CN107537557A - 双功能铁催化剂及其制备方法和应用 - Google Patents

双功能铁催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN107537557A
CN107537557A CN201610496041.3A CN201610496041A CN107537557A CN 107537557 A CN107537557 A CN 107537557A CN 201610496041 A CN201610496041 A CN 201610496041A CN 107537557 A CN107537557 A CN 107537557A
Authority
CN
China
Prior art keywords
catalyst
difunctional
oxide
grams
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610496041.3A
Other languages
English (en)
Other versions
CN107537557B (zh
Inventor
李剑锋
陶跃武
宋卫林
庞颖聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN201610496041.3A priority Critical patent/CN107537557B/zh
Publication of CN107537557A publication Critical patent/CN107537557A/zh
Application granted granted Critical
Publication of CN107537557B publication Critical patent/CN107537557B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种双功能铁催化剂及其制备方法和应用,主要解决现有技术中存在的合成气制低碳烯烃反应中CO转化率低和低碳烯烃选择性低的问题。本发明采用的双功能铁催化剂以重量百分比计包括以下组分:a)5~50%的铁元素或其氧化物;b)4~20%的选自钙和锶中的至少一种元素或其氧化物;c)4~20%的选自锰和铬中的至少一种元素或其氧化物;d)1~10%的选自镧和钆中的至少一种元素或其氧化物;e)1~10%的钇元素或其氧化物;f)40~85%的载体,以载体重量份数计,包括以下组分(1)50~90份二氧化硅;(2)10~50份SAPO‑34分子筛的技术方案,较好地解决了该问题,可用于合成气直接制取低碳烯烃的工业生产。

Description

双功能铁催化剂及其制备方法和应用
技术领域
本发明涉及一种双功能铁催化剂及其制备方法和应用。
背景技术
低碳烯烃是指碳原子数小于或等于4的烯烃。以乙烯、丙烯为代表的低碳烯烃是非常重要的基本有机化工原料,随着我国经济的快速增长,长期以来,低碳烯烃市场供不应求。目前,低碳烯烃的生产主要采用轻烃(乙烷、石脑油、轻柴油)裂解的石油化工路线,由于全球石油资源的日渐缺乏和原油价格长期高位运行,发展低碳烯烃工业仅仅依靠石油轻烃为原料的管式裂解炉工艺会遇到越来越大的原料难题,低碳烯烃生产工艺和原料必须多元化。合成气一步法直接制取低碳烯烃就是一氧化碳和氢在催化剂作用下,通过费托合成反应直接制得碳原子数小于或等于4的低碳烯烃的过程,该工艺无需像间接法工艺那样从合成气经甲醇或二甲醚,进一步制备烯烃,简化工艺流程,大大减少投资。在国内石油资源短缺,对外依存度越来越高、国际油价不断飙升的当今,选用合成气制取烯烃工艺可拓宽原材料来源,将以原油、天然气、煤炭和可再生材料为原料生产合成气,可以为基于高成本原料如石脑油的蒸汽裂解技术方面提供替代方案。中国丰富的煤炭资源和相对低廉的煤炭价格为发展煤炼油和应用合成气制低碳烯烃工艺提供了良好的市场机遇。而在中国天然气丰富的油气田附近,如果天然气价格低廉,也是应用合成气制低碳烯烃工艺的极好时机。如果能利用我国丰富的煤炭和天然气资源,通过造气制取合成气(一氧化碳和氢气的混合气),发展合成气制低碳烯烃的石油替代能源技术,必将对解决我国能源问题具有重大意义。
合成气一步法制低碳烯烃技术起源于传统的费托合成反应,传统的费托合成产物的碳数分布遵从ASF分布,每一烃类都具有最大理论选择性,如C2-C4馏分的选择性最高为57%,汽油馏份(C5-C11)的选择性最高为48%。链增长概率α值越大,产物重质烃的选择性越大。一旦α值确定了,整个合成产物的选择性就确定了,链增长概率α值取决于催化剂组成、粒度以及反应条件等。近年来,人们发现由于α烯烃在催化剂上的再吸附引起的烯烃二次反应,产物分布背离理想ASF分布。费托合成是一种强放热反应,大量的反应热将促使催化剂积炭反应更容易生成甲烷和低碳烷烃,导致低碳烯烃选择性大幅度下降;其次,复杂的动力学因素也给选择性合成低碳烯烃造成不利;费托合成产物的ASF分布限制了合 成低碳烯烃的选择性。费托合成气制低碳烯烃的催化剂主要是铁系列催化剂,为了提高合成气直接制取低碳烯烃的选择性,可以对费托合成催化剂进行物理和化学改性,如利用分子筛适宜的孔道结构,有利于低碳烯烃及时扩散离开金属活性中心,抑制低碳烯烃的二次反应;提高金属离子分散性,也有较好的烯烃选择性;金属与载体相互作用改变也可以提高低碳烯烃选择性;添加适宜的过渡金属,可以增强活性组分与碳的键能,抑制甲烷生成,提高低碳烯烃选择性;添加电子促进助剂,促使CO化学吸附热增加,吸附量也增加,而氢吸附量减小,结果低碳烯烃选择性增加;消除催化剂酸中心,可以抑制低碳烯烃的二次反应,提高其选择性。通过催化剂载体的担体效应和添加某些过渡金属助剂及碱金属助剂,可明显改善催化剂性能,开发出具有产物非ASF分布的新型高活性高选择性制低碳烯烃的费托合成催化剂。
合成气一步法直接生产低碳烯烃,已成为费托合成催化剂开发的研究热点之一。中科院大连化学物理研究所公开的专利CN1083415A中,用MgO等IIA族碱金属氧化物或高硅沸石分子筛(或磷铝沸石)担载的铁-锰催化剂体系,以强碱K或Cs离子作助剂,在合成气制低碳烯烃反应压力为1.0~5.0MPa,反应温度300~400℃下,可获得较高的活性(CO转化率90%)和选择性(低碳烯烃选择性66%)。但该催化剂制备过程复杂,特别是载体沸石分子筛的制备成型过程成本较高,不利于工业化生产。北京化工大学所申报的专利申请号01144691.9中,采用激光热解法结合固相反应组合技术制备了以Fe3C为主的Fe基纳米催化剂应用于合成气制低碳烯烃,并取得了不错的催化效果,由于需要使用激光热解技术,制备工艺比较繁琐,原料采用Fe(CO)5,催化剂成本很高,工业化困难。北京化工大学所申报的专利ZL03109585.2中,采用真空浸渍法制备锰、铜、锌硅、钾等为助剂的Fe/活性炭催化剂用于合成气制低碳烯烃反应,在无原料气循环的条件下,CO转化率96%,低碳烯烃在碳氢化合物中的选择性68%。该催化剂制备使用的铁盐和助剂锰盐为较贵且较难溶解的草酸铁和乙酸锰,同时以乙醇作溶剂,就不可避免增加催化剂制备过程的原料成本和操作成本。为进一步降低催化剂的成本,在其专利申请号200710063301.9中,催化剂采用普通的药品和试剂制备,使用的铁盐为硝酸铁,锰盐为硝酸锰,钾盐为碳酸钾,活性炭为椰壳炭,可催化剂须在流动氮气保护下进行高温焙烧和钝化处理,需要特殊设备,制备过程复杂,成本较高。且上述催化剂在固定床反应中的CO转化率和低碳烯烃选择性均较低。
发明内容
本发明所要解决的技术问题是现有技术中合成气直接制低碳烯烃技术中CO转化率低和产物中低碳烯烃选择性低的问题,提供一种新的双功能铁催化剂及其制备方法和应用, 该催化剂用于固定床合成气直接制取低碳烯烃反应时,具有CO转化率高和产物中低碳烯烃选择性高的优点。
为解决上述技术问题,本发明采用的技术方案如下:一种双功能铁催化剂,以重量百分比计包括以下组分:
a)5~50%的铁元素或其氧化物;
b)4~20%的选自钙和锶中的至少一种元素或其氧化物;
c)4~20%的选自锰和铬中的至少一种元素或其氧化物;
d)1~10%的选自镧和钆中的至少一种元素或其氧化物;
e)1~10%的钇元素或其氧化物;
f)40~85%的载体,以载体重量份数计,包括以下组分(1)50~90份二氧化硅;(2)10~50份SAPO-34分子筛。
上述技术方案中,催化剂中铁的氧化物为三氧化二铁,以催化剂重量百分比计,含量的优选范围为10~40%;催化剂中钙和锶的氧化物分别为氧化钙和氧化锶,以催化剂重量百分比计,含量的优选范围为5~15%;催化剂中锰和铬的氧化物分别为氧化锰和三氧化二铬,以催化剂重量百分比计,含量的优选范围为5~15%;催化剂中镧和钆的氧化物分别为三氧化二镧和三氧化二钆,以催化剂重量百分比计,含量的优选范围为1~5%;催化剂中所述的钇的氧化物为三氧化二钇,以催化剂重量百分比计,含量的优选范围为1~5%。
上述技术方案中,载体由二氧化硅和SAPO-34分子筛混合成型制备,以载体重量份数计算,二氧化硅含量的优选范围为60~80份;SAPO-34分子筛含量的优选范围为20~40份。
上述技术方案中,所述的一种双功能铁催化剂的制备方法,包括以下步骤:
(1)将SAPO-34分子筛粉末加入二氧化硅粉末中,然后进行球磨混合、加水成型和烘干,烘干后在400~700℃高温烧结1~6小时,冷却后破碎筛分制备复合载体H待用;
(2)将铁盐、钙盐或锶盐、锰盐或铬盐、镧盐或钆盐,以及钇盐,溶于去离子水中制成混合溶液I;
(3)在真空度1~80kPa条件下,将上述混合溶液I浸渍于(1)步骤中处理好的复合载体H上得催化剂前体J;
(4)将催化剂前体J,经干燥后焙烧,得到所需的催化剂。
上述技术方案中,步骤(1)中的焙烧温度的优选范围为450~600℃,焙烧时间的优选范围为1.0~4.0小时;步骤(5)中的焙烧温度的优选范围为500~650℃,焙烧时间的优选范围为1.0~4.0小时。
一种合成气一步法制低碳烯烃的方法,以合成气为原料,H2和CO的摩尔比为1~3,在反应温度为250~400℃,反应压力为1.0~3.0Mpa,原料气体积空速为500~5000h-1的条件下,原料气与所述的双功能铁催化剂接触反应生成含C2~C4的烯烃。
本发明方法采用的催化剂通过真空浸渍法制备,可以使活性组分和助剂高度均匀分散于复合载体表面,增大暴露于载体表面的活性位的数量,提高CO的转化率。
本发明方法采用的负载型铁催化剂中引入碱土金属Ca或Sr,过渡金属Mn或Cr,以及稀土金属La或Gd作为催化剂助剂,可以调变主活性组分Fe的电子价态,从而有利于提高催化剂的CO转化率和低碳烯烃的选择性。特别是引入过渡金属助剂Y,不仅可以调变活性组分的电子价态,降低烯烃的二次加氢反应,从而提高催化剂的低碳烯烃选择性。
本发明方法采用二氧化硅(SiO2)和SAPO-34分子筛混合的复合双功能载体不仅可以利用SiO2载体的大比表面积使活性组分Fe和助催化剂得到良好分散,提高铁基催化剂的费托合成性能,高活性高选择性生产低碳烯烃,另一方面利用复合载体中SAPO-34分子筛合适的孔道尺寸和裂解作用,将费托反应生成的长链烃催化裂解成短链烃,进一步提高小分子低碳烯烃的选择性。
合成气直接生产低碳烯烃的反应条件如下:以H2和CO组成的合成气为原料,H2和CO的摩尔比为1~3,在反应温度为250~400℃,反应压力为1.0~3.0Mpa,原料气体积空速为500~5000h-1的条件下,原料气与上述催化剂接触,取得了较好的技术效果:CO转化率可达99.8%,比现有技术提高3.8%;低碳烯烃在碳氢化合物中的选择性可达77.0%,比现有技术提高9.0%,更详细的结果见附表。
下面的实施例将对本发明做进一步的说明,本发明的保护范围并不受这些实施例的限制。
具体实施方式
【实施例1】
称取30.0克SAPO-34分子筛粉末加入70.0克二氧化硅(SiO2)粉末中,在球磨机内磨混1小时,制成混合料G待用;将去离子水加入上述磨混好的混合料G中,进行捏合挤压成型;烘干后在600℃的温度下焙烧3小时,冷却后破碎筛分成40~60目制备出复合载体H;将126.5克九水合硝酸铁、20.5克无水硝酸钙、40.5克50%的硝酸锰溶液,12.5克六水合硝酸钆,17.0克六水合硝酸钇,溶于30.0克去离子水中制成混合溶液I;在真空度80kPa的条件下,将上述混合溶液I浸渍于50.0克已制备好的复合载体H上得催化剂前体J;浸渍好的催化剂前体J在110℃条件下干燥,然后进行焙烧,焙烧温度550℃,焙烧时间2h,即得到所需的双功能铁催化剂。制得双功能铁催化剂以重量百分比计,包含以下组 分:25%Fe2O3,7%CaO,8%MnO,5%Gd2O3,5%Y2O3,35%SiO2,15%SAPO-34;所制的双功能铁催化剂在一定条件下进行合成气直接制取低碳烯烃反应,实验结果列于表1。
【实施例2】
称取30.0克SAPO-34分子筛粉末加入70.0克二氧化硅(SiO2)粉末中,在球磨机内磨混1小时,制成混合料G待用;将去离子水加入上述磨混好的混合料G中,进行捏合挤压成型;烘干后在600℃的温度下焙烧3小时,冷却后破碎筛分成40~60目制备出复合载体H;将25.3克九水合硝酸铁、58.5克无水硝酸钙、100.9克50%的硝酸锰溶液,2.5克六水合硝酸钆,3.4克六水合硝酸钇,溶于30.0克去离子水中制成混合溶液I;在真空度80kPa的条件下,将上述混合溶液I浸渍于53.0克已制备好的复合载体H上得催化剂前体J;浸渍好的催化剂前体J在110℃条件下干燥,然后进行焙烧,焙烧温度550℃,焙烧时间2h,即得到所需的双功能铁催化剂。制得双功能铁催化剂以重量百分比计,包含以下组分:5%Fe2O3,20%CaO,20%MnO,1%Gd2O3,1%Y2O3,37.1%SiO2,15.9%SAPO-34;所制的双功能铁催化剂在一定条件下进行合成气直接制取低碳烯烃反应,实验结果列于表1。
【实施例3】
称取30.0克SAPO-34分子筛粉末加入70.0克二氧化硅(SiO2)粉末中,在球磨机内磨混1小时,制成混合料G待用;将去离子水加入上述磨混好的混合料G中,进行捏合挤压成型;烘干后在400℃的温度下焙烧6小时,冷却后破碎筛分成40~60目制备出复合载体H;将253.0克九水合硝酸铁、11.7克无水硝酸钙、20.2克50%的硝酸锰溶液,2.5克六水合硝酸钆,3.4克六水合硝酸钇,溶于30.0克去离子水中制成混合溶液I;在真空度80kPa的条件下,将上述混合溶液I浸渍于40.0克已制备好的复合载体H上得催化剂前体J;浸渍好的催化剂前体J在110℃条件下干燥,然后进行焙烧,焙烧温度550℃,焙烧时间2h,即得到所需的双功能铁催化剂。制得双功能铁催化剂以重量百分比计,包含以下组分:50%Fe2O3,4%CaO,4%MnO,1%Gd2O3,1%Y2O3,28%SiO2,12%SAPO-34;所制的双功能铁催化剂在一定条件下进行合成气直接制取低碳烯烃反应,实验结果列于表1。
【实施例4】
称取10.0克SAPO-34分子筛粉末加入90.0克二氧化硅(SiO2)粉末中,在球磨机内磨混1小时,制成混合料G待用;将去离子水加入上述磨混好的混合料G中,进行捏合挤压成型;烘干后在700℃的温度下焙烧1小时,冷却后破碎筛分成40~60目制备出复合载 体H;将25.3克九水合硝酸铁、43.9克无水硝酸钙、75.7克50%的硝酸锰溶液,12.5克六水合硝酸钆,17.0克六水合硝酸钇,溶于30.0克去离子水中制成混合溶液I;在真空度80kPa的条件下,将上述混合溶液I浸渍于55.0克已制备好的复合载体H上得催化剂前体J;浸渍好的催化剂前体J在110℃条件下干燥,然后进行焙烧,焙烧温度550℃,焙烧时间2h,即得到所需的双功能铁催化剂。制得双功能铁催化剂以重量百分比计,包含以下组分:5%Fe2O3,15%CaO,15%MnO,5%Gd2O3,5%Y2O3,49.5%SiO2,5.5%SAPO-34;所制的双功能铁催化剂在一定条件下进行合成气直接制取低碳烯烃反应,实验结果列于表1。
【实施例5】
称取50.0克SAPO-34分子筛粉末加入50.0克二氧化硅(SiO2)粉末中,在球磨机内磨混1小时,制成混合料G待用;将去离子水加入上述磨混好的混合料G中,进行捏合挤压成型;烘干后在600℃的温度下焙烧3小时,冷却后破碎筛分成40~60目制备出复合载体H;将50.6克九水合硝酸铁、14.6克无水硝酸钙、25.2克50%的硝酸锰溶液,24.9克六水合硝酸钆,34.0克六水合硝酸钇,溶于30.0克去离子水中制成混合溶液I;在真空度80kPa的条件下,将上述混合溶液I浸渍于60.0克已制备好的复合载体H上得催化剂前体J;浸渍好的催化剂前体J在110℃条件下干燥,然后进行焙烧,焙烧温度450℃,焙烧时间6h,即得到所需的双功能铁催化剂。制得双功能铁催化剂以重量百分比计,包含以下组分:10%Fe2O3,5%CaO,5%MnO,10%Gd2O3,10%Y2O3,30%SiO2,30%SAPO-34;所制的双功能铁催化剂在一定条件下进行合成气直接制取低碳烯烃反应,实验结果列于表1。
【实施例6】
称取20.0克SAPO-34分子筛粉末加入80.0克二氧化硅(SiO2)粉末中,在球磨机内磨混1小时,制成混合料G待用;将去离子水加入上述磨混好的混合料G中,进行捏合挤压成型;烘干后在600℃的温度下焙烧3小时,冷却后破碎筛分成40~60目制备出复合载体H;将202.4克九水合硝酸铁、11.7克无水硝酸钙、25.2克50%的硝酸锰溶液,12.5克六水合硝酸钆,3.4克六水合硝酸钇,溶于30.0克去离子水中制成混合溶液I;在真空度80kPa的条件下,将上述混合溶液I浸渍于45.0克已制备好的复合载体H上得催化剂前体J;浸渍好的催化剂前体J在110℃条件下干燥,然后进行焙烧,焙烧温度700℃,焙烧时间1h,即得到所需的双功能铁催化剂。制得双功能铁催化剂以重量百分比计,包含以下组分:40%Fe2O3,4%CaO,5%MnO,5%Gd2O3,1%Y2O3,36%SiO2,9%SAPO-34;所制的双功能铁催化剂在一定条件下进行合成气直接制取低碳烯烃反应,实验结果列于表1。
【实施例7】
称取20.0克SAPO-34分子筛粉末加入80.0克二氧化硅(SiO2)粉末中,在球磨机内磨混1小时,制成混合料G待用;将去离子水加入上述磨混好的混合料G中,进行捏合挤压成型;烘干后在450℃的温度下焙烧4小时,冷却后破碎筛分成40~60目制备出复合载体H;将202.4克九水合硝酸铁、8.2克无水硝酸锶、25.2克50%的硝酸锰溶液,12.5克六水合硝酸钆,3.4克六水合硝酸钇,溶于30.0克去离子水中制成混合溶液I;在真空度80kPa的条件下,将上述混合溶液I浸渍于45.0克已制备好的复合载体H上得催化剂前体J;浸渍好的催化剂前体J在110℃条件下干燥,然后进行焙烧,焙烧温度550℃,焙烧时间2h,即得到所需的双功能铁催化剂。制得双功能铁催化剂以重量百分比计,包含以下组分:40%Fe2O3,4%SrO,5%MnO,5%Gd2O3,1%Y2O3,36%SiO2,9%SAPO-34;所制的双功能铁催化剂在一定条件下进行合成气直接制取低碳烯烃反应,实验结果列于表1。
【实施例8】
称取40.0克SAPO-34分子筛粉末加入60.0克二氧化硅(SiO2)粉末中,在球磨机内磨混1小时,制成混合料G待用;将去离子水加入上述磨混好的混合料G中,进行捏合挤压成型;烘干后在600℃的温度下焙烧3小时,冷却后破碎筛分成40~60目制备出复合载体H;将25.3克九水合硝酸铁、11.7克无水硝酸钙、20.2克50%的硝酸锰溶液,2.5克六水合硝酸钆,3.4克六水合硝酸钇,溶于30.0克去离子水中制成混合溶液I;在真空度80kPa的条件下,将上述混合溶液I浸渍于85.0克已制备好的复合载体H上得催化剂前体J;浸渍好的催化剂前体J在110℃条件下干燥,然后进行焙烧,焙烧温度500℃,焙烧时间3h,即得到所需的双功能铁催化剂。制得双功能铁催化剂以重量百分比计,包含以下组分:5%Fe2O3,4%CaO,4%MnO,1%Gd2O3,1%Y2O3,51%SiO2,34%SAPO-34;所制的双功能铁催化剂在一定条件下进行合成气直接制取低碳烯烃反应,实验结果列于表1。
【实施例9】
称取40.0克SAPO-34分子筛粉末加入60.0克二氧化硅(SiO2)粉末中,在球磨机内磨混1小时,制成混合料G待用;将去离子水加入上述磨混好的混合料G中,进行捏合挤压成型;烘干后在600℃的温度下焙烧3小时,冷却后破碎筛分成40~60目制备出复合载体H;将25.3克九水合硝酸铁、11.7克无水硝酸钙、20.2克50%的硝酸锰溶液,2.7克六水合硝酸镧,3.4克六水合硝酸钇,溶于30.0克去离子水中制成混合溶液I;在真空度80kPa 的条件下,将上述混合溶液I浸渍于85.0克已制备好的复合载体H上得催化剂前体J;浸渍好的催化剂前体J在110℃条件下干燥,然后进行焙烧,焙烧温度550℃,焙烧时间2h,即得到所需的双功能铁催化剂。制得双功能铁催化剂以重量百分比计,包含以下组分:5%Fe2O3,4%CaO,4%MnO,1%La2O3,1%Y2O3,51%SiO2,34%SAPO-34;所制的双功能铁催化剂在一定条件下进行合成气直接制取低碳烯烃反应,实验结果列于表1。
【实施例10】
称取30.0克SAPO-34分子筛粉末加入70.0克二氧化硅(SiO2)粉末中,在球磨机内磨混1小时,制成混合料G待用;将去离子水加入上述磨混好的混合料G中,进行捏合挤压成型;烘干后在600℃的温度下焙烧3小时,冷却后破碎筛分成40~60目制备出复合载体H;将50.6克九水合硝酸铁、29.3克无水硝酸钙、50.5克50%的硝酸锰溶液,12.5克六水合硝酸钆,17.0克六水合硝酸钇,溶于30.0克去离子水中制成混合溶液I;在真空度80kPa的条件下,将上述混合溶液I浸渍于60.0克已制备好的复合载体H上得催化剂前体J;浸渍好的催化剂前体J在110℃条件下干燥,然后进行焙烧,焙烧温度550℃,焙烧时间2h,即得到所需的双功能铁催化剂。制得双功能铁催化剂以重量百分比计,包含以下组分:10%Fe2O3,10%CaO,10%MnO,5%Gd2O3,5%Y2O3,42%SiO2,18%SAPO-34;所制的双功能铁催化剂在一定条件下进行合成气直接制取低碳烯烃反应,实验结果列于表1。
【实施例11】
称取30.0克SAPO-34分子筛粉末加入70.0克二氧化硅(SiO2)粉末中,在球磨机内磨混1小时,制成混合料G待用;将去离子水加入上述磨混好的混合料G中,进行捏合挤压成型;烘干后在600℃的温度下焙烧3小时,冷却后破碎筛分成40~60目制备出复合载体H;将50.6克九水合硝酸铁、29.3克无水硝酸钙、52.6克九水合硝酸铬,12.5克六水合硝酸钆,17.0克六水合硝酸钇,溶于30.0克去离子水中制成混合溶液I;在真空度80kPa的条件下,将上述混合溶液I浸渍于60.0克已制备好的复合载体H上得催化剂前体J;浸渍好的催化剂前体J在110℃条件下干燥,然后进行焙烧,焙烧温度550℃,焙烧时间2h,即得到所需的双功能铁催化剂。制得双功能铁催化剂以重量百分比计,包含以下组分:10%Fe2O3,10%CaO,10%Cr2O3,5%Gd2O3,5%Y2O3,42%SiO2,18%SAPO-34;所制的双功能铁催化剂在一定条件下进行合成气直接制取低碳烯烃反应,实验结果列于表1。
【实施例12】
取实施例1制得的催化剂,其他不变,仅改变反应条件,进行合成气直接制取低碳烯烃,实验结果列于表2。
【比较例1】
称取30.0克SAPO-34分子筛粉末加入70.0克二氧化硅(SiO2)粉末中,在球磨机内磨混1小时,制成混合料G待用;将去离子水加入上述磨混好的混合料G中,进行捏合挤压成型;烘干后在600℃的温度下焙烧3小时,冷却后破碎筛分成40~60目制备出复合载体H;将126.5克九水合硝酸铁、20.5克无水硝酸钙、40.5克50%的硝酸锰溶液,12.5克六水合硝酸钆,溶于30.0克去离子水中制成混合溶液I;在真空度80kPa的条件下,将上述混合溶液I浸渍于55.0克已制备好的复合载体H上得催化剂前体J;浸渍好的催化剂前体J在110℃条件下干燥,然后进行焙烧,焙烧温度550℃,焙烧时间2h,即得到所需的双功能铁催化剂。制得双功能铁催化剂以重量百分比计,包含以下组分:25%Fe2O3,7%CaO,8%MnO,5%Gd2O3,38.5%SiO2,16.5%SAPO-34;所制的双功能铁催化剂在一定条件下进行合成气直接制取低碳烯烃反应,实验结果列于表1。
【比较例2】
称取30.0克SAPO-34分子筛粉末加入70.0克二氧化硅(SiO2)粉末中,在球磨机内磨混1小时,制成混合料G待用;将去离子水加入上述磨混好的混合料G中,进行捏合挤压成型;烘干后在600℃的温度下焙烧3小时,冷却后破碎筛分成40~60目制备出复合载体H;将126.5克九水合硝酸铁、20.5克无水硝酸钙、40.5克50%的硝酸锰溶液,12.5克六水合硝酸钆,40.7克六水合硝酸钇,溶于30.0克去离子水中制成混合溶液I;在真空度80kPa的条件下,将上述混合溶液I浸渍于43.0克已制备好的复合载体H上得催化剂前体J;浸渍好的催化剂前体J在110℃条件下干燥,然后进行焙烧,焙烧温度550℃,焙烧时间2h,即得到所需的双功能铁催化剂。制得双功能铁催化剂以重量百分比计,包含以下组分:25%Fe2O3,7%CaO,8%MnO,5%Gd2O3,12%Y2O3,30.1%SiO2,12.9%SAPO-34;所制的双功能铁催化剂在一定条件下进行合成气直接制取低碳烯烃反应,实验结果列于表1。
【比较例3】
称取100.0克二氧化硅(SiO2)粉末加入球磨机内磨混1小时,制成混合料G待用;将去离子水加入上述磨混好的混合料G中,进行捏合挤压成型;烘干后在600℃的温度下焙烧3小时,冷却后破碎筛分成40~60目制备出复合载体H;将126.5克九水合硝酸铁、20.5克无水硝酸钙、40.5克50%的硝酸锰溶液,12.5克六水合硝酸钆,17.0克六水合硝酸钇,溶于30.0克去离子水中制成混合溶液I;在真空度80kPa的条件下,将上述混合溶液I浸渍于50.0克已制备好的复合载体H上得催化剂前体J;浸渍好的催化剂前体J在110℃条件下干燥,然后进行焙烧,焙烧温度550℃,焙烧时间2h,即得到所需的双功能铁催化剂。制得双功能铁催化剂以重量百分比计,包含以下组分:25%Fe2O3,7%CaO,8%MnO,5%Gd2O3,5%Y2O3,50%SiO2;所制的双功能铁催化剂在一定条件下进行合成气直接制取低碳烯烃反应,实验结果列于表1。
【比较例4】
称取60.0克SAPO-34分子筛粉末加入40.0克二氧化硅(SiO2)粉末中,在球磨机内磨混1小时,制成混合料G待用;将去离子水加入上述磨混好的混合料G中,进行捏合挤压成型;烘干后在600℃的温度下焙烧3小时,冷却后破碎筛分成40~60目制备出复合载体H;将126.5克九水合硝酸铁、20.5克无水硝酸钙、40.5克50%的硝酸锰溶液,12.5克六水合硝酸钆,17.0克六水合硝酸钇,溶于30.0克去离子水中制成混合溶液I;在真空度80kPa的条件下,将上述混合溶液I浸渍于50.0克已制备好的复合载体H上得催化剂前体J;浸渍好的催化剂前体J在110℃条件下干燥,然后进行焙烧,焙烧温度550℃,焙烧时间2h,即得到所需的双功能铁催化剂。制得双功能铁催化剂以重量百分比计,包含以下组分:25%Fe2O3,7%CaO,8%MnO,5%Gd2O3,5%Y2O3,20%SiO2,30%SAPO-34;所制的双功能铁催化剂在一定条件下进行合成气直接制取低碳烯烃反应,实验结果列于表1。
上述实施例与比较例的还原条件为:
温度 450℃
压力 常压
催化剂装填量 3ml
催化剂负荷 1000小时-1
还原气 H2
还原时间 8小时
反应条件为:
φ8毫米固定床反应器
反应温度 350℃
反应压力 1.5MPa
催化剂装填量 3ml
催化剂负荷 1000小时-1
原料配比(摩尔) H2/CO=1.5/1
表1
表2
*与表1所述的条件相比改变的评价条件。

Claims (10)

1.一种双功能铁催化剂,以重量百分比计包括以下组分:
a)5~50%的铁元素或其氧化物;
b)4~20%的选自钙和锶中的至少一种元素或其氧化物;
c)4~20%的选自锰和铬中的至少一种元素或其氧化物;
d)1~10%的选自镧和钆中的至少一种元素或其氧化物;
e)1~10%的钇元素或其氧化物;
f)40~85%的载体,以载体重量份数计,包括以下组分(1)50~90份二氧化硅;(2)10~50份SAPO-34分子筛。
2.根据权利要求1所述的双功能铁催化剂,其特征在于所述的催化剂中铁的氧化物为三氧化二铁,以催化剂重量百分比计,含量为10~40%。
3.根据权利要求1所述的双功能铁催化剂,其特征在于所述的催化剂中钙和锶的氧化物分别为氧化钙和氧化锶,以催化剂重量百分比计,含量为5~15%。
4.根据权利要求1所述的双功能铁催化剂,其特征在于所述的催化剂中锰和铬的氧化物分别为氧化锰和三氧化二铬,以催化剂重量百分比计,含量为5~15%。
5.根据权利要求1所述的双功能铁催化剂,其特征在于所述的催化剂中镧和钆的氧化物分别为三氧化二镧和三氧化二钆,以催化剂重量百分比计,含量为1~5%。
6.根据权利要求1所述的双功能铁催化剂,其特征在于所述的催化剂中钇的氧化物为三氧化二钇,以催化剂重量百分比计,含量为1~5%。
7.根据权利要求1所述的双功能铁催化剂,所述载体由二氧化硅和SAPO-34分子筛混合成型制备。
8.权利要求1~7任一项所述的一种双功能铁催化剂的制备方法,包括以下步骤:
(1)将SAPO-34分子筛粉末加入二氧化硅粉末中,然后进行球磨混合、加水成型和烘干,烘干后在400~700℃高温烧结1~6小时,冷却后破碎筛分制备复合载体H待用;
(2)将铁盐、钙盐或锶盐、锰盐或铬盐、镧盐或钆盐,以及钇盐,溶于去离子水中制成混合溶液I;
(3)在真空度1~80kPa条件下,将上述混合溶液I浸渍于(1)步骤中处理好的复合载体H上得催化剂前体J;
(4)将催化剂前体J,经干燥后焙烧,得到所需的催化剂。
9.根据权利要求8所述的双功能铁催化剂的制备方法,其特征在于催化剂前体的焙烧温度为450~700℃,焙烧时间1.0~6.0小时。
10.一种合成气直接制取低碳烯烃的方法,以合成气为原料,H2和CO的摩尔比为1~3,在反应温度为250~400℃,反应压力为1.0~3.0Mpa,原料气体积空速为500~5000h-1的条件下,原料气与权利要求1~7任一项所述的双功能铁催化剂接触反应生成含C2~C4的烯烃。
CN201610496041.3A 2016-06-29 2016-06-29 双功能铁催化剂及其制备方法和应用 Active CN107537557B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610496041.3A CN107537557B (zh) 2016-06-29 2016-06-29 双功能铁催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610496041.3A CN107537557B (zh) 2016-06-29 2016-06-29 双功能铁催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107537557A true CN107537557A (zh) 2018-01-05
CN107537557B CN107537557B (zh) 2020-04-17

Family

ID=60965951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610496041.3A Active CN107537557B (zh) 2016-06-29 2016-06-29 双功能铁催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107537557B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234212A (zh) * 2010-04-20 2011-11-09 中国石油化工股份有限公司 合成气直接转化为低碳烯烃的方法
CN103772087A (zh) * 2012-10-25 2014-05-07 中国石油化工股份有限公司 合成气直接制取低碳烯烃的方法
US20150158791A1 (en) * 2013-12-06 2015-06-11 Exxonmobil Chemical Patents Inc. Production of C2+ Olefins
CN105107523A (zh) * 2015-09-02 2015-12-02 中国科学院上海高等研究院 一种用于合成气直接转化为低碳烯烃的钴基催化剂及其制备方法和用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234212A (zh) * 2010-04-20 2011-11-09 中国石油化工股份有限公司 合成气直接转化为低碳烯烃的方法
CN103772087A (zh) * 2012-10-25 2014-05-07 中国石油化工股份有限公司 合成气直接制取低碳烯烃的方法
US20150158791A1 (en) * 2013-12-06 2015-06-11 Exxonmobil Chemical Patents Inc. Production of C2+ Olefins
CN105107523A (zh) * 2015-09-02 2015-12-02 中国科学院上海高等研究院 一种用于合成气直接转化为低碳烯烃的钴基催化剂及其制备方法和用途

Also Published As

Publication number Publication date
CN107537557B (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
CN104148106B (zh) 合成气生产低碳烯烃的催化剂及其制备方法
CN106607043B (zh) 铁基催化剂及其制备方法和应用
CN104549325B (zh) 合成气一步法制低碳烯烃的催化剂,制备方法及其用途
CN104437511B (zh) 固定床生产低碳烯烃的催化剂及其制备方法
CN104437532B (zh) 固定床制低碳烯烃催化剂、制备方法及其用途
CN104549352B (zh) 合成气生产低碳烯烃的催化剂及其使用方法
CN105435801B (zh) 负载型铁催化剂及其制备方法和应用
CN105562026B (zh) 含硫的铁基催化剂及其制备方法和应用
CN107913729B (zh) 复合型催化剂及其制备方法
CN106607048B (zh) 固定床生产低碳烯烃的方法
CN107913718B (zh) 合成气直接合成低碳烯烃的铁基催化剂
CN104437524B (zh) 制取低碳烯烃的铁基催化剂,制备方法及其使用方法
CN109304216B (zh) 合成气一步法生产低碳烯烃的催化剂
CN104275189B (zh) 高温烧结型合成气制低碳烯烃的催化剂及其制备方法
CN106607047A (zh) 合成气制取低碳烯烃的铁基催化剂及其用途
CN105582936A (zh) 烧结型合成气制低碳烯烃催化剂及其制备方法
CN109304215B (zh) 合成气一步法制低碳烯烃的催化剂
CN109305871B (zh) 合成气一步法生产低碳烯烃的方法
CN109305870B (zh) 合成气一步法制低碳烯烃的方法
CN109647492B (zh) 合成气直接生产低碳烯烃的催化剂
CN106607052B (zh) 高温烧结型含硫铁基催化剂及其制备方法
CN107537557A (zh) 双功能铁催化剂及其制备方法和应用
CN109651030B (zh) 合成气直接制备低碳烯烃的方法
CN111068742B (zh) 一步法合成低碳烯烃的催化剂和其应用
CN109647491B (zh) 合成气直接制备低碳烯烃的催化剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant