滤网的第一使用寿命。
本发明实施例的技术方案应用在净化器中,净化器的组成部件主要包括:前盖、滤网、风机、后盖,其中,前盖上设置有进风口,后盖上设置有出风口,风机作用而产生的风流由进风口穿过滤网流向出风口,这样,在出风口流出的风就是被滤网净化过的风。当然,净化器还可以具有更多的部件以实现更为丰富的功能,例如,在滤网与风机之间设置有用于吸附细微颗粒和异味高分子的高性能材料和活性炭材料,还可以设置有用于祛味消烟的TiO2层以及用于祛味杀菌的紫外灯等等。
本发明实施例中,净化器的滤网的种类并不做限制,滤网可以是颗粒物滤网,也可以是有机物滤网。其中,颗粒物滤网又分为粗效滤网和细颗粒物滤网;有机物滤网分为除甲醛滤网、除臭滤网、活性炭滤网、超级光矿化滤网等等。每一种滤网主要针对的污染源都不相同,过滤的原理也不相同。
本发明实施例中,滤网的第一使用寿命具体通过以下过程计算得到:检测净化器中风机的运行功率,并确定出所述风机的运行功率衰减百分比参数;基于所述风机的运行功率衰减百分比参数,确定所述净化器中滤网的粉尘脏赌程度;基于所述滤网的粉尘脏赌程度,确定出所述滤网的使用寿命。
这里,通过检测风机的反馈电流,可以计算出风机的运行功率,风机的运行功率计算公式为:P=W/t=UI,其中,P为运行功率,U为风机两侧的电压,I为通过风机的电流。
实际应用中,风机的运行功率衰减百分比参数=(风机的额定运行功率-风机当前的运行功率)/风机的额定运行功率×100%,其中,风机当前的运行功率/风机的额定运行功率×100%是当前风机的运行功率百分比参数。这里,风机的额定运行功率是指净化器中安装一个新的滤网时,所对应的风机的运行功率。例如,新滤网使用时风机的运行功率是1000w,当滤网由于覆盖粉尘而产生脏赌时,风机的功率会衰减到200W~300W,也即风机的运行功率衰减百分比参数为70%~80%。
这里,根据风机的运行功率衰减百分比参数,可以确定出滤网的粉尘脏赌程度,这里所依据的是:同一个滤网在使用过程中,滤网的粉尘脏赌程度越大,运行功率衰减百分比参数就会越大。
实际应用中,对具有一定规格的滤网进行测试,记录其运行功率衰减百分比参数与粉尘脏赌程度之间的对应关系,并记录到数据库中。当在某个时刻计算得到风机的运行功率衰减百分比参数时,可以在数据库中确定出与之对应的粉尘脏赌程度。这里,对于同一个滤网而言,其粉尘脏赌程度可以直接通过滤网上覆盖的粉尘累积量来表征。
当然,也可以对运行功率衰减百分比参数与粉尘脏赌程度的历史数据进行统计,模拟出一个数学函数来表征运行功率衰减百分比参数与粉尘脏赌程度之间的关系,这样,当在某个时刻计算得到风机的运行功率衰减百分比参数时,可以根据模拟出的数学函数直接计算出与之对应的粉尘脏赌程度。
本发明实施例中,所述滤网的粉尘脏赌程度越大,则所述滤网的使用寿命越小;所述滤网的粉尘脏赌程度越小,则所述滤网的使用寿命越大。
步骤402:计算净化器中的滤网的净化效率,并基于所述滤网的净化效率确定出所述滤网的第四使用寿命。
本发明实施例中,滤网的第四使用寿命具体通过以下过程计算得到:获利用设置于所述净化器出风口的第一粉尘传感器检测所述出风口处的第一粉尘浓度值,以及利用设置于所述净化器进风口的第二粉尘传感器检测所述进风口处的第二粉尘浓度值;基于所述第一粉尘浓度值和所述第二粉尘浓度值,确定所述净化器中的滤网的净化效率;基于所述滤网的净化效率,确定出所述滤网的第四使用寿命。
步骤403:确定所述第一使用寿命对应的第一权重值,以及所述第四使用寿命对应的第四权重值。
本发明实施例中,第一使用寿命对应的第一权重值以及第四使用寿命对应的第四权重值可以基于净化器所处环境的温度、湿度、光照强度、粉尘浓度值、净化器各部件的工作状态来确定。
步骤404:基于所述第一权重值以及所述第四权重值,对所述第一使用寿命和所述第四使用寿命进行加权求和,得到所述滤网的使用寿命。
假设第一权重值为k1,第四权重值为k4,第一使用寿命为t1,第二使用寿命为t4,则滤网的使用寿命为t=k1×t1+k4×t4,其中,k1+k4=1,k1和k4均为大于0且小于1的数。
本发明实施例中,通过对两种参数计算得到的使用寿命进行加权求和,能够得到更为准确的使用寿命,由于滤网的净化效率与环境的粉尘浓度值有关,因而这种滤网使用寿命的确定方式更加符合滤网的真实使用寿命。
步骤405:输出用于指示所述滤网的使用寿命的第一提示信息。
本发明实施例中,可以通过但不局限于以下方式输出用于指示所述滤网的使用寿命的第一提示信息:
方式一:通过进度条来输出用于指示所述滤网的使用寿命的第一提示信息。
具体地,基于所述滤网的使用寿命,确定出位于所述净化器上的进度条中待显示的指示单元的个数,其中,所述进度条包括N个能够进行显示的指示单元;控制所述进度条按照所确定出的指示单元的个数进行显示,以提示所述滤网的使用寿命。例如:进度条包括5个能够进行显示的指示单元,这5个指示单元排列成一排或者一列形成进度条。滤网的使用寿命越大,则待显示的指示单元的个数越多,同理,滤网的使用寿命越小,则待显示的指示单元的个数越少。进度条显示1个指示单元对应的使用寿命为3个月,进度条显示2个指示单元对应的使用寿命为半年,进度条显示3个指示单元对应的使用寿命为1年半,进度条显示4个指示单元对应的使用寿命为2年,进度条显示5个指示单元对应的使用寿命为3年。假设滤网的使用寿命为3年,则进度条显示5个指示单元。
方式二:通过显示屏上的文字来输出用于指示所述滤网的使用寿命的第一提示信息。
具体地,滤网的使用寿命可以是连续的数值,这种情况下可以直接通过文字方式来提示滤网的使用寿命。
步骤406:当所述滤网的使用寿命小于等于第一预设阈值时,输出用于指示更换滤网的第二提示信息。
本发明实施例中,假设第一预设阈值为2年,随着时间的推移滤网的使用寿命不断减小,当滤网的使用寿命小于2年时,通过第二提示信息向用户提示需要更换滤网。在一实施方式中,当滤网的使用寿命为滤网的总使用寿命(如两年半)时,还可以输出滤网报废的提示信息。
当用户看到第二提示信息更换滤网后,继续执行本发明实施例的上述步骤401至步骤406,可见,本发明实施例的技术方案能够自动识别滤网的使用寿命,当用户更换一个新的滤网或者更换一个不是报废的滤网时,先前指示更换滤网的提示信息或者滤网报废的信息自动取消,大大提升了用户的使用体验。
图5为本发明实施例的滤网使用寿命的确定方法的流程示意图五,如图5所示,所述滤网使用寿命的确定方法包括以下步骤:
步骤501:计算所述净化器中的风机的运行功率衰减百分比参数,并基于所述风机的运行功率衰减百分比参数确定出所述滤网粉尘脏赌程度;基于所述滤网的粉尘脏赌程度,确定出所述滤网的第一使用寿命。
本发明实施例的技术方案应用在净化器中,净化器的组成部件主要包括:前盖、滤网、风机、后盖,其中,前盖上设置有进风口,后盖上设置有出风口,风机作用而产生的风流由进风口穿过滤网流向出风口,这样,在出风口流出的风就是被滤网净化过的风。当然,净化器还可以具有更多的部件以实现更为丰富的功能,例如,在滤网与风机之间设置有用于吸附细微颗粒和异味高分子的高性能材料和活性炭材料,还可以设置有用于祛味消烟的TiO2层以及用于祛味杀菌的紫外灯等等。
本发明实施例中,净化器的滤网的种类并不做限制,滤网可以是颗粒物滤网,也可以是有机物滤网。其中,颗粒物滤网又分为粗效滤网和细颗粒物滤网;有机物滤网分为除甲醛滤网、除臭滤网、活性炭滤网、超级光矿化滤网等等。每一种滤网主要针对的污染源都不相同,过滤的原理也不相同。
本发明实施例中,滤网的第一使用寿命具体通过以下过程计算得到:检测净化器中风机的运行功率,并确定出所述风机的运行功率衰减百分比参数;基于所述风机的运行功率衰减百分比参数,确定所述净化器中滤网的粉尘脏赌程度;基于所述滤网的粉尘脏赌程度,确定出所述滤网的使用寿命。
这里,通过检测风机的反馈电流,可以计算出风机的运行功率,风机的运行功率计算公式为:P=W/t=UI,其中,P为运行功率,U为风机两侧的电压,I为通过风机的电流。
实际应用中,风机的运行功率衰减百分比参数=(风机的额定运行功率-风机当前的运行功率)/风机的额定运行功率×100%,其中,风机当前的运行功率/风机的额定运行功率×100%是当前风机的运行功率百分比参数。这里,风机的额定运行功率是指净化器中安装一个新的滤网时,所对应的风机的运行功率。例如,新滤网使用时风机的运行功率是1000w,当滤网由于覆盖粉尘而产生脏赌时,风机的功率会衰减到200W~300W,也即风机的运行功率衰减百分比参数为70%~80%。
这里,根据风机的运行功率衰减百分比参数,可以确定出滤网的粉尘脏赌程度,这里所依据的是:同一个滤网在使用过程中,滤网的粉尘脏赌程度越大,运行功率衰减百分比参数就会越大。
实际应用中,对具有一定规格的滤网进行测试,记录其运行功率衰减百分比参数与粉尘脏赌程度之间的对应关系,并记录到数据库中。当在某个时刻计算得到风机的运行功率衰减百分比参数时,可以在数据库中确定出与之对应的粉尘脏赌程度。这里,对于同一个滤网而言,其粉尘脏赌程度可以直接通过滤网上覆盖的粉尘累积量来表征。
当然,也可以对运行功率衰减百分比参数与粉尘脏赌程度的历史数据进行统计,模拟出一个数学函数来表征运行功率衰减百分比参数与粉尘脏赌程度之间的关系,这样,当在某个时刻计算得到风机的运行功率衰减百分比参数时,可以根据模拟出的数学函数直接计算出与之对应的粉尘脏赌程度。
本发明实施例中,所述滤网的粉尘脏赌程度越大,则所述滤网的使用寿命越小;所述滤网的粉尘脏赌程度越小,则所述滤网的使用寿命越大。
步骤502:计算所述净化器中的滤网的运行时间百分比参数,并基于所述滤网的运行时间百分比参数确定出所述滤网的第三使用寿命。
本发明实施例中,滤网的第三使用寿命具体通过以下过程计算得到:获取净化器中滤网的总净化量,并基于所述滤网的总净化量计算所述滤网的总使用寿命;基于所述滤网的总使用寿命、所述净化器所处环境的粉尘浓度值以及所述滤网的实际运行时间,确定所述滤网的等效运行时间;基于所述滤网的等效运行时间以及所述滤网的总使用寿命,确定所述滤网的运行时间百分比参数;基于所述滤网的运行时间百分比参数,确定出所述滤网的第三使用寿命。
这里,滤网的总使用寿命通过以下过程得到:获取所述净化器中滤网的最大容尘量CCM,将所述CCM作为所述滤网的总净化量;基于以下公式计算所述滤网的总使用寿命:T=CCM/{(0.48×CG-28)×S×2.4};
其中,T为所述滤网的总使用寿命,CG为标准环境的粉尘浓度值,S为所述净化器的适用面积参数。
这里,滤网的等效运行时间通过以下过程得到:基于以下公式计算所述滤网的等效运行时间:teq=(CN/CG)×t;其中,teq为所述滤网的等效运行时间,CN为所述净化器所处环境的粉尘浓度值,CG为标准环境的粉尘浓度值,t为所述滤网的实际运行时间。
步骤503:计算净化器中的滤网的净化效率,并基于所述滤网的净化效率确定出所述滤网的第四使用寿命。
本发明实施例中,滤网的第四使用寿命具体通过以下过程计算得到:获利用设置于所述净化器出风口的第一粉尘传感器检测所述出风口处的第一粉尘浓度值,以及利用设置于所述净化器进风口的第二粉尘传感器检测所述进风口处的第二粉尘浓度值;基于所述第一粉尘浓度值和所述第二粉尘浓度值,确定所述净化器中的滤网的净化效率;基于所述滤网的净化效率,确定出所述滤网的第四使用寿命。
步骤504:确定所述第一使用寿命对应的第一权重值,确定所述第三使用寿命对应的第三权重值以及所述第四使用寿命对应的第四权重值。
本发明实施例中,第一使用寿命对应的第一权重值、第三使用寿命对应的第三权重值以及第四使用寿命对应的第四权重值可以基于净化器所处环境的温度、湿度、光照强度、粉尘浓度值、净化器各部件的工作状态来确定。
步骤505:基于所述第一权重值、所述第三权重值以及所述第四权重值,对所述第一使用寿命、所述第三使用寿命和所述第四使用寿命进行加权求和,得到所述滤网的使用寿命。
假设第一权重值为k1,第三权重为k3,第四权重值为k4,第一使用寿命为t1,第三使用寿命为t3,第二使用寿命为t4,则滤网的使用寿命为t=k1×t1+k3×t3+k4×t4,其中,k1+k3+k4=1,k1、k3和k4均为大于0且小于1的数。
本发明实施例中,通过对三种参数计算得到的使用寿命进行加权求和,能够得到更为准确的使用寿命,由于滤网的运行时间百分比参数与环境的粉尘浓度值以及滤网的运行时间有关有关,滤网的净化效率与环境的粉尘浓度值有关,因而这种滤网使用寿命的确定方式更加符合滤网的真实使用寿命。
步骤506:输出用于指示所述滤网的使用寿命的第一提示信息。
本发明实施例中,可以通过但不局限于以下方式输出用于指示所述滤网的使用寿命的第一提示信息:
方式一:通过进度条来输出用于指示所述滤网的使用寿命的第一提示信息。
具体地,基于所述滤网的使用寿命,确定出位于所述净化器上的进度条中待显示的指示单元的个数,其中,所述进度条包括N个能够进行显示的指示单元;控制所述进度条按照所确定出的指示单元的个数进行显示,以提示所述滤网的使用寿命。例如:进度条包括5个能够进行显示的指示单元,这5个指示单元排列成一排或者一列形成进度条。滤网的使用寿命越大,则待显示的指示单元的个数越多,同理,滤网的使用寿命越小,则待显示的指示单元的个数越少。进度条显示1个指示单元对应的使用寿命为3个月,进度条显示2个指示单元对应的使用寿命为半年,进度条显示3个指示单元对应的使用寿命为1年半,进度条显示4个指示单元对应的使用寿命为2年,进度条显示5个指示单元对应的使用寿命为3年。假设滤网的使用寿命为3年,则进度条显示5个指示单元。
方式二:通过显示屏上的文字来输出用于指示所述滤网的使用寿命的第一提示信息。
具体地,滤网的使用寿命可以是连续的数值,这种情况下可以直接通过文字方式来提示滤网的使用寿命。
步骤507:当所述滤网的使用寿命小于等于第一预设阈值时,输出用于指示更换滤网的第二提示信息。
本发明实施例中,假设第一预设阈值为2年,随着时间的推移滤网的使用寿命不断减小,当滤网的使用寿命小于2年时,通过第二提示信息向用户提示需要更换滤网。在一实施方式中,当滤网的使用寿命为滤网的总使用寿命(如两年半)时,还可以输出滤网报废的提示信息。
当用户看到第二提示信息更换滤网后,继续执行本发明实施例的上述步骤501至步骤507,可见,本发明实施例的技术方案能够自动识别滤网的使用寿命,当用户更换一个新的滤网或者更换一个不是报废的滤网时,先前指示更换滤网的提示信息或者滤网报废的信息自动取消,大大提升了用户的使用体验。
以下对本发明实施例中的第一使用寿命的确定方法进行详细描述。
图6为本发明实施例的第一使用寿命的确定方法的流程示意图,如图6所示,所述方法包括以下步骤:
步骤601:检测净化器中风机的运行功率,并确定出所述风机的运行功率衰减百分比参数。
本发明实施例的技术方案应用在净化器中,净化器的组成部件主要包括:前盖、滤网、风机、后盖,其中,前盖上设置有进风口,后盖上设置有出风口,风机作用而产生的风流由进风口穿过滤网流向出风口,这样,在出风口流出的风就是被滤网净化过的风。当然,净化器还可以具有更多的部件以实现更为丰富的功能,例如,在滤网与风机之间设置有用于吸附细微颗粒和异味高分子的高性能材料和活性炭材料,还可以设置有用于祛味消烟的TiO2层以及用于祛味杀菌的紫外灯等等。
本发明实施例中,净化器的滤网的种类并不做限制,滤网可以是颗粒物滤网,也可以是有机物滤网。其中,颗粒物滤网又分为粗效滤网和细颗粒物滤网;有机物滤网分为除甲醛滤网、除臭滤网、活性炭滤网、超级光矿化滤网等等。每一种滤网主要针对的污染源都不相同,过滤的原理也不相同。
本发明实施例中,通过检测风机的反馈电流,可以计算出风机的运行功率,风机的运行功率计算公式为:P=W/t=UI,其中,P为运行功率,U为风机两侧的电压,I为通过风机的电流。
实际应用中,风机的运行功率衰减百分比参数=(风机的额定运行功率-风机当前的运行功率)/风机的额定运行功率×100%,其中,风机当前的运行功率/风机的额定运行功率×100%是当前风机的运行功率百分比参数。这里,风机的额定运行功率是指净化器中安装一个新的滤网时,所对应的风机的运行功率。例如,新滤网使用时风机的运行功率是1000w,当滤网由于覆盖粉尘而产生脏赌时,风机的功率会衰减到200W~300W,也即风机的运行功率衰减百分比参数为70%~80%。
步骤602:基于所述风机的运行功率衰减百分比参数,确定所述净化器中滤网的粉尘脏赌程度。
本发明实施例中,根据风机的运行功率衰减百分比参数,可以确定出滤网的粉尘脏赌程度,这里所依据的是:同一个滤网在使用过程中,滤网的粉尘脏赌程度越大,运行功率衰减百分比参数就会越大。
实际应用中,对具有一定规格的滤网进行测试,记录其运行功率衰减百分比参数与粉尘脏赌程度之间的对应关系,并记录到数据库中。当在某个时刻计算得到风机的运行功率衰减百分比参数时,可以在数据库中确定出与之对应的粉尘脏赌程度。这里,对于同一个滤网而言,其粉尘脏赌程度可以直接通过滤网上覆盖的粉尘累积量来表征。
当然,也可以对运行功率衰减百分比参数与粉尘脏赌程度的历史数据进行统计,模拟出一个数学函数来表征运行功率衰减百分比参数与粉尘脏赌程度之间的关系,这样,当在某个时刻计算得到风机的运行功率衰减百分比参数时,可以根据模拟出的数学函数直接计算出与之对应的粉尘脏赌程度。
步骤603:基于所述滤网的粉尘脏赌程度,确定出所述滤网的第一使用寿命。
本发明实施例中,所述滤网的粉尘脏赌程度越大,则所述滤网的使用寿命越小;所述滤网的粉尘脏赌程度越小,则所述滤网的使用寿命越大。
假设粉尘脏赌程度为x,x=(滤网的粉尘累积量/滤网的总粉尘累积量)×100%。由于滤网的粉尘累积量小于等于滤网的总粉尘累积量,因此x的取值范围为0至1。
具体地,将所述粉尘脏赌程度的取值范围(也即0至1)划分为N个数值范围,N为整数且N≥2,其中,每个所述数值范围均对应一个使用寿命;在所述N个数值范围中确定出计算得到的所述粉尘脏赌程度所属的数值范围,作为目标数值范围;确定出所述目标数值范围对应的使用寿命,作为所述滤网的使用寿命。
例如:将0至1划分为5个数值范围,分别为(0,20%],(20%,40%],(40%,60%],(60%,80%],(80,100%),其中,(80,100%)对应的使用寿命为3个月,(60%,80%]对应的使用寿命为半年,(40%,60%]对应的使用寿命为1年半,(20%,40%]对应的使用寿命为2年,(0,20%]对应的使用寿命为3年。假设x属于(0,20%],则滤网的使用寿命为3年。当然,本发明实施例中滤网的使用寿命的确定方法并不局限于此。
本发明实施例的技术方案通过风机的运行功率衰减百分比参数来确定滤网的使用寿命,这种滤网使用寿命的确定方式更加符合滤网的真实使用寿命。
以下对本发明实施例中的第二使用寿命的确定方法进行详细描述。
图7为本发明实施例的第二使用寿命的确定方法的流程示意图,如图7所示,所述方法包括以下步骤:
步骤701:获取净化器中滤网的总净化量,以及计算所述滤网的累积净化量。
本发明实施例中,获取净化器中滤网的总净化量具体包括:获取所述净化器中滤网的CCM,将所述CCM作为所述滤网的总净化量。
这里,CCM是指滤网的最大容尘量,例如CCM=50000,则滤网在使用过程中,当灰尘的累积净化量到50000时,滤网就报废。CCM与滤网的总使用寿命的关系可以根据如下公式计算:
CCM=(0.48×CG-28)×S×2.4×T
其中,CG为标准环境的粉尘浓度值,S为净化器的适用面积参数(例如一款净化器的适用面积为50平米),T为滤网的总使用寿命。
本发明实施例中,计算所述滤网的累积净化量具体包括:基于所述净化器所处环境的粉尘浓度值、所述净化器的适用面积参数以及所述滤网的运行时间,计算所述滤网的累积净化量。
这里,基于以下公式计算所述滤网的累积净化量:(0.48×CN-28)×S×2.4×t;
其中,CN为所述净化器所处环境的粉尘浓度值,S为所述净化器的适用面积参数,t为所述滤网的运行时间。
实际应用中,由于环境的粉尘浓度值是不断发生变化的,因此可以按照时间周期来计算滤网的累积净化量,以时间周期为1个小时为例,第1个小时计算环境的平均粉尘浓度值为CN1,t为1小时,这样就可以计算出第1个小时对应的累积净化量,依次类推可以计算得到第2个小时,第3个小时等等的累积净化量,将当前时刻之前的所有小时对应的累积净化量求和就得到了当前时刻对应的累积净化量。
步骤702:基于所述滤网的总净化量和所述滤网的累积净化量,确定所述滤网的净化百分比参数。
具体地,计算所述滤网的累积净化量与所述滤网的总净化量的比值,作为所述滤网的净化百分比参数;
其中,所述净化百分比参数越大,则所述滤网的使用寿命越小;所述净化百分比参数越小,则所述滤网的使用寿命越大。
步骤703:基于所述滤网的净化百分比参数,确定出所述滤网的第二使用寿命。
假设净化百分比参数为x,x=(滤网的累积净化量/滤网的总净化量)×100%。由于滤网的累积净化量小于等于滤网的总净化量,因此x的取值范围为0至1。
具体地,将所述净化百分比参数的取值范围(也即0至1)划分为N个数值范围,N为整数且N≥2,其中,每个所述数值范围均对应一个使用寿命;在所述N个数值范围中确定出计算得到的所述净化百分比参数所属的数值范围,作为目标数值范围;确定出所述目标数值范围对应的使用寿命,作为所述滤网的使用寿命。
例如:将0至1划分为5个数值范围,分别为(0,20%],(20%,40%],(40%,60%],(60%,80%],(80,100%),其中,(80,100%)对应的使用寿命为3个月,(60%,80%]对应的使用寿命为半年,(40%,60%]对应的使用寿命为1年半,(20%,40%]对应的使用寿命为2年,(0,20%]对应的使用寿命为3年。假设x属于(0,20%],则滤网的使用寿命为3年。当然,本发明实施例中滤网的使用寿命的确定方法并不局限于此,还可以通过以下公式计算得到滤网的使用寿命:T/x,其中,T为滤网的总使用寿命,x为净化百分比参数。
以下对本发明实施例中的第三使用寿命的确定方法进行详细描述。
图8为本发明实施例的第三使用寿命的确定方法的流程示意图,如图8所示,所述方法包括以下步骤:
步骤801:获取净化器中滤网的总净化量,并基于所述滤网的总净化量计算所述滤网的总使用寿命。
本发明实施例中,获取净化器中滤网的总净化量具体包括:获取所述净化器中滤网的CCM,将所述CCM作为所述滤网的总净化量。
这里,CCM是指滤网的最大容尘量,例如CCM=50000,则滤网在使用过程中,当灰尘的累积净化量到50000时,滤网就报废。CCM与滤网的总使用寿命的关系可以根据如下公式计算:
CCM=(0.48×CG-28)×S×2.4×T
其中,CG为标准环境的粉尘浓度值,S为净化器的适用面积参数(例如一款净化器的适用面积为50平米),T为滤网的总使用寿命。
因此,基于以下公式计算所述滤网的总使用寿命:T=CCM/{(0.48×CG-28)×S×2.4}。
步骤802:基于所述滤网的总使用寿命、所述净化器所处环境的粉尘浓度值以及所述滤网的实际运行时间,确定所述滤网的等效运行时间。
本发明实施例中,净化器所处环境的粉尘浓度值与标准环境的浓度值一般不同,标准环境的浓度值对应的运行时间称为等效运行时间,净化器所处环境的粉尘浓度值对应的时间称为实际运行时间,将实际运行时间转换为等效运行时间可以基于以下公式:teq=(CN/CG)×t;
其中,teq为所述滤网的等效运行时间,CN为所述净化器所处环境的粉尘浓度值,CG为标准环境的粉尘浓度值,t为所述滤网的实际运行时间。
例如:净化器所处环境的粉尘浓度值为CN=50ug/m3,标准环境的粉尘浓度值为CG=250ug/m3,假设滤网实际运行时间为1小时,则滤网的等效运行时间为teq=(50/250)×1小时=12分钟,即用户在50ug/m3的平均粉尘浓度下使用一个小时,折算成的滤网的损耗时长(也即等效运行时间)为12分钟。
步骤803:基于所述滤网的等效运行时间以及所述滤网的总使用寿命,确定所述滤网的运行时间百分比参数。
具体地,计算所述滤网的等效运行时间与所述滤网的总使用寿命的比值,作为所述滤网的运行时间百分比参数。
假设滤网的等效运行时间为teq,滤网的总使用寿命为T,则滤网的运行时间百分比参数为x=teq/T,其中,x为运行时间百分比参数。
步骤804:基于所述滤网的运行时间百分比参数,确定出所述滤网的第三使用寿命。
本发明实施例中,所述运行时间百分比参数越大,则所述滤网的使用寿命越小;所述运行时间百分比参数越小,则所述滤网的使用寿命越大。
由于滤网的等效运行时间小于等于滤网的总使用寿命,因此x的取值范围为0至1。
具体地,将所述运行时间百分比参数的取值范围(也即0至1)划分为N个数值范围,N为整数且N≥2,其中,每个所述数值范围均对应一个使用寿命;在所述N个数值范围中确定出计算得到的所述运行时间百分比参数所属的数值范围,作为目标数值范围;确定出所述目标数值范围对应的使用寿命,作为所述滤网的使用寿命。
例如:将0至1划分为5个数值范围,分别为(0,20%],(20%,40%],(40%,60%],(60%,80%],(80,100%),其中,(80,100%)对应的使用寿命为3个月,(60%,80%]对应的使用寿命为半年,(40%,60%]对应的使用寿命为1年半,(20%,40%]对应的使用寿命为2年,(0,20%]对应的使用寿命为3年。假设x属于(0,20%],则滤网的使用寿命为3年。当然,本发明实施例中滤网的使用寿命的确定方法并不局限于此,还可以通过以下公式计算得到滤网的使用寿命:T-teq=T-x×T=T×(1-x),其中,T为滤网的总使用寿命,teq为滤网的有效运行时间。
以下对本发明实施例中的第四使用寿命的确定方法进行详细描述。
图9为本发明实施例的第四使用寿命的确定方法的流程示意图,如图9所示,所述方法包括以下步骤:
步骤901:利用设置于净化器出风口的第一粉尘传感器检测所述出风口处的第一粉尘浓度值,以及利用设置于所述净化器进风口的第二粉尘传感器检测所述进风口处的第二粉尘浓度值。
本发明实施例中,在净化器的出风口处设置有第一粉尘传感器,在净化器的进风口处设置有第二粉尘传感器。在一实施方式中,第一粉尘传感器和第二粉尘传感器可以是PM2.5传感器,PM2.5传感器可以用来检测空气中的粉尘浓度值,即PM2.5值。PM2.5传感器的工作原理是基于光的散射原理,微粒和分子在光的照射下会产生光的散射现象,与此同时,还吸收部分照射光的能量,当一束平行单色光入射到被测颗粒场时,会受到颗粒周围散射和吸收的影响,光强将被衰减,如此一来便可求得入射光通过待测浓度场的相对衰减率,而相对衰减率的大小基本上能线性反应待测场粉尘的相对浓度,光强的大小和经光电转换的电信号强弱成正比,通过测得电信号就可以求得相对衰减率,进而就可以测定待测场里粉尘的浓度。
第二粉尘传感器检测到的第二粉尘浓度值代表了空气净化前的粉尘浓度值,第一粉尘传感器检测到的第一粉尘浓度值代表了空气净化后的粉尘浓度值。
值得注意的是,本发明实施例中的第一粉尘传感器和第二粉尘传感器也可以合并成一个粉尘传感器,这种情况下,粉尘传感器可以通过改变检测方向来实现对进风口处的粉尘浓度和出风口的粉尘浓度进行分别检测。
步骤902:基于所述第一粉尘浓度值和所述第二粉尘浓度值,确定所述净化器中的滤网的净化效率。
一般,第一粉尘浓度值小于等于第二粉尘浓度值,也即:空气净化后的粉尘浓度值小于等于空气净化前的粉尘浓度值。第一粉尘浓度值相对于第二粉尘浓度值越小,则代表滤网过滤掉的粉尘量越大;同理,第一粉尘浓度值相对于第二粉尘浓度值越大,则代表滤网过滤掉的粉尘量越小。特殊情况下,第一粉尘浓度值等于第二粉尘浓度值,这时,滤网没有起到任何净化功效,可见,这种情况下的滤网是报废的滤网。
本发明实施例中,滤网过滤粉尘的能力可以通过滤网的净化效率来表征,基于此,可以通过所述第一粉尘浓度值和所述第二粉尘浓度值,计算得到所述净化器中的滤网的净化效率。
在一实施方式中,通过第一粉尘浓度值和第二粉尘浓度值的比值来确定滤网的净化效率,这时,比值越大代表净化效率越低,比值越小代表净化效率越高。可见,确定所述净化器中的滤网的净化效率需要执行如下操作:计算所述第一粉尘浓度值和所述第二粉尘浓度值的比值,得到所述净化效率,所述净化效率的取值范围为0至1。
当然,滤网的净化效率的计算方式并不局限于通过第一粉尘浓度值和第二粉尘浓度值的比值来确定,例如在另一实施方式中,通过第二粉尘浓度值和第一粉尘浓度值的差值来确定滤网的净化效率,这时,差值越大代表净化效率越高,差值越小代表净化效率越低。
步骤903:基于所述滤网的净化效率,确定出所述滤网的第四使用寿命。
具体地,将所述净化效率的取值范围(也即0至1)划分为N个数值范围,N为整数且N≥2,其中,每个所述数值范围均对应一个使用寿命;在所述N个数值范围中确定出计算得到的所述净化效率所属的数值范围,作为目标数值范围;确定出所述目标数值范围对应的使用寿命,作为所述滤网的使用寿命。
例如:x代表净化效率,x=(第一粉尘浓度值/第二粉尘浓度值)×100%。由于第一粉尘浓度值小于等于第二粉尘浓度值,因此,x的取值范围为0至1,将0至1划分为5个数值范围,分别为(0,20%],(20%,40%],(40%,60%],(60%,80%],(80,100%),其中,(80,100%)对应的使用寿命为3个月,(60%,80%]对应的使用寿命为半年,(40%,60%]对应的使用寿命为1年半,(20%,40%]对应的使用寿命为2年,(0,20%]对应的使用寿命为3年。假设x属于(0,20%],则滤网的使用寿命为3年。
本发明实施例的技术方案通过滤网的净化效率来确定滤网的使用寿命,这种滤网使用寿命的确定方式更加符合滤网的真实使用寿命。
图10为本发明实施例的滤网使用寿命的确定装置的结构组成示意图一,如图10所示,所述装置包括:
检测模块1001,用于检测净化器中风机的运行功率,并确定出所述风机的运行功率衰减百分比参数;
第一确定模块1002,用于基于所述风机的运行功率衰减百分比参数,确定所述净化器中滤网的粉尘脏赌程度;
第二确定模块1003,用于基于所述滤网的粉尘脏赌程度,确定出所述滤网的使用寿命。
本发明实施例中,所述装置还包括:
第一输出模块1004,用于输出用于指示所述滤网的使用寿命的第一提示信息。
本发明实施例中,所述装置还包括:
第二输出模块1005,用于当所述净化百分比参数达到第一预设阈值时,输出用于指示更换滤网的第二提示信息。
本领域技术人员应当理解,图10所示的滤网使用寿命的确定装置中的各模块的实现功能可参照前述滤网使用寿命的确定方法的相关描述而理解。
图11为本发明实施例的滤网使用寿命的确定装置的结构组成示意图二,如图11所示,所述装置包括:
检测模块1001,用于检测净化器中风机的运行功率,并确定出所述风机的运行功率衰减百分比参数;
第一确定模块1002,用于基于所述风机的运行功率衰减百分比参数,确定所述净化器中滤网的粉尘脏赌程度;
第二确定模块1003,用于基于所述滤网的粉尘脏赌程度,确定出所述滤网的使用寿命。
本发明实施例中,所述第二确定模块1003,还用于将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
所述装置还包括:
第一计算模块1006,用于计算所述净化器中的滤网的净化百分比参数,并基于所述滤网的净化百分比参数确定出所述滤网的第二使用寿命;
第三确定模块1007,用于确定所述第一使用寿命对应的第一权重值,以及所述第二使用寿命对应的第二权重值;
第一加权模块1008,用于基于所述第一权重值以及所述第二权重值,对所述第一使用寿命和所述第二使用寿命进行加权求和,得到所述滤网的使用寿命。
所述第一计算模块1006,具体用于获取净化器中滤网的总净化量,以及计算所述滤网的累积净化量;基于所述滤网的总净化量和所述滤网的累积净化量,确定所述滤网的净化百分比参数;基于所述滤网的净化百分比参数,确定出所述滤网的第二使用寿命。
所述第一计算模块1006,具体用于获取所述净化器中滤网的CCM,将所述CCM作为所述滤网的总净化量;基于所述净化器所处环境的粉尘浓度值、所述净化器的适用面积参数以及所述滤网的运行时间,计算所述滤网的累积净化量。
本发明实施例中,所述装置还包括:
第一输出模块1004,用于输出用于指示所述滤网的使用寿命的第一提示信息。
本发明实施例中,所述装置还包括:
第二输出模块1005,用于当所述净化百分比参数达到第一预设阈值时,输出用于指示更换滤网的第二提示信息。
本领域技术人员应当理解,图11所示的滤网使用寿命的确定装置中的各模块的实现功能可参照前述滤网使用寿命的确定方法的相关描述而理解。
图12为本发明实施例的滤网使用寿命的确定装置的结构组成示意图三,如图12所示,所述装置包括:
检测模块1001,用于检测净化器中风机的运行功率,并确定出所述风机的运行功率衰减百分比参数;
第一确定模块1002,用于基于所述风机的运行功率衰减百分比参数,确定所述净化器中滤网的粉尘脏赌程度;
第二确定模块1003,用于基于所述滤网的粉尘脏赌程度,确定出所述滤网的使用寿命。
本发明实施例中,所述第二确定模块1003,还用于将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
所述装置还包括:
第二计算模块1009,用于计算所述净化器中的滤网的运行时间百分比参数,并基于所述滤网的运行时间百分比参数确定出所述滤网的第三使用寿命;
第四确定模块1010,用于确定所述第一使用寿命对应的第一权重值,以及所述第三使用寿命对应的第三权重值;
第二加权模块1011,用于基于所述第一权重值以及所述第三权重值,对所述第一使用寿命和所述第三使用寿命进行加权求和,得到所述滤网的使用寿命。
所述第二计算模块1009,具体用于获取净化器中滤网的总净化量,并基于所述滤网的总净化量计算所述滤网的总使用寿命;基于所述滤网的总使用寿命、所述净化器所处环境的粉尘浓度值以及所述滤网的实际运行时间,确定所述滤网的等效运行时间;基于所述滤网的等效运行时间以及所述滤网的总使用寿命,确定所述滤网的运行时间百分比参数;基于所述滤网的运行时间百分比参数,确定出所述滤网的第三使用寿命。
所述第二计算模块1009,具体用于获取所述净化器中滤网的CCM,将所述CCM作为所述滤网的总净化量;
基于以下公式计算所述滤网的总使用寿命:T=CCM/{(0.48×CG-28)×S×2.4};
其中,T为所述滤网的总使用寿命,CG为标准环境的粉尘浓度值,S为所述净化器的适用面积参数。
所述第二计算模块1009,具体用于基于以下公式计算所述滤网的等效运行时间:teq=(CN/CG)×t;
其中,teq为所述滤网的等效运行时间,CN为所述净化器所处环境的粉尘浓度值,CG为标准环境的粉尘浓度值,t为所述滤网的实际运行时间。
本发明实施例中,所述装置还包括:
第一输出模块1004,用于输出用于指示所述滤网的使用寿命的第一提示信息。
本发明实施例中,所述装置还包括:
第二输出模块1005,用于当所述净化百分比参数达到第一预设阈值时,输出用于指示更换滤网的第二提示信息。
本领域技术人员应当理解,图12所示的滤网使用寿命的确定装置中的各模块的实现功能可参照前述滤网使用寿命的确定方法的相关描述而理解。
图13为本发明实施例的滤网使用寿命的确定装置的结构组成示意图四,如图13所示,所述装置包括:
检测模块1001,用于检测净化器中风机的运行功率,并确定出所述风机的运行功率衰减百分比参数;
第一确定模块1002,用于基于所述风机的运行功率衰减百分比参数,确定所述净化器中滤网的粉尘脏赌程度;
第二确定模块1003,用于基于所述滤网的粉尘脏赌程度,确定出所述滤网的使用寿命。
本发明实施例中,所述第二确定模块1003,还用于将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
所述装置还包括:
第三计算模块1012,用于计算净化器中的滤网的净化效率,并基于所述滤网的净化效率确定出所述滤网的第四使用寿命;
第五确定模块1013,用于确定所述第一使用寿命对应的第一权重值,以及所述第四使用寿命对应的第四权重值;
第三加权模块1014,用于基于所述第一权重值以及所述第四权重值,对所述第一使用寿命和所述第四使用寿命进行加权求和,得到所述滤网的使用寿命。
本发明实施例中,所述装置还包括:
第一粉尘传感器1015,用于检测所述出风口处的第一粉尘浓度值;
第二粉尘传感器1016,用于检测所述进风口处的第二粉尘浓度值;
所述第三计算模块1012,具体用于基于所述第一粉尘浓度值和所述第二粉尘浓度值,确定所述净化器中的滤网的净化效率;基于所述滤网的净化效率,确定出所述滤网的第四使用寿命。
本发明实施例中,所述装置还包括:
第一输出模块1004,用于输出用于指示所述滤网的使用寿命的第一提示信息。
本发明实施例中,所述装置还包括:
第二输出模块1005,用于当所述净化百分比参数达到第一预设阈值时,输出用于指示更换滤网的第二提示信息。
本领域技术人员应当理解,图13所示的滤网使用寿命的确定装置中的各模块的实现功能可参照前述滤网使用寿命的确定方法的相关描述而理解。
图14为本发明实施例的滤网使用寿命的确定装置的结构组成示意图五,如图14所示,所述装置包括:
检测模块1001,用于检测净化器中风机的运行功率,并确定出所述风机的运行功率衰减百分比参数;
第一确定模块1002,用于基于所述风机的运行功率衰减百分比参数,确定所述净化器中滤网的粉尘脏赌程度;
第二确定模块1003,用于基于所述滤网的粉尘脏赌程度,确定出所述滤网的使用寿命。
本发明实施例中,所述第二确定模块1003,还用于将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
所述装置还包括:
第二计算模块1009,用于计算所述净化器中的滤网的运行时间百分比参数,并基于所述滤网的运行时间百分比参数确定出所述滤网的第三使用寿命;
第三计算模块1012,用于计算净化器中的滤网的净化效率,并基于所述滤网的净化效率确定出所述滤网的第四使用寿命;
第六确定模块1017,用于确定所述第一使用寿命对应的第一权重值,确定所述第三使用寿命对应的第三权重值以及所述第四使用寿命对应的第四权重值;
第四加权模块1018,用于基于所述第一权重值、所述第三权重值以及所述第四权重值,对所述第一使用寿命、所述第三使用寿命和所述第四使用寿命进行加权求和,得到所述滤网的使用寿命。
本发明实施例中,所述第二计算模块1009,具体用于获取净化器中滤网的总净化量,并基于所述滤网的总净化量计算所述滤网的总使用寿命;基于所述滤网的总使用寿命、所述净化器所处环境的粉尘浓度值以及所述滤网的实际运行时间,确定所述滤网的等效运行时间;基于所述滤网的等效运行时间以及所述滤网的总使用寿命,确定所述滤网的运行时间百分比参数;基于所述滤网的运行时间百分比参数,确定出所述滤网的第三使用寿命。
本发明实施例中,所述第二计算模块1009,具体用于获取所述净化器中滤网的CCM,将所述CCM作为所述滤网的总净化量;
基于以下公式计算所述滤网的总使用寿命:T=CCM/{(0.48×CG-28)×S×2.4};
其中,T为所述滤网的总使用寿命,CG为标准环境的粉尘浓度值,S为所述净化器的适用面积参数。
本发明实施例中,所述第二计算模块1009,具体用于基于以下公式计算所述滤网的等效运行时间:teq=(CN/CG)×t;
其中,teq为所述滤网的等效运行时间,CN为所述净化器所处环境的粉尘浓度值,CG为标准环境的粉尘浓度值,t为所述滤网的实际运行时间。
本发明实施例中,所述装置还包括:
第一粉尘传感器1015,用于检测所述出风口处的第一粉尘浓度值;
第二粉尘传感器1016,用于检测所述进风口处的第二粉尘浓度值;
所述第三计算模块1012,具体用于基于所述第一粉尘浓度值和所述第二粉尘浓度值,确定所述净化器中的滤网的净化效率;基于所述滤网的净化效率,确定出所述滤网的第四使用寿命。
本发明实施例中,所述装置还包括:
第一输出模块1004,用于输出用于指示所述滤网的使用寿命的第一提示信息。
本发明实施例中,所述装置还包括:
第二输出模块1005,用于当所述净化百分比参数达到第一预设阈值时,输出用于指示更换滤网的第二提示信息。
本领域技术人员应当理解,图14所示的滤网使用寿命的确定装置中的各模块的实现功能可参照前述滤网使用寿命的确定方法的相关描述而理解。
本发明实施例还提供一种净化器,该净化器上设置有滤网,此外,该净化器还包括上述所述的滤网使用寿命的确定装置,以计算所述滤网的使用寿命,以及提示所述滤网的使用寿命。
本发明实施例上述滤网使用寿命的确定装置如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read OnlyMemory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例还提供一种计算机存储介质,其中存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现本发明实施例的上述滤网使用寿命的确定方法。
本发明实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
在本发明所提供的几个实施例中,应该理解到,所揭露的方法和智能设备,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个第二处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。

Claims (28)

1.一种滤网使用寿命的确定方法,其特征在于,所述方法包括:
检测净化器中风机的运行功率,并确定出所述风机的运行功率衰减百分比参数;
基于所述风机的运行功率衰减百分比参数,确定所述净化器中滤网的粉尘脏赌程度;
基于所述滤网的粉尘脏赌程度,确定出所述滤网的使用寿命。
2.根据权利要求1所述的滤网使用寿命的确定方法,其特征在于,将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
所述方法还包括:
计算所述净化器中的滤网的净化百分比参数,并基于所述滤网的净化百分比参数确定出所述滤网的第二使用寿命;
确定所述第一使用寿命对应的第一权重值,以及所述第二使用寿命对应的第二权重值;
基于所述第一权重值以及所述第二权重值,对所述第一使用寿命和所述第二使用寿命进行加权求和,得到所述滤网的使用寿命。
3.根据权利要求1所述的滤网使用寿命的确定方法,其特征在于,将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
所述方法还包括:
计算所述净化器中的滤网的运行时间百分比参数,并基于所述滤网的运行时间百分比参数确定出所述滤网的第三使用寿命;
确定所述第一使用寿命对应的第一权重值,以及所述第三使用寿命对应的第三权重值;
基于所述第一权重值以及所述第三权重值,对所述第一使用寿命和所述第三使用寿命进行加权求和,得到所述滤网的使用寿命。
4.根据权利要求1所述的滤网使用寿命的确定方法,其特征在于,将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
所述方法还包括:
计算净化器中的滤网的净化效率,并基于所述滤网的净化效率确定出所述滤网的第四使用寿命;
确定所述第一使用寿命对应的第一权重值,以及所述第四使用寿命对应的第四权重值;
基于所述第一权重值以及所述第四权重值,对所述第一使用寿命和所述第四使用寿命进行加权求和,得到所述滤网的使用寿命。
5.根据权利要求1所述的滤网使用寿命的确定方法,其特征在于,将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
计算所述净化器中的滤网的运行时间百分比参数,并基于所述滤网的运行时间百分比参数确定出所述滤网的第三使用寿命;
计算净化器中的滤网的净化效率,并基于所述滤网的净化效率确定出所述滤网的第四使用寿命;
确定所述第一使用寿命对应的第一权重值,确定所述第三使用寿命对应的第三权重值以及所述第四使用寿命对应的第四权重值;
基于所述第一权重值、所述第三权重值以及所述第四权重值,对所述第一使用寿命、所述第三使用寿命和所述第四使用寿命进行加权求和,得到所述滤网的使用寿命。
6.根据权利要求2所述的滤网使用寿命的确定方法,其特征在于,所述计算所述净化器中的滤网的净化百分比参数,并基于所述滤网的净化百分比参数确定出所述滤网的第二使用寿命,包括:
获取净化器中滤网的总净化量,以及计算所述滤网的累积净化量;
基于所述滤网的总净化量和所述滤网的累积净化量,确定所述滤网的净化百分比参数;
基于所述滤网的净化百分比参数,确定出所述滤网的第二使用寿命。
7.根据权利要求6所述的滤网使用寿命的确定方法,其特征在于,所述获取净化器中滤网的总净化量,以及计算所述滤网的累积净化量,包括:
获取所述净化器中滤网的最大容尘量CCM,将所述CCM作为所述滤网的总净化量;
基于所述净化器所处环境的粉尘浓度值、所述净化器的适用面积参数以及所述滤网的运行时间,计算所述滤网的累积净化量。
8.根据权利要求3或5所述的滤网使用寿命的确定方法,其特征在于,所述计算所述净化器中的滤网的运行时间百分比参数,并基于所述滤网的运行时间百分比参数确定出所述滤网的第三使用寿命,包括:
获取净化器中滤网的总净化量,并基于所述滤网的总净化量计算所述滤网的总使用寿命;
基于所述滤网的总使用寿命、所述净化器所处环境的粉尘浓度值以及所述滤网的实际运行时间,确定所述滤网的等效运行时间;
基于所述滤网的等效运行时间以及所述滤网的总使用寿命,确定所述滤网的运行时间百分比参数;
基于所述滤网的运行时间百分比参数,确定出所述滤网的第三使用寿命。
9.根据权利要求8所述的滤网使用寿命的确定方法,其特征在于,所述获取净化器中滤网的总净化量,并基于所述滤网的总净化量计算所述滤网的总使用寿命,包括:
获取所述净化器中滤网的CCM,将所述CCM作为所述滤网的总净化量;
基于以下公式计算所述滤网的总使用寿命:T=CCM/{(0.48×CG-28)×S×2.4};
其中,T为所述滤网的总使用寿命,CG为标准环境的粉尘浓度值,S为所述净化器的适用面积参数。
10.根据权利要求8所述的滤网使用寿命的确定方法,其特征在于,所述基于所述滤网的总使用寿命、所述净化器所处环境的粉尘浓度值以及所述滤网的实际运行时间,确定所述滤网的等效运行时间,包括:
基于以下公式计算所述滤网的等效运行时间:teq=(CN/CG)×t;
其中,teq为所述滤网的等效运行时间,CN为所述净化器所处环境的粉尘浓度值,CG为标准环境的粉尘浓度值,t为所述滤网的实际运行时间。
11.根据权利要求4或5所述的滤网使用寿命的确定方法,其特征在于,所述计算净化器中的滤网的净化效率,并基于所述滤网的净化效率确定出所述滤网的第四使用寿命,包括:
利用设置于所述净化器出风口的第一粉尘传感器检测所述出风口处的第一粉尘浓度值,以及利用设置于所述净化器进风口的第二粉尘传感器检测所述进风口处的第二粉尘浓度值;
基于所述第一粉尘浓度值和所述第二粉尘浓度值,确定所述净化器中的滤网的净化效率;
基于所述滤网的净化效率,确定出所述滤网的第四使用寿命。
12.根据权利要求1所述的滤网使用寿命的确定方法,其特征在于,所述方法还包括:
输出用于指示所述滤网的使用寿命的第一提示信息。
13.根据权利要求12所述的滤网使用寿命的确定方法,其特征在于,所述方法还包括:
当所述滤网的使用寿命小于等于第一预设阈值时,输出用于指示更换滤网的第二提示信息。
14.一种滤网使用寿命的确定装置,其特征在于,所述装置包括:
检测模块,用于检测净化器中风机的运行功率,并确定出所述风机的运行功率衰减百分比参数;
第一确定模块,用于基于所述风机的运行功率衰减百分比参数,确定所述净化器中滤网的粉尘脏赌程度;
第二确定模块,用于基于所述滤网的粉尘脏赌程度,确定出所述滤网的使用寿命。
15.根据权利要求14所述的滤网使用寿命的确定装置,其特征在于,所述第二确定模块,还用于将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
所述装置还包括:
第一计算模块,用于计算所述净化器中的滤网的净化百分比参数,并基于所述滤网的净化百分比参数确定出所述滤网的第二使用寿命;
第三确定模块,用于确定所述第一使用寿命对应的第一权重值,以及所述第二使用寿命对应的第二权重值;
第一加权模块,用于基于所述第一权重值以及所述第二权重值,对所述第一使用寿命和所述第二使用寿命进行加权求和,得到所述滤网的使用寿命。
16.根据权利要求14所述的滤网使用寿命的确定装置,其特征在于,所述第二确定模块,还用于将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
所述装置还包括:
第二计算模块,用于计算所述净化器中的滤网的运行时间百分比参数,并基于所述滤网的运行时间百分比参数确定出所述滤网的第三使用寿命;
第四确定模块,用于确定所述第一使用寿命对应的第一权重值,以及所述第三使用寿命对应的第三权重值;
第二加权模块,用于基于所述第一权重值以及所述第三权重值,对所述第一使用寿命和所述第三使用寿命进行加权求和,得到所述滤网的使用寿命。
17.根据权利要求14所述的滤网使用寿命的确定装置,其特征在于,所述第二确定模块,还用于将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
所述装置还包括:
第三计算模块,用于计算净化器中的滤网的净化效率,并基于所述滤网的净化效率确定出所述滤网的第四使用寿命;
第五确定模块,用于确定所述第一使用寿命对应的第一权重值,以及所述第四使用寿命对应的第四权重值;
第三加权模块,用于基于所述第一权重值以及所述第四权重值,对所述第一使用寿命和所述第四使用寿命进行加权求和,得到所述滤网的使用寿命。
18.根据权利要求14所述的滤网使用寿命的确定装置,其特征在于,所述第二确定模块,还用于将基于所述滤网的粉尘脏赌程度确定出的滤网的使用寿命作为所述滤网的第一使用寿命;
所述装置还包括:
第二计算模块,用于计算所述净化器中的滤网的运行时间百分比参数,并基于所述滤网的运行时间百分比参数确定出所述滤网的第三使用寿命;
第三计算模块,用于计算净化器中的滤网的净化效率,并基于所述滤网的净化效率确定出所述滤网的第四使用寿命;
第六确定模块,用于确定所述第一使用寿命对应的第一权重值,确定所述第三使用寿命对应的第三权重值以及所述第四使用寿命对应的第四权重值;
第四加权模块,用于基于所述第一权重值、所述第三权重值以及所述第四权重值,对所述第一使用寿命、所述第三使用寿命和所述第四使用寿命进行加权求和,得到所述滤网的使用寿命。
19.根据权利要求15所述的滤网使用寿命的确定装置,其特征在于,所述第一计算模块,具体用于获取净化器中滤网的总净化量,以及计算所述滤网的累积净化量;基于所述滤网的总净化量和所述滤网的累积净化量,确定所述滤网的净化百分比参数;基于所述滤网的净化百分比参数,确定出所述滤网的第二使用寿命。
20.根据权利要求19所述的滤网使用寿命的确定装置,其特征在于,所述第一计算模块,具体用于获取所述净化器中滤网的CCM,将所述CCM作为所述滤网的总净化量;基于所述净化器所处环境的粉尘浓度值、所述净化器的适用面积参数以及所述滤网的运行时间,计算所述滤网的累积净化量。
21.根据权利要求16或18所述的滤网使用寿命的确定装置,其特征在于,所述第二计算模块,具体用于获取净化器中滤网的总净化量,并基于所述滤网的总净化量计算所述滤网的总使用寿命;基于所述滤网的总使用寿命、所述净化器所处环境的粉尘浓度值以及所述滤网的实际运行时间,确定所述滤网的等效运行时间;基于所述滤网的等效运行时间以及所述滤网的总使用寿命,确定所述滤网的运行时间百分比参数;基于所述滤网的运行时间百分比参数,确定出所述滤网的第三使用寿命。
22.根据权利要求21所述的滤网使用寿命的确定装置,其特征在于,所述第二计算模块,具体用于获取所述净化器中滤网的CCM,将所述CCM作为所述滤网的总净化量;
基于以下公式计算所述滤网的总使用寿命:T=CCM/{(0.48×CG-28)×S×2.4};
其中,T为所述滤网的总使用寿命,CG为标准环境的粉尘浓度值,S为所述净化器的适用面积参数。
23.根据权利要求21所述的滤网使用寿命的确定装置,其特征在于,所述第二计算模块,具体用于基于以下公式计算所述滤网的等效运行时间:teq=(CN/CG)×t;
其中,teq为所述滤网的等效运行时间,CN为所述净化器所处环境的粉尘浓度值,CG为标准环境的粉尘浓度值,t为所述滤网的实际运行时间。
24.根据权利要求17或18所述的滤网使用寿命的确定装置,其特征在于,所述装置还包括:
第一粉尘传感器,用于检测所述出风口处的第一粉尘浓度值;
第二粉尘传感器,用于检测所述进风口处的第二粉尘浓度值;
所述第三计算模块,具体用于基于所述第一粉尘浓度值和所述第二粉尘浓度值,确定所述净化器中的滤网的净化效率;基于所述滤网的净化效率,确定出所述滤网的第四使用寿命。
25.根据权利要求14所述的滤网使用寿命的确定装置,其特征在于,所述装置还包括:
第一输出模块,用于输出用于指示所述滤网的使用寿命的第一提示信息。
26.根据权利要求25所述的滤网使用寿命的确定装置,其特征在于,所述装置还包括:
第二输出模块,用于当所述滤网的使用寿命小于等于第一预设阈值时,输出用于指示更换滤网的第二提示信息。
27.一种净化器,所述净化器上设置有滤网,其特征在于,所述净化器包括权利要求14至26任一项所述的滤网使用寿命的确定装置。
28.一种计算机存储介质,其上存储有计算机可执行指令,其特征在于,该计算机可执行指令被处理器执行时实现权利要求1-13任一项所述的方法步骤。
CN201710774531.XA 2017-08-31 2017-08-31 滤网使用寿命的确定方法及装置、净化器、计算机存储介质 Pending CN107543787A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710774531.XA CN107543787A (zh) 2017-08-31 2017-08-31 滤网使用寿命的确定方法及装置、净化器、计算机存储介质
PCT/CN2018/084770 WO2019041849A1 (zh) 2017-08-31 2018-04-27 滤网使用寿命的确定方法及装置、净化器、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710774531.XA CN107543787A (zh) 2017-08-31 2017-08-31 滤网使用寿命的确定方法及装置、净化器、计算机存储介质

Publications (1)

Publication Number Publication Date
CN107543787A true CN107543787A (zh) 2018-01-05

Family

ID=60959151

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710774531.XA Pending CN107543787A (zh) 2017-08-31 2017-08-31 滤网使用寿命的确定方法及装置、净化器、计算机存储介质

Country Status (2)

Country Link
CN (1) CN107543787A (zh)
WO (1) WO2019041849A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109091962A (zh) * 2018-08-29 2018-12-28 莱克电气绿能科技(苏州)有限公司 气体净化装置及其控制方法
CN109373505A (zh) * 2018-10-26 2019-02-22 奥克斯空调股份有限公司 一种空调清洁提醒控制方法及空调器
WO2019041849A1 (zh) * 2017-08-31 2019-03-07 广东美的环境电器制造有限公司 滤网使用寿命的确定方法及装置、净化器、存储介质
CN109991147A (zh) * 2019-04-11 2019-07-09 广州勒夫蔓德电器有限公司 一种空气净化器中滤网寿命的监测方法和相关装置
CN110207220A (zh) * 2018-10-19 2019-09-06 华帝股份有限公司 红外线检测烟机内部油渍污染程度的判断方法及装置
CN111750510A (zh) * 2019-03-29 2020-10-09 松下电器研究开发(苏州)有限公司 空气调节器的控制装置及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102765331A (zh) * 2011-05-04 2012-11-07 朴昌浩 一种电池系统在线寿命预测方法
CN104180474A (zh) * 2014-07-30 2014-12-03 珠海格力电器股份有限公司 新风机过滤网使用时间控制的方法、装置及新风机系统
CN104949293A (zh) * 2015-07-23 2015-09-30 珠海市威士茂工业产品设计有限公司 带滤网寿命自动判断的空气净化器及其判断方法
CN105363297A (zh) * 2015-11-25 2016-03-02 佛山市城市森林净化科技有限公司 一种判断空气净化器滤网寿命的方法
CN105606505A (zh) * 2016-02-01 2016-05-25 九阳股份有限公司 一种空气净化器净化装置寿命的确定方法及装置
CN105606512A (zh) * 2016-01-13 2016-05-25 东莞市利发爱尔空气净化系统有限公司 一种滤网寿命的判断方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI256461B (en) * 2005-08-26 2006-06-11 Cargico Engineering Corp Removable filter device of air conditioning system and installation method thereof
WO2016026069A1 (zh) * 2014-08-18 2016-02-25 友隆电器工业(深圳)有限公司 滤网堵塞报警装置和空调装置、除湿机、空气清净器、加热装置
CN107543787A (zh) * 2017-08-31 2018-01-05 广东美的环境电器制造有限公司 滤网使用寿命的确定方法及装置、净化器、计算机存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102765331A (zh) * 2011-05-04 2012-11-07 朴昌浩 一种电池系统在线寿命预测方法
CN104180474A (zh) * 2014-07-30 2014-12-03 珠海格力电器股份有限公司 新风机过滤网使用时间控制的方法、装置及新风机系统
CN104949293A (zh) * 2015-07-23 2015-09-30 珠海市威士茂工业产品设计有限公司 带滤网寿命自动判断的空气净化器及其判断方法
CN105363297A (zh) * 2015-11-25 2016-03-02 佛山市城市森林净化科技有限公司 一种判断空气净化器滤网寿命的方法
CN105606512A (zh) * 2016-01-13 2016-05-25 东莞市利发爱尔空气净化系统有限公司 一种滤网寿命的判断方法及装置
CN105606505A (zh) * 2016-02-01 2016-05-25 九阳股份有限公司 一种空气净化器净化装置寿命的确定方法及装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019041849A1 (zh) * 2017-08-31 2019-03-07 广东美的环境电器制造有限公司 滤网使用寿命的确定方法及装置、净化器、存储介质
CN109091962A (zh) * 2018-08-29 2018-12-28 莱克电气绿能科技(苏州)有限公司 气体净化装置及其控制方法
CN110207220A (zh) * 2018-10-19 2019-09-06 华帝股份有限公司 红外线检测烟机内部油渍污染程度的判断方法及装置
CN109373505A (zh) * 2018-10-26 2019-02-22 奥克斯空调股份有限公司 一种空调清洁提醒控制方法及空调器
WO2020083193A1 (zh) * 2018-10-26 2020-04-30 宁波奥克斯电气股份有限公司 空调清洁提醒控制方法及空调器
CN111750510A (zh) * 2019-03-29 2020-10-09 松下电器研究开发(苏州)有限公司 空气调节器的控制装置及控制方法
CN111750510B (zh) * 2019-03-29 2022-06-14 松下电器研究开发(苏州)有限公司 空气调节器的控制装置及控制方法
CN109991147A (zh) * 2019-04-11 2019-07-09 广州勒夫蔓德电器有限公司 一种空气净化器中滤网寿命的监测方法和相关装置
CN109991147B (zh) * 2019-04-11 2021-11-30 广州勒夫蔓德电器有限公司 一种空气净化器中滤网寿命的监测方法和相关装置

Also Published As

Publication number Publication date
WO2019041849A1 (zh) 2019-03-07

Similar Documents

Publication Publication Date Title
CN107560076B (zh) 滤网使用寿命的确定方法及装置、净化器、计算机存储介质
CN107543787A (zh) 滤网使用寿命的确定方法及装置、净化器、计算机存储介质
CN108444045A (zh) 滤网使用寿命的确定方法及装置、净化器、存储介质
CN107403054A (zh) 滤网使用寿命的确定方法及装置、净化器、计算机存储介质
CN107480399A (zh) 滤网使用寿命的确定方法及装置、净化器、计算机存储介质
CN105363297A (zh) 一种判断空气净化器滤网寿命的方法
CN107562998B (zh) 滤网寿命的判定方法、判定系统和计算机设备
US7600441B2 (en) Comprehensive particulate matter measurement system and method for using the same
CN107132173B (zh) 一种空气净化器滤网使用寿命实时检测装置及分析方法
CN105642038A (zh) 滤芯的效能检测装置、检测方法及呼吸机
CN107741392A (zh) 一种口罩防护效果与负载呼吸阻力同步实时测试方法
CN110197020A (zh) 一种环境变化对水文干旱影响的分析方法
CN109406132A (zh) 滤芯寿命监测方法、装置和空气净化设备
CN110314458A (zh) 一种空气净化设备的滤网更换提醒系统及其方法
CN107044948A (zh) 一种车载净化器滤网寿命检测方法
CN109655585A (zh) 一种能识别厨房空气质量的油烟机
CN103399050B (zh) 一种基于口感信息快速评定人参掺假西洋参的方法
Holder et al. Impact of do‐it‐yourself air cleaner design on the reduction of simulated wildfire smoke in a controlled chamber environment
CN104089656B (zh) 一种堆场煤炭自燃检测方法和装置
CN205690484U (zh) 一种油烟净化系统及空调油烟机
CN107998760A (zh) 一种用于组合式过滤器使用情况的监测方法及其系统
CN112465201A (zh) 一种基于高效综合生态保健功能的植物景观配置模式的评价与筛选方法
Burroughs et al. Improved filtration in residential environments
CN205641195U (zh) 一种高效新风机柜
CN108051338A (zh) 一种空气过滤器的阻力检测分析系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180105

RJ01 Rejection of invention patent application after publication