CN107514065B - Building interior wall insulation board and manufacturing method thereof - Google Patents

Building interior wall insulation board and manufacturing method thereof Download PDF

Info

Publication number
CN107514065B
CN107514065B CN201710707333.1A CN201710707333A CN107514065B CN 107514065 B CN107514065 B CN 107514065B CN 201710707333 A CN201710707333 A CN 201710707333A CN 107514065 B CN107514065 B CN 107514065B
Authority
CN
China
Prior art keywords
coconut
coconut palm
fiber mat
insulation board
mat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710707333.1A
Other languages
Chinese (zh)
Other versions
CN107514065A (en
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XUZHOU DILONG NEW WALL MATERIALS Co.,Ltd.
Original Assignee
Xuzhou Xinnanhu Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuzhou Xinnanhu Technology Co ltd filed Critical Xuzhou Xinnanhu Technology Co ltd
Priority to CN201710707333.1A priority Critical patent/CN107514065B/en
Priority to CN201910611735.0A priority patent/CN110273485B/en
Publication of CN107514065A publication Critical patent/CN107514065A/en
Application granted granted Critical
Publication of CN107514065B publication Critical patent/CN107514065B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/04Manufacture of substantially flat articles, e.g. boards, from particles or fibres from fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/244Structural elements or technologies for improving thermal insulation using natural or recycled building materials, e.g. straw, wool, clay or used tires

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Architecture (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Forests & Forestry (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Building Environments (AREA)
  • Floor Finish (AREA)

Abstract

The invention discloses a building interior wall insulation board and a manufacturing method thereof, and discloses an interior wall insulation board which is low in cost and environment-friendly and a manufacturing method thereof. Its characterized in that building interior wall heated board comprises cement fixed bed, coconut palm fibre batt, wire net, diatomaceous earth and intercommunicating pore, the coconut palm fibre batt has put the wire net respectively at the middle part, the upper and lower of coconut palm fibre batt, evenly open on the coconut palm fibre has a plurality of intercommunicating pores, the cement fixed bed has been pour respectively in the outside of two wire nets, the cement fixed bed of both sides is connected through running through intercommunicating pore cement post, the outside of cement fixed bed covers there is one deck diatomaceous earth, coconut palm fibre batt thickness is the third of whole heated board thickness, coconut palm fibre middle part is tight real, and both sides are soft, and soft position and cement fixed bed imbed each other. The interior wall insulation board prepared by the method is environment-friendly and harmless, and the interior wall insulation board is low in manufacturing cost and easy to popularize.

Description

Building interior wall insulation board and manufacturing method thereof
Technical Field
The invention discloses a building interior wall insulation board and a manufacturing method thereof, relates to a low-carbon environment-friendly building interior wall insulation board and a manufacturing method thereof, and belongs to the field of building equipment. In particular to an environment-friendly interior wall insulation board with low cost and a manufacturing method thereof.
Background
At present, the insulation board is a hard foam plastic board which is manufactured by generally using polystyrene resin or polyurethane as a raw material, adding other raw auxiliary materials and polymer, heating, mixing and injecting a catalyst at the same time, reacting, extruding and molding, and has moisture-proof and waterproof properties, but the insulation board is a product of chemical reaction, the chemical reaction process has chemical pollution, the raw material used as the insulation board is not environment-friendly and low-carbon, the polystyrene has the defects of low use temperature, low oxygen index, easy combustion in open flame and the like, when the environment humidity is high, particularly in the rainy season in the south, the wall body often has the phenomenon of 'water hanging', the wall body is wet, the wall body is easy to generate mildew after the humidity of the wall body is long, spore powder of the mildew on the wall body flows along with air and is sucked in contact for a long time, respiratory diseases and allergic symptoms can be caused, such as bronchitis, tonsillitis, pollinosis, asthma and the like, a large amount of hepatitis virus and influenza virus can be hidden by wall mold, even headache, fever and skin or mucous membrane inflammation can be caused by the contact of people with low immunity, and therefore, the prevention of the wall mold is a very important concern.
Publication No. CN203961034U discloses a low-heat-capacity interior wall insulation board, which comprises an insulation layer and a facing layer, wherein one surface of the insulation layer is arranged on an interior wall surface, and the other surface of the insulation layer is connected with the facing layer; the heat-insulating layer is made of polyurethane heat-insulating materials with high heat resistance, and the decorative layer is made of color steel plates and color aluminum plates with the thickness of less than 1mm or glass fiber reinforced thermosetting plastics (SMC and GRP) with the thickness of less than 3mm or thin plate ceramic tiles with the thickness of less than 5 mm. The edge of the finish coat of the low-heat-capacity inner wall insulation board is bent towards one side of the insulation layer, and the bent part of the edge of the finish coat covers the partial edge of the insulation layer; the facing layer and the heat preservation layer are parallel to the plane of the inner wall surface, the size of the facing layer is smaller than that of the heat preservation layer, the adjacent heat preservation layers are connected with each other to block a heat bridge when being paved, and a structural joint is formed between the adjacent facing layers.
Publication No. CN106759999A discloses an interior wall insulation board, which comprises a base layer, an insulation layer, a sound insulation layer, an air purification layer and a decorative antibacterial layer which are arranged in sequence from inside to outside; the base layer, the heat insulation layer, the sound insulation layer, the air purification layer and the antibacterial layer are sequentially connected; the composite material is a large amount of composite materials, and the silver-series composite nano material on the surface has stronger toxicity of nano silver than large-scale silver, is more harmful to human bodies, can be used for sterilizing the interior wall insulation board, is more harmful to human bodies, influences living environment, harms human health and is not environment-friendly.
The currently used interior wall insulation boards or building boards mostly directly adopt phenolic resin with formaldehyde as a main component as an adhesive, because the preparation process of the phenolic resin adhesive can slowly release formaldehyde in the production and use processes, the formaldehyde can cause various diseases of human bodies, such as asthma, tracheitis, dermatitis and the like, and even can cause malignant tumors after long-term contact, when people use the adhesives in interior decoration, the residual free formaldehyde which does not participate in the reaction in the boards can be gradually released to the surrounding environment, so that a main body of the formaldehyde is formed in the air of the indoor environment, and the sources and the types of indoor pollutants are gradually increased, including air pollution, dust particle pollution and electromagnetic wave pollution.
Disclosure of Invention
In order to improve the situation, the invention provides the building interior wall insulation board and the manufacturing method thereof, and provides the interior wall insulation board which is low in cost and environment-friendly and the manufacturing method thereof.
The invention relates to a building inner wall insulation board, which is realized as follows: the invention relates to a building inner wall heat insulation board which comprises a cement fixing layer, a coconut fiber mat, a steel wire mesh, diatomite and communication holes, wherein the coconut fiber mat is arranged in the middle, the steel wire mesh is respectively arranged above and below the coconut fiber mat, a plurality of communication holes are uniformly formed in the coconut fiber mat, the cement fixing layer is respectively poured on the outer sides of the two steel wire meshes, the cement fixing layers on the two sides are connected through cement columns penetrating through the communication holes, a layer of diatomite covers the outer sides of the cement fixing layers, the thickness of the coconut fiber mat is one third of the thickness of the whole heat insulation board, the middle part of the coconut fiber mat is compact, the two sides of the coconut fiber mat are soft, and the soft position and the cement fixing layer are embedded into each other.
The invention relates to a method for manufacturing a coconut fiber mat in a building inner wall insulation board, which is characterized by comprising the following steps of:
1. preparing coconut palm fiber, performing dehumidification and drying treatment, stacking the coconut palm fiber without pressure, wherein the stacking height is 5cm each time, so that the coconut palm fiber is stacked under the action of self weight, overlapped in a staggered manner and in a gap, then placing the stack at a ventilation position, allowing airflow to pass through the gap between the coconut palm fiber, and air-drying the surface of the coconut palm fiber, wherein the ventilation time is 3 hours, and the stack is turned once every half an hour;
2. flatly paving the dried coconut palm fiber on a clean cement floor, wherein the flatly paving thickness is 10cm;
3. spraying raw rubber on the upper surface of the spread coconut palm fiber to enable the coconut palm fiber to be mutually bonded, and infiltrating the raw rubber through gaps among the coconut palm fiber to enable the coconut palm fiber to be mutually bonded to form a coconut fiber mat;
4. coating rubber on the surface of the coconut palm fiber mat, covering new coconut palm fiber with the thickness of 2-3cm;
5. then covering a template and compacting, and waiting for raw rubber to solidify;
6. turning over the coconut palm fiber mat, repeating the steps of 4-5, and compacting to obtain coconut palm fiber with the thickness of 2-3cm;
7. repeating the step 4, so that the new coconut palm fiber is bonded on the surface of the coconut palm fiber mat through the raw rubber in a non-pressure state;
8. turning over the coconut fiber mat, and repeating the step 7 to form a coconut fiber mat with a compact middle part, small gaps, a fluffy surface;
9. cutting edges of the coconut fiber hair mat;
10. and punching the coconut fiber mat to form uniform communicating holes on the coconut fiber mat.
The coconut fiber mat used in the invention is made of coconut shell outer layer fiber, harm of substances such as formaldehyde is reduced through raw rubber, the plant epidermis is utilized, industrial energy consumption is reduced, chemical pollution in the production process is reduced, gaps among the coconut fiber mats can be used for heat insulation and preservation, and can also be used for absorbing and storing moisture in air, the coconut fibers are fibers, and the products after combustion are water and carbon dioxide, so that harmful gas cannot be generated;
the invention discloses a coconut palm fiber mat surface wire drawing treatment method which is characterized by comprising the following steps:
1. laying the punched coconut fiber mat on a machine, and then carrying out wire drawing treatment on the surface of the coconut fiber mat by using a wire drawing tool;
2. the draw hook on the wire drawing tool is embedded into the surface of the coconut palm fiber mat, the coconut palm fibers are hooked, the action is continuously repeated for 3 times, and the hooked coconut palm fibers draw the force, so that the surface of the coconut palm fiber mat is fluffy;
3. blowing the coconut palm hair on the surface of the coconut palm hair pad by using a fan to keep the surface of the coconut palm hair pad clean;
4. turning over the coconut fiber mat and repeating the step 2;
5. and (5) repeating the step (3) to finish the surface wire drawing treatment of the coconut fiber hair mat.
The surface of the coconut fiber mat is more fluffy and rough, so that the coconut fiber mat is conveniently combined with the cement fixing layer and embedded with the cement fixing layer.
The invention relates to a coconut fiber mat wire drawing tool which comprises a fixing plate and a draw hook, wherein the fixing plate is of a thin plate structure, the surface of the thin plate is provided with a plurality of draw hooks, one end of each draw hook is rotatably arranged on the fixing plate, the other end of each draw hook is bent and suspended, the draw hooks are gradually thinned from one end to the other end, the cross sections of the draw hooks can be circular, square, triangular, annular and U-shaped, the bending paths of the draw hooks can be U-shaped, L-shaped and S-shaped,
the back of the fixing plate is provided with a fixing hole, so that the fixing plate is convenient to mount on a machine for use.
The invention relates to a mold for manufacturing a heat-insulating plate of an inner wall of a building, which consists of a mold frame, a hollow pipe, a limiting table, a bottom plate, backing plates, a grouting pipe, connecting pipes, a sealing rubber pad and a cover plate, wherein the two backing plates are arranged at the bottom of the bottom plate in parallel, the edge of the bottom plate is provided with an oblique chamfer angle for the joint limiting of the mold, the mold frame is arranged on the bottom plate and forms a cavity with the bottom plate, the lower edge of the mold frame is provided with a chamfer angle and is jointed with the edge of the bottom plate, the upper edge of the mold frame is provided with a chamfer angle, the cover plate is arranged on the mold frame and is jointed with the chamfer angle at the upper edge of the mold frame, the sealing rubber pad is arranged between the bottom plate and the mold frame and between the cover plate and the mold frame, the limiting table is arranged on the inner wall of the, the two groups of connecting pipes on one side are communicated with each other through hollow pipes, and the two groups of connecting pipes on the other side are connected with each other through grouting pipes.
The invention relates to a manufacturing method of a building inner wall insulation board, which is characterized by comprising the following steps:
1. opening a cover plate of the mold, and uniformly paving the diatomite on the bottom plate and the cover plate;
2. laying steel wire meshes on two sides of the coconut palm fiber mat, and pressing the surface layer of the coconut palm fiber mat by the steel wire meshes, so that fluffy areas on the surface are pressed to form fluffy structures with the same size and the same spacing, and the fluffy structures can be better and uniformly combined and fixed with a cement fixing layer;
3. fixing the coconut fiber mat laid with the steel wire mesh in a mold frame through a limiting table, dividing the mold frame into an upper side grouting channel and a lower side grouting channel by the coconut fiber mat, feeding slurry from two sides of the coconut fiber mat in a matched manner, enabling the two strands of slurry to advance in parallel at a constant speed, and combining the upper and lower strands of slurry when the slurry reaches a communicating hole on the coconut fiber mat to ensure that the filling is uniform and complete at each part to form a whole;
5. the cover plate is closed, the hollow pipe is pumped, so that the air pressure inside the frame of the mold is smaller than the external air pressure, and slurry is sucked in during grouting, so that excessive gas mixing is avoided, and the bonding strength and the heat preservation effect are not influenced;
6. stopping air extraction of the hollow pipe, and starting grouting by a grouting pipe, wherein the water-cement ratio of the grout is 1:2, a small amount of metal powder is uniformly doped in the grout, an external electromagnetic field can be shielded, and pollution damage to a human body caused by electromagnetic waves is avoided;
7. and after the upper grouting channel and the lower grouting channel are completely filled, waiting for solidification, and removing the mold to take out the inner wall insulation board.
Has the beneficial effects.
Firstly, the interior wall insulation board prepared by the method is environment-friendly and harmless.
And secondly, the inner wall insulation board is low in manufacturing cost and easy to popularize.
And thirdly, the pollution of the inner wall insulation board can be reduced.
Drawings
FIG. 1 is a schematic structural view of an insulation board for an interior wall of a building according to the present invention;
FIG. 2 is a three-dimensional structure diagram of a coconut fiber mat of the heat-insulating board for the inner wall of the building;
FIG. 3 is a three-dimensional structure view of a coconut fiber mat drawing tool of the present invention;
FIG. 4 is a schematic structural view of a mold for an insulation board of an interior wall of a building according to the present invention;
in the attached drawings
Wherein the parts are: cement fixed bed (1), coconut palm hair pad (2), wire net (3), diatomaceous earth (4), intercommunicating pore (5), fixed plate (6), drag hook (7), mould frame (8), hollow tube (9), spacing platform (10), downside slip casting passageway (11), bottom plate (12), backing plate (13), slip casting pipe (14), connecting pipe (15), sealed cushion (16), apron (17), upside slip casting passageway (18).
The specific implementation mode is as follows:
the invention relates to a building inner wall insulation board, which consists of a cement fixing layer (1), a coconut fiber mat (2), a steel wire mesh (3), diatomite (4) and communication holes (5), the coconut palm fiber mat (2) is arranged in the middle, the upper part and the lower part of the coconut palm fiber mat (2) are respectively provided with a steel wire mesh (3), a plurality of communicating holes (5) are uniformly formed on the coconut fiber mat, cement fixing layers (1) are respectively poured on the outer sides of the two steel wire meshes (3), the cement fixing layers (1) at the two sides are connected through a cement column penetrating through the communicating hole (5), the outer side of the cement fixing layer (1) is covered with a layer of diatomite (4), the thickness of the coconut palm fiber mat (2) is one third of the thickness of the whole heat insulation board, the middle part of the coconut palm fiber mat is compact, the two sides of the coconut palm fiber mat are soft, and the soft positions and the cement fixing layer (1) are embedded into each other.
The invention relates to a method for manufacturing a coconut fiber mat (2) in a building inner wall insulation board, which is characterized by comprising the following steps:
1. preparing coconut palm fiber, performing dehumidification and drying treatment, stacking the coconut palm fiber without pressure, wherein the stacking height is 5cm each time, so that the coconut palm fiber is stacked under the action of self weight, overlapped in a staggered manner and in a gap, then placing the stack at a ventilation position, allowing airflow to pass through the gap between the coconut palm fiber, and air-drying the surface of the coconut palm fiber, wherein the ventilation time is 3 hours, and the stack is turned once every half an hour;
2. flatly paving the air-dried coconut palm fiber on a clean cement floor, wherein the stacking thickness is 10cm;
3. spraying raw rubber on the upper surface of the stacked coconut palm fiber, wherein the thickness of the raw rubber is 0.2mm, and the raw rubber seeps downwards through gaps among the coconut palm fibers to enable the coconut palm fibers to be mutually bonded to form a coconut palm fiber mat (2);
4. coating raw rubber on the surface of the coconut palm fiber mat (2), covering new coconut palm fiber, and covering the coconut palm fiber with the thickness of 2-3cm;
5. then covering a template and compacting, and waiting for raw rubber to solidify;
6. turning over the coconut palm fiber mat (2), repeating the steps of 4-5, and compacting to obtain a coconut palm fiber mat (2) with the thickness of 2.5 cm;
7. repeating the step 4, so that the new coconut palm hair is bonded on the surface of the coconut palm hair cushion (2) through the raw rubber in a non-pressure state;
8. turning over the coconut fiber mat (2), and repeating the step (7) to form the coconut fiber mat (2) with a compact middle part, a small gap and a fluffy surface;
9. cutting edges of the coconut palm fiber mat (2);
10. punching the coconut palm fiber mat (2) to form uniform communicating holes (5) on the coconut palm fiber mat (2).
The coconut palm fiber mat (2) is made of coconut shell outer layer fibers, harm of substances such as formaldehyde is reduced through raw rubber, plant skins are utilized, industrial energy consumption and chemical pollution in a fidgeting process are reduced, gaps among the coconut palm fiber mats (2) can be used for heat insulation and preservation, moisture in air can be absorbed and stored, and the coconut palm fibers are water and carbon dioxide which are the combustion products of the fibers and do not generate harmful gas;
the invention discloses a method for drawing the surface of a coconut palm fiber mat (2), which is characterized by comprising the following steps:
1. laying the punched coconut coir wool pad (2) on a machine, and then carrying out wire drawing treatment on the surface of the coconut coir wool pad (2) by using a wire drawing tool;
2. a draw hook (7) on the wire drawing tool is embedded into the surface of the coconut palm fiber mat (2), the coconut palm fibers are hooked, the action is continuously repeated for 3 times, and the hooked coconut palm fibers are pulled to ensure that the surface of the coconut palm fiber mat (2) is fluffy;
3. blowing the coconut palm hair on the surface of the coconut palm hair pad (2) away by using a fan to keep the surface of the coconut palm hair pad (2) clean;
4. turning over the coconut fiber hair mat (2), and repeating the step 2;
5. and (5) repeating the step (3) to finish the surface wire drawing treatment of the coconut fiber hair mat (2).
The surface of the coconut fiber mat (2) is more fluffy and rough, and the coconut fiber mat (2) is conveniently combined with the cement fixing layer (1) and embedded into each other.
The invention discloses a coconut fiber hair mat (2) wire drawing tool, which comprises a fixing plate (6) and a draw hook (7), wherein the fixing plate (6) is of a thin plate structure, the surface of the thin plate is provided with a plurality of draw hooks (7), one end of each draw hook (7) is rotatably arranged on the fixing plate (6), the other end of each draw hook (7) is bent and suspended, the draw hooks (7) are gradually thinned from one end to the other end, the cross sections of the draw hooks (7) can be circular, square, triangular, annular and U-shaped, the bending paths of the draw hooks (7) can be U-shaped, L-shaped and S-shaped,
the back of the fixing plate (6) is provided with a fixing hole, so that the fixing plate is convenient to mount on a machine for use.
The invention relates to a mold for manufacturing a heat-insulating plate of an inner wall of a building, which consists of a mold frame (8), a hollow pipe (9), a limiting table (10), a bottom plate (12), backing plates (13), grouting pipes (14), connecting pipes (15), a sealing rubber mat (16) and a cover plate (17), wherein the two backing plates (13) are arranged at the bottom of the bottom plate (12) in parallel, the edge of the bottom plate (12) is provided with an oblique chamfer angle for the attachment and the limiting of the mold, the mold frame (8) is arranged on the bottom plate (12) and forms a cavity with the bottom plate (12), the lower edge of the mold frame (8) is provided with a chamfer angle and is attached to the edge of the bottom plate (12), the upper edge of the mold frame (8) is provided with a chamfer angle, the cover plate (17) is arranged on the mold frame (8) and is attached to the chamfer angle at the upper edge of the mold frame (8), the bottom plate (12) and the mold frame (8), the mould is characterized in that a limiting table (10) is arranged on the inner wall of the mould frame (8), two groups of connecting pipes (15) are respectively arranged on two sides of the mould frame (8) and are communicated with the inner side of the mould frame (8) in a lateral mode, a control valve is arranged on each connecting pipe (15), the two groups of connecting pipes (15) on the same side are arranged up and down, the two groups of connecting pipes (15) on one side are communicated with each other through hollow pipes (9), and the two groups of connecting pipes (15) on the other side are connected with each other through grouting pipes (.
The invention relates to a manufacturing method of a building inner wall insulation board, which is characterized by comprising the following steps:
1. opening a cover plate (17) of the mold, and uniformly paving the diatomite (4) on the bottom plate (12) and the cover plate (17);
2. laying steel wire meshes (3) on two sides of the coconut palm fiber mat (2), pressing the surface layer of the coconut palm fiber mat (2) by the steel wire meshes (3), so that fluffy areas on the surface are pressed to form fluffy bump structures with the same size and the same distance, and the fluffy bump structures can be better and uniformly combined and fixed with the cement fixing layer (1);
3. fixing the coconut palm fiber mat (2) laid with the steel wire mesh (3) in a mould frame (8) through a limiting table (10), dividing the inside of the mould frame (8) into an upper side grouting channel (18) and a lower side grouting channel (11) by the coconut palm fiber mat (2), feeding slurry from two sides of the coconut palm fiber mat (2) in a matched manner, enabling the two strands of slurry to advance in parallel at a constant speed, and combining the upper and lower strands of slurry when the slurry reaches a communicating hole (5) in the coconut palm fiber mat (2) to ensure that the filling is uniform and complete at each position to form a whole;
5. the cover plate (17) is closed, the hollow pipe (9) is pumped, so that the air pressure inside the die frame (8) is smaller than the external air pressure, slurry is sucked in during grouting, and the influence on the bonding strength and the heat preservation effect due to excessive gas mixing is avoided;
6. the air exhaust of the hollow pipe (9) is stopped, the grouting pipe (14) starts grouting, the water-cement ratio of the grout is 1:2, a small amount of metal powder is uniformly doped, an external electromagnetic field can be shielded, the pollution and the injury of electromagnetic waves to human bodies are avoided, and in the grouting process, the grout is mixed with the metal powder to permeate into gaps among the coconut palm fiber pads (2) and is combined with the diatomite (4) with the water absorption function;
7. and after the upper grouting channel and the lower grouting channel are completely filled, waiting for solidification, and removing the mold to take out the inner wall insulation board.

Claims (8)

1. The utility model provides a building interior wall heated board, characterized by: the coconut fiber mat is arranged in the middle, the upper portion and the lower portion of the coconut fiber mat are respectively provided with a steel wire mesh, the coconut fiber mat is evenly provided with a plurality of communication holes, the outer sides of the two steel wire meshes are respectively poured with a cement fixing layer, the cement fixing layers on the two sides are connected through a cement column penetrating through the communication holes, the outer side of the cement fixing layer is covered with a layer of diatomite,
the manufacturing method of the coconut fiber mat in the heat insulation board of the building inner wall comprises the following steps:
1) preparing coconut palm fiber, performing dehumidification and drying treatment, stacking the coconut palm fiber without pressure, wherein the stacking height is 5cm each time, so that the coconut palm fiber is stacked under the action of self weight, overlapped in a staggered manner and in a gap, then placing the stack at a ventilation position, allowing airflow to pass through the gap between the coconut palm fiber, and air-drying the surface of the coconut palm fiber, wherein the ventilation time is 3 hours, and the stack is turned once every half an hour;
2) flatly paving the dried coconut palm fiber on a clean cement floor, wherein the flatly paving thickness is 10cm;
3) spraying raw rubber on the upper surface of the spread coconut palm fiber to enable the coconut palm fiber to be mutually bonded, and infiltrating the raw rubber through gaps among the coconut palm fiber to enable the coconut palm fiber to be mutually bonded to form a coconut fiber mat;
4) coating rubber on the surface of the coconut palm fiber mat, covering new coconut palm fiber with the thickness of 2-3cm;
5) then covering a template and compacting, and waiting for raw rubber to solidify;
6) turning over the coconut palm fiber mat, repeating the steps of 4-5, and compacting to obtain coconut palm fiber with the thickness of 2-3cm;
7) repeating the step 4, so that the new coconut palm fiber is bonded on the surface of the coconut palm fiber mat through the raw rubber in a non-pressure state;
8) turning over the coconut fiber mat, and repeating the step 7 to form a coconut fiber mat with a compact middle part, small gaps and a fluffy surface;
9) cutting edges of the coconut fiber hair mat;
10) and punching the coconut fiber mat to form uniform communicating holes on the coconut fiber mat.
2. The insulation board for the inner wall of the building as claimed in claim 1, wherein the thickness of the coconut coir cushion is one third of the thickness of the whole insulation board, the coconut coir cushion is compact in the middle, soft on both sides, and the soft position and the cement fixing layer are embedded into each other.
3. The insulation board for the inner wall of the building as claimed in claim 1, wherein the coir wool pad is made of outer layer fiber of coconut shell.
4. The surface wire drawing treatment method for the coconut palm fiber mat of the building interior wall insulation board according to claim 1 is characterized by comprising the following steps:
1) laying the punched coconut fiber mat on a machine, and then carrying out wire drawing treatment on the surface of the coconut fiber mat by using a wire drawing tool;
2) the draw hook on the wire drawing tool is embedded into the surface of the coconut palm fiber mat, the coconut palm fibers are hooked, the action is continuously repeated for 3 times, and the hooked coconut palm fibers are pulled, so that the surface of the coconut palm fiber mat is fluffy;
3) blowing the coconut palm hair on the surface of the coconut palm hair pad by using a fan to keep the surface of the coconut palm hair pad clean;
4) turning over the coconut fiber mat and repeating the step 2;
5) and (5) repeating the step (3) to finish the surface wire drawing treatment of the coconut fiber hair mat.
5. The surface wire drawing treatment method of the coir mat of the heat insulation board for the inner wall of the building as claimed in claim 4, wherein the surface wire drawing treatment tool of the coir mat comprises a fixing plate and a plurality of draw hooks, the fixing plate is of a thin plate structure, the surface of the thin plate is provided with the plurality of draw hooks, one end of each draw hook is rotatably arranged on the fixing plate, and the other end of each draw hook is in bent suspension.
6. The surface wire drawing treatment method for the coir mat of the insulation board for the building inner wall as claimed in claim 5, wherein the draw hook is tapered from one end to the other end, the cross section of the draw hook can be circular, square, triangular, annular or U-shaped, and the bending path of the draw hook can be U-shaped, L-shaped or S-shaped.
7. A mold for manufacturing the heat insulation board of the inner wall of the building as claimed in claim 1, wherein: the mould comprises a mould frame, a hollow pipe, a limiting table, a bottom plate, base plates, grouting pipes, connecting pipes, a sealing rubber pad and a cover plate, wherein the two base plates are arranged at the bottom of the bottom plate in parallel, the edge of the bottom plate is provided with an oblique chamfer used for limiting the joint of a mould, the mould frame is arranged on the bottom plate and forms a cavity with the bottom plate, the lower edge of the mould frame is provided with a chamfer and is jointed with the edge of the bottom plate, the upper edge of the mould frame is provided with a chamfer, the cover plate is arranged on the mould frame and is jointed with the chamfer at the upper edge of the mould frame, the sealing rubber pad is arranged between the bottom plate and the mould frame and between the cover plate and the mould frame, the limiting table is arranged on the inner wall of the mould frame, two sides of the mould frame are respectively provided with two groups of connecting pipes and are communicated with the inside, the two groups of connecting pipes on the other side are connected through grouting pipes.
8. The manufacturing method of the building inner wall insulation board according to claim 1 is characterized by comprising the following steps:
1) opening a cover plate of the mold, and uniformly paving the diatomite on the bottom plate and the cover plate;
2) laying steel wire meshes on two sides of the coconut palm fiber mat, and pressing the surface layer of the coconut palm fiber mat by the steel wire meshes, so that fluffy areas on the surface are pressed to form fluffy structures with the same size and the same spacing, and the fluffy structures can be better and uniformly combined and fixed with a cement fixing layer;
3) fixing the coconut fiber mat laid with the steel wire mesh in a mold frame through a limiting table, dividing the mold frame into an upper side grouting channel and a lower side grouting channel by the coconut fiber mat, feeding slurry from two sides of the coconut fiber mat in a matched manner, enabling the two strands of slurry to advance in parallel at a constant speed, and combining the upper and lower strands of slurry when the slurry reaches a communicating hole on the coconut fiber mat to ensure that the filling is uniform and complete at each part to form a whole;
4) the cover plate is closed, the hollow pipe is pumped, so that the air pressure inside the frame of the mold is smaller than the external air pressure, and slurry is sucked in during grouting, so that excessive gas mixing is avoided, and the bonding strength and the heat preservation effect are not influenced;
5) stopping air extraction of the hollow pipe, and starting grouting by a grouting pipe, wherein the water-cement ratio of the grout is 1:2, a small amount of metal powder is uniformly doped in the grout, an external electromagnetic field can be shielded, and pollution damage to a human body caused by electromagnetic waves is avoided;
6) and after the upper grouting channel and the lower grouting channel are completely filled, waiting for solidification, and removing the mold to take out the inner wall insulation board.
CN201710707333.1A 2017-08-17 2017-08-17 Building interior wall insulation board and manufacturing method thereof Active CN107514065B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710707333.1A CN107514065B (en) 2017-08-17 2017-08-17 Building interior wall insulation board and manufacturing method thereof
CN201910611735.0A CN110273485B (en) 2017-08-17 2017-08-17 Building interior wall insulation board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710707333.1A CN107514065B (en) 2017-08-17 2017-08-17 Building interior wall insulation board and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201910611735.0A Division CN110273485B (en) 2017-08-17 2017-08-17 Building interior wall insulation board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
CN107514065A CN107514065A (en) 2017-12-26
CN107514065B true CN107514065B (en) 2021-04-06

Family

ID=60723320

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910611735.0A Active CN110273485B (en) 2017-08-17 2017-08-17 Building interior wall insulation board and manufacturing method thereof
CN201710707333.1A Active CN107514065B (en) 2017-08-17 2017-08-17 Building interior wall insulation board and manufacturing method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201910611735.0A Active CN110273485B (en) 2017-08-17 2017-08-17 Building interior wall insulation board and manufacturing method thereof

Country Status (1)

Country Link
CN (2) CN110273485B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110273485B (en) * 2017-08-17 2021-09-03 徐州新南湖科技有限公司 Building interior wall insulation board and manufacturing method thereof
CN112127564B (en) * 2020-09-04 2021-11-02 孙超 Anti-permeability ceramic tile for building exterior wall and using method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3641464A1 (en) * 1986-12-04 1988-06-16 Uwe Welteke HEAT-INSULATING PANEL CONTAINING NATURAL FIBERS AND METHOD AND DEVICE FOR THEIR PRODUCTION
CN2178718Y (en) * 1993-11-22 1994-10-05 徐莲凤 Separating device of fibre separating
JPH1119907A (en) * 1997-07-07 1999-01-26 Kanegafuchi Chem Ind Co Ltd Fiberboard and manufacture thereof
CN1752373A (en) * 2005-07-20 2006-03-29 吴学文 Filling mould and cement mixture sandwich board
CN100577257C (en) * 2007-09-29 2010-01-06 丹东天皓净化材料有限公司 Process for manufacturing puffy felt filtering material of glass fibre
CN201824520U (en) * 2010-08-02 2011-05-11 柯富家 Production mold of insulation and decoration integrated composite board
CN102174729B (en) * 2010-12-31 2012-08-01 昆山吉美川纤维科技有限公司 Polyester fiber coconut fiber plate and preparation method thereof
CN102674794B (en) * 2012-05-31 2013-11-13 广州市棕宝纤维制品有限公司 Plant fiber fireproofing insulating plate
CN102689345B (en) * 2012-05-31 2015-03-11 广州市棕宝纤维制品有限公司 Fireproof plant fiber furniture board
CN203145211U (en) * 2013-01-30 2013-08-21 湖北西航精工新材料有限公司 Composite insulation board
CN203904527U (en) * 2014-05-26 2014-10-29 江苏双盈纺织科技有限公司 Cotton fluffing machine
CN205296863U (en) * 2015-12-29 2016-06-08 浙江大学城市学院 Mud jacking structure is assisted in vacuum
CN206070116U (en) * 2016-09-26 2017-04-05 张健樑 A kind of mattress coconut palm plate of the insulation moisture absorption
CN106626041B (en) * 2016-12-29 2019-12-17 中民筑友科技投资有限公司 Production process of heat-insulation decorative plate
CN110273485B (en) * 2017-08-17 2021-09-03 徐州新南湖科技有限公司 Building interior wall insulation board and manufacturing method thereof

Also Published As

Publication number Publication date
CN110273485A (en) 2019-09-24
CN107514065A (en) 2017-12-26
CN110273485B (en) 2021-09-03

Similar Documents

Publication Publication Date Title
CN105731969B (en) A kind of inorganic ecological decoration sheet material of photocatalysis and its production method
CN107263948B (en) A kind of fire-proof thermal-insulation decoration and preparation method thereof
CN107514065B (en) Building interior wall insulation board and manufacturing method thereof
JP2006523567A (en) POROUS SOUND ABSORBING MATERIAL FORMED FROM CORK PARTICLES AND THERMAL REACTIVE Binder
CN202718318U (en) Dry hanging air purifying and sound absorbing ceramic plate
CN102926522A (en) Air-purifying type wood floor
CN203821612U (en) Outer wall outer heat-insulation structure provided with reinforcedglass wool board
CN102121280A (en) Vitrified micro bubble composite rock wool fireproof insulating plate and manufacturing method thereof
CN103818080A (en) Insulation sound-absorbing decorative plate and preparation method thereof
CN206737308U (en) A kind of fire-retardant diatom ooze decorative panel of sound-absorbing
CN103321311B (en) A kind of overlay film 3D acoustic(al)absorbent and preparation method thereof
CN104975692A (en) Novel EPS decoration component
CN207714658U (en) A kind of etch-proof Wood-plastic composite wallboard
CN203547085U (en) Phase change intelligent thermoregulation floor
CN103434252B (en) Scatter the wet process technique of glass fibre ceiling
CN205997440U (en) Multifunction house ornamentation ecological board
CN205637482U (en) Rendition hard plastic rubber floor
JP5088868B2 (en) Laminated body
CN201020360Y (en) Composite finishing material capable of purifying air
CN107891639A (en) A kind of high sound-absorbing polyurethane automobile ceiling of high intensity and preparation method thereof
CN202969842U (en) Environmental-friendly floor
CN203347041U (en) Film covering 3D sound absorber
CN206186003U (en) Multi -functional fire -retardant board
CN206128521U (en) Building decoration plate
KR100913898B1 (en) Structural interior and exterior finishing panel for friendly environment and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210708

Address after: 2213116 Yitang Town Industrial Park, Pizhou City, Xuzhou City, Jiangsu Province

Patentee after: XUZHOU DILONG NEW WALL MATERIALS Co.,Ltd.

Address before: 221000 Jiangsu Xuzhou Yunlong District Hanyuan Avenue West Green Business City

Patentee before: XUZHOU XINNANHU TECHNOLOGY Co.,Ltd.