CN107507162A - 一种基于多模态脑影像的基因型分析方法 - Google Patents

一种基于多模态脑影像的基因型分析方法 Download PDF

Info

Publication number
CN107507162A
CN107507162A CN201710530252.9A CN201710530252A CN107507162A CN 107507162 A CN107507162 A CN 107507162A CN 201710530252 A CN201710530252 A CN 201710530252A CN 107507162 A CN107507162 A CN 107507162A
Authority
CN
China
Prior art keywords
brain
image
feature
mrow
modal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710530252.9A
Other languages
English (en)
Inventor
张道强
李蝉秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201710530252.9A priority Critical patent/CN107507162A/zh
Publication of CN107507162A publication Critical patent/CN107507162A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20092Interactive image processing based on input by user
    • G06T2207/20104Interactive definition of region of interest [ROI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明公开了一种新颖的基于多模态脑影像的基因型分析方法。该方法充分利用两种模态信息(结构影像和功能影像),对阿尔茨海默病关联密切的rs429358位点基因型进行回归。具体过程包括:首先从脑结构影像中提取体素特征和脑功能影像中提取连接网络特征,然后采用弹性网络对两种特征进行特征选择,保留关联程度较高的脑区和网络连接。最后采用多核支持向量回归机将选出的节点和边属性进行融合并回归基因型。本发明的优点是:针对复杂的结构和功能的脑影像和基因型数据,给出了一种新颖的基于结构和功能的多模态脑影像回归分析单个位点基因型的方法,该方法分析效果更好,并能够充分利用两种模态的互补信息。

Description

一种基于多模态脑影像的基因型分析方法
技术领域
本发明公开了一种基于多模态脑影像的基因型分析方法,本发明属于医学影像与计算机科学的交叉领域,涉及数字图像分析与模式识别的技术领域。
背景技术
随着医学成像技术的迅猛发展,基因影像学成为了一个新兴的科学领域,主要研究基因变异对脑部结构和功能的影响。对于阿尔茨海默病来说,遗传因素起着重要的调控作用。而目前已有证据表明APOE(apolipoprotein E)ε4基因与阿尔茨海默病的发病高度相关。遗传基因变异对生物体的调控机理是复杂而未知的,其中单核苷酸多态性(singlenucleotide polymorphisms,SNPs)是一种常见的生物遗传标记。由于阿尔茨海默病患者的脑部会产生结构性萎缩,因此我们可以从神经影像数据中提取到与疾病相关联的图像特征作定量性状(quantitative traits,QTs)。
目前大多数研究工作关注基于脑结构模态的神经影像与基因变异的关联分析,但这些方法都是将每个脑区视为单独的一个节点,而忽略了节点之间的连接信息。而脑网络模型是对大脑系统的简单表示,节点两两之间的功能连接边是构成整个功能网络的重要数据,反映了不同脑区之间的连接强度,承载有患者与正常人之间的差异信息。本发明试图将提取到的脑结构感兴趣区域和功能连接网络特征进行弹性网络特征选择之后,再采用多核支持向量回归机进行基因型与表现型的关联分析,发现两者之间的联系有利于更好地理解阿尔茨海默病的疾病机理,从而采取更好的预防措施和更有效的治疗措施。本发明基于以上问题,提出一种多模态脑影像回归基因型方法。实现了用多模态脑影像准确预测基因型的同时验证了多模态信息融合的有效性。
发明内容
本发明是基于多模态脑影像,发明一个基因型回归分析的方法。
本发明的具体技术方案包括以下几个步骤:
步骤一:针对多模态脑影像数据的特点,利用fMRI图像来构建脑功能连接网络;
步骤二:针对多模态脑影像数据的特点,利用sMRI图像提取ROI的灰质密度特征;
步骤三:采用弹性网络选择ROI的灰质密度特征(节点特征)和构建好的脑功能连接特征(边特征);
步骤四:使用多核支持向量回归机对前一步骤获得的特征进行回归分析。
所述步骤一中,对采集到的原始数据,我们使用Data Processing Assistant forResting-State fMRI(DPARSF)进行切片时间校正(slice timing),头动校正(motioncorrelation),和空间正则化(spatial normalization)等标准预处理流程。接着每个对象的fMRI图像所对应的脑空间根据Automated Anatomical Labeling(AAL)模板被分割为90个脑区(每个脑区对应图中的一个顶点),计算每个脑区的平均时间序列以及脑区间的Pearson相关系数作为脑区间的连接强度。从而获得了大脑的功能性连接网络。
所述步骤二中,处理结构磁共振图像时,首先,手动将所有被试的T1结构像数据调整到前联合-后联合的平行线。然后,使用统一的分割技术,将所有被试的T1加权像分割为灰质、白质以及脑脊液。再次,将每个被试的灰质图像使用DARTEL(diffeomorphicanatomical registration through exponentiated lie algebra)技术空间标准化到本研究特定的T1加权的模板。DARTEL配准首先从每个被试的图像上计算平均的图谱,然后将每个被试的图谱配准到该图谱上。为了提高配准质量以及得到一个更加准确的不同被试间的配准,配准过程将重复进行,直到产生最优的特定模板。随后再配准到蒙特利尔神经学研究所(MNI)标准空间上。最后,每个被试将产生各自的灰质密度图。为了得到更好的结果,使用10mm的高斯平滑和将每个被试的灰质图像进行平滑。然后按照AAL模板对90个脑区分别提取90个脑区的平均灰质密度。
所述步骤三中,我们采用弹性网络(elastic net)算法分别对节点特征和网络边特征做特征选择。弹性网络系数可以由求解以下优化问题得到:
其中,输入为代表脑影像特征矩阵,和代表基因型数据(SNP),其中n是样本数量,p是影像特征维数。输出为是脑影像特征对应的系数向量,在得到系数向量w之后将其中数值为0所对应的特征去掉,我们可以得到一个新的更具有代表性的特征表示。同时,系数向量w还包含了每一个特征的权重信息,由这个权重信息我们可以进一步对特征的代表性进行分析。λ1、λ2是L1范数和L2范数的正则化参数,通过交叉验证实现模型参数选择。
所述步骤四中,将步骤三中挑选出的节点特征和网络边特征使用多核支持向量回归机SVR预测基因型。在每个模态上的特征数上都构造一个核矩阵,并通过下式进行融合:
其中表示第m个模态上的核函数,对应着训练样本Xi和Xj的第m个模态上的第i个和第j个特征,μm是第m个模态上的权重向量,并且满足约束式中k(xi,xj)是两个模态数据通过核变换及融合之后的核矩阵,将其作为SVR的输入并建立回归模型来进行测试数据的回归。
本发明采用以上技术方案与现有技术相比,具有以下优点与有益效果:
(1)本发明提出的融合多模态的方法充分利用多种模态的优势并将其融合后进行回归预测,取得了很好的预测结果;
(2)目前大多数研究工作关注基于脑结构模态的神经影像与基因变异的关联分析,将每个脑区视为单独的一个节点,而忽略了节点之间的连接信息,脑网络模型是对大脑系统的简单表示,而本发明的目的是充分利用这种承载有患者与正常人之间的差异信息,该方法更具有分析参考的意义。
附图说明
图1为本发明所述方法的框架图。
具体实施方式
下面选择阿尔兹海默症患者以及正常人40例,结合图1对本发明上述方法进行具体说明。其中,被试者的年龄、性别、受教育年限如下表1所示。本文采用留一法(leave-one-out,LOO)进行交叉验证,即每次预留一个样本作为测试数据,其余样本作为训练样本训练回归模型,一共进行64次交叉验证,最后取64次预测结果的平均值作为最终结果。
表1 受试者信息统计表
本发明的总体流程如图1所示。具体的实施过程包含五个步骤:
步骤一是对所有样本的大脑功能核磁共振图像进行预处理并构建脑连接网络。我们使用Data Processing Assistant for Resting-State fMRI(DPARSF)进行切片时间校正(slice timing),头动校正(motion correlation),和空间正则化(spatialnormalization)等标准预处理流程。接着每个对象的fMRI图像所对应的脑空间根据Automated Anatomical Labeling(AAL)模板被分割为90个脑区(每个脑区对应图中的一个顶点),计算每个脑区的平均时间序列以及脑区间的Pearson相关系数作为脑区间的连接强度。从而获得了大脑的功能性连接网络。值得注意的是,该脑网络是一个对角线上全为1的对称矩阵。
步骤二是对所有样本的大脑结构核磁共振图像进行预处理并提取体素特征。首先,手动将所有被试的T1结构像数据调整到前联合-后联合的平行线。然后,使用统一的分割技术,将所有被试的T1加权像分割为灰质、白质以及脑脊液。再次,将每个被试的灰质图像使用DARTEL(diffeomorphic anatomical registration through exponentiated liealgebra)技术空间标准化到本研究特定的T1加权的模板。DARTEL配准首先从每个被试的图像上计算平均的图谱,然后将每个被试的图谱配准到该图谱上。为了提高配准质量以及得到一个更加准确的不同被试间的配准,配准过程将重复进行,直到产生最优的特定模板。随后再配准到蒙特利尔神经学研究所(MNI)标准空间上。最后,每个被试将产生各自的灰质密度图。为了得到更好的结果,使用10mm的高斯平滑和将每个被试的灰质图像进行平滑。然后按照AAL模板对90个脑区分别提取90个脑区的平均灰质密度。值得注意的是,对于每一个样本来说提取到的结构特征是一个90维的向量。
步骤三是采用弹性网络(elastic net)算法分别对节点特征和网络边特征做特征选择。弹性网络系数可以由求解以下优化问题得到:
其中,输入为代表脑影像特征矩阵,和代表基因型数据(SNP),其中n是样本数量,p是影像特征维数。输出为是脑影像特征对应的系数向量,在得到系数向量w之后将其中数值为0所对应的特征去掉,我们可以得到一个新的更具有代表性的特征表示。同时,系数向量w还包含了每一个特征的权重信息,由这个权重信息我们可以进一步对特征的代表性进行分析。λ1、λ2是L1范数和L2范数的正则化参数,通过交叉验证实现模型参数选择。在实验设置中,将上式中的参数λ1、λ2分别设置为0.7,1.1。
步骤四将步骤三中挑选出的节点特征和网络边特征使用多核支持向量回归机SVR预测基因型。在每个模态上的特征数上都构造一个核矩阵,并通过下式进行融合:
其中表示第m个模态上的核函数,对应着训练样本Xi和Xj的第m个模态上的第i个和第j个特征,μm是第m个模态上的权重向量,并且满足约束式中k(xi,xj)是两个模态数据通过核变换及融合之后的核矩阵,将其作为SVR的输入并建立回归模型来进行测试数据的回归,基因型作为因变量。在实验设置中,将上式中的参数μ1 μ2分别设置为0.3,0.7。其具体过程如算法1描述:
算法1:多核支持向量回归机回归基因型
输入:预处理之后的功能核磁共振数据:预处理之后的结构核磁共振数据:基因型数据:
输出:相关性系数及均方根误差
1:将X和z代入公式(1)计算得到wx
2:将Y和z代入公式(1)计算得到wy
3:选择wx中非零元素对应的特征构造新的矩阵
4:选择wy中非零元素对应的特征构造新的矩阵
5:将代入公式(2)中获得核矩阵K
6:将K作为支持向量回归机的输入来回归z,并计算回归值与真实值之间的相关性系数及均方根误差
经计算,采用弹性网络对两个模态的数据进行选择特征之后再用多核支持向量机回归时相关系数能够达到0.5668(按照相关系数的三级划分标准属于显著性相关),均方根误差为0.4619。
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (5)

1.一种新颖的一种基于多模态脑影像的基因型分析方法,其特征包括如下步骤:
(1)针对多模态脑影像数据的特点,利用功能核磁共振图像(fMRI)来构建脑功能连接网络;
(2)针对多模态脑影像数据的特点,利用结构核磁共振图像(sMRI)提取脑部感兴趣区域(ROI)的灰质密度特征;
(3)采用弹性网络选择ROI的灰质密度特征(节点特征)和构建好的脑功能连接特征(边特征);
(4)使用多核支持向量回归机对前一步骤选出的特征进行基因型数据回归。
2.根据权利要求1所述的一种基于多模态脑影像的基因型分析方法,其特征在于,所述步骤(1)中,从脑影像中构造出脑连接网络。其实现方法包括:
(21)对采集到的功能影像原始数据,我们使用Data Processing Assistant forResting-State fMRI(DPARSF)进行切片时间校正(slice timing),头动校正(motioncorrelation),和空间正则化(spatial normalization)等标准预处理流程;
(22)根据Automated Anatomical Labeling(AAL)模板将每个对象的fMRI图像所对应的脑空间分割为90个脑区(每个脑区对应功能连接网络中的一个顶点);
(23)计算每个脑区的平均时间序列以及脑区间的Pearson相关系数作为脑区间的连接强度(即为功能连接网络的边)。
3.根据权利要求1所述的一种基于多模态脑影像的基因型分析方法,其特征在于,所述步骤(2)中,从脑影像中提取结构的灰质密度特征。其实现方法包括:
(31)手动将所有原始数据的T1结构像数据调整到前联合-后联合的平行线;
(32)使用统一的分割技术,将所有被试的T1加权像分割为灰质、白质以及脑脊液;
(33)将每个被试的灰质图像使用Diffeomorphic anatomical registration throughexponentiated lie algebra(DARTEL)技术空间标准化到本研究特定的T1加权的模板,配准过程将重复进行,直到产生最优的特定模板;
(34)配准到蒙特利尔神经学研究所(MNI)标准空间上;
(35)使用10mm的高斯平滑和将每个被试的灰质图像进行平滑;
(36)按照Automated Anatomical Labeling(AAL)模板分别提取90个脑区的平均灰质密度。
4.根据权利要求1所述的一种基于多模态脑影像的基因型分析方法,其特征在于,所述步骤(3)中,使用多核支持向量回归机对特征进行回归分析,其实现方法包括:
(41)对于脑功能连接特征,首先将每个样本的特征矩阵拉成向量保存其信息;
(42)采用弹性网络优化算法,分别计算每一个节点特征和边特征对应的权重系数,将权重系数为0的特征删除,弹性网络权重系数可以由求解以下优化问题得到:
<mrow> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>w</mi> </munder> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>|</mo> <mo>|</mo> <mi>X</mi> <mi>w</mi> <mo>-</mo> <mi>z</mi> <mo>|</mo> <msubsup> <mo>|</mo> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <mo>|</mo> <mo>|</mo> <mi>w</mi> <mo>|</mo> <msubsup> <mo>|</mo> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> <mo>|</mo> <mo>|</mo> <mi>w</mi> <mo>|</mo> <msub> <mo>|</mo> <mn>1</mn> </msub> </mrow>
其中,输入为代表脑影像特征矩阵(结构或功能),和代表基因型数据(SNP),其中n是样本数量,p是影像特征维数。输出为是脑影像特征对应的系数向量。
5.根据权利要求1所述的一种基于多模态脑影像的基因型分析方法,其特征在于,所述步骤(4)中,采用使用多核支持向量回归机对特征进行回归分析,其实现方法包括:
(51)在每个模态上的特征数上都构造一个核矩阵,并通过下式进行融合:
<mrow> <mi>k</mi> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mi>i</mi> </msup> <mo>,</mo> <msup> <mi>x</mi> <mi>j</mi> </msup> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>2</mn> </munderover> <msub> <mi>&amp;mu;</mi> <mi>m</mi> </msub> <msub> <mi>k</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mi>m</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>x</mi> <mi>m</mi> <mi>j</mi> </msubsup> <mo>)</mo> </mrow> </mrow>
其中表示第m个模态上的核函数,对应着训练样本Xi和Xj的第m个特征模态上的第i个和第j个样本,μm是第m个模态上的权重向量,并且满足约束
(52)k(xi,xj)是两个模态数据通过核变换及融合之后的核矩阵,将其作为支持向量机(SVR)的输入并建立回归模型来进行测试数据的回归。
CN201710530252.9A 2017-06-29 2017-06-29 一种基于多模态脑影像的基因型分析方法 Pending CN107507162A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710530252.9A CN107507162A (zh) 2017-06-29 2017-06-29 一种基于多模态脑影像的基因型分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710530252.9A CN107507162A (zh) 2017-06-29 2017-06-29 一种基于多模态脑影像的基因型分析方法

Publications (1)

Publication Number Publication Date
CN107507162A true CN107507162A (zh) 2017-12-22

Family

ID=60679493

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710530252.9A Pending CN107507162A (zh) 2017-06-29 2017-06-29 一种基于多模态脑影像的基因型分析方法

Country Status (1)

Country Link
CN (1) CN107507162A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108171697A (zh) * 2018-01-05 2018-06-15 北京航空航天大学 一种基于簇的wmh自动提取系统
CN108320797A (zh) * 2018-01-18 2018-07-24 中山大学 一种鼻咽癌数据库及基于所述数据库的综合诊疗决策方法
CN108345769A (zh) * 2018-03-12 2018-07-31 南方医科大学 一种整合图像空间信息的基于体素点全基因组关联分析方法
CN108355250A (zh) * 2018-02-07 2018-08-03 电子科技大学 一种基于杏仁核功能环路介导的重复经颅磁刺激影像导航的方法
CN108897984A (zh) * 2018-05-07 2018-11-27 上海理工大学 基于ct影像组学特征与肺癌基因表达间相关性分析方法
CN109497951A (zh) * 2018-12-21 2019-03-22 中国科学院自动化研究所 基于脑影像的脑结构和功能特征展示系统
CN109767435A (zh) * 2019-01-07 2019-05-17 哈尔滨工程大学 一种基于持续同调技术的阿尔兹海默症脑网络特征提取方法
CN109770932A (zh) * 2019-02-21 2019-05-21 河北工业大学 多模态脑部神经影像特征的处理方法
CN110189302A (zh) * 2019-05-07 2019-08-30 上海联影智能医疗科技有限公司 脑图像分析方法、计算机设备和可读存储介质
CN110838173A (zh) * 2019-11-15 2020-02-25 天津医科大学 基于三维纹理特征的个体化脑共变网络构建方法
US20200337650A1 (en) * 2018-01-15 2020-10-29 Unm Rainforest Innovations System and methods for differentiating mental disorders and predicting medication-class response in patients using resting state functional mri scans
CN113221952A (zh) * 2021-04-13 2021-08-06 山东师范大学 多中心大脑弥散张量成像图分类方法及系统
CN113362944A (zh) * 2021-05-14 2021-09-07 西安交通大学 一种基于机器学习的功能性消化不良和针刺疗效的预测

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103093087A (zh) * 2013-01-05 2013-05-08 电子科技大学 一种基于多任务学习的多模态脑网络特征融合方法
CN103646183A (zh) * 2013-12-24 2014-03-19 张擎 一种基于人工神经网络和多模态mri的阿尔茨海默病智能判别分析方法
CN104715260A (zh) * 2015-03-05 2015-06-17 中南大学 基于rls-elm的多模态融合图像分类方法
CN105046709A (zh) * 2015-07-14 2015-11-11 华南理工大学 一种基于核磁共振影像的脑龄分析方法
CN106127769A (zh) * 2016-06-22 2016-11-16 南京航空航天大学 一种基于脑连接网络的脑龄预测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103093087A (zh) * 2013-01-05 2013-05-08 电子科技大学 一种基于多任务学习的多模态脑网络特征融合方法
CN103646183A (zh) * 2013-12-24 2014-03-19 张擎 一种基于人工神经网络和多模态mri的阿尔茨海默病智能判别分析方法
CN104715260A (zh) * 2015-03-05 2015-06-17 中南大学 基于rls-elm的多模态融合图像分类方法
CN105046709A (zh) * 2015-07-14 2015-11-11 华南理工大学 一种基于核磁共振影像的脑龄分析方法
CN106127769A (zh) * 2016-06-22 2016-11-16 南京航空航天大学 一种基于脑连接网络的脑龄预测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BO CHENG ET AL.: "Multimodal Multi-label Transfer Learning for Early Diagnosis of Alzheimer’s Disease", 《INTERNATIONAL WORKSHOP ON MACHINE LEARNING IN MEDICAL IMAGING》 *
CHONG-YAW WEE ET AL.: "Identification of MCI individuals using structural and functional connectivity networks", 《NEUROIMAGE》 *
DAOQIANG ZHANG ET AL.: "Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer"s disease", 《NEUROIMAGE》 *
XIAOKE HAO ET AL.: "DIAGNOSIS-GUIDED METHOD FOR IDENTIFYING MULTI-MODALITY NEUROIMAGING BIOMARKERS ASSOCIATED WITH GENETIC RISK FACTORS IN ALZHEIMER’S DISEASE", 《PACIFIC SYMPOSIUM ON BIOCOMPUTING》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108171697A (zh) * 2018-01-05 2018-06-15 北京航空航天大学 一种基于簇的wmh自动提取系统
CN108171697B (zh) * 2018-01-05 2022-03-01 北京航空航天大学 一种基于簇的wmh自动提取系统
US20200337650A1 (en) * 2018-01-15 2020-10-29 Unm Rainforest Innovations System and methods for differentiating mental disorders and predicting medication-class response in patients using resting state functional mri scans
CN108320797A (zh) * 2018-01-18 2018-07-24 中山大学 一种鼻咽癌数据库及基于所述数据库的综合诊疗决策方法
CN108355250A (zh) * 2018-02-07 2018-08-03 电子科技大学 一种基于杏仁核功能环路介导的重复经颅磁刺激影像导航的方法
CN108355250B (zh) * 2018-02-07 2021-08-27 电子科技大学 一种基于杏仁核功能环路介导的重复经颅磁刺激影像导航的方法
CN108345769A (zh) * 2018-03-12 2018-07-31 南方医科大学 一种整合图像空间信息的基于体素点全基因组关联分析方法
CN108897984A (zh) * 2018-05-07 2018-11-27 上海理工大学 基于ct影像组学特征与肺癌基因表达间相关性分析方法
CN109497951A (zh) * 2018-12-21 2019-03-22 中国科学院自动化研究所 基于脑影像的脑结构和功能特征展示系统
CN109767435A (zh) * 2019-01-07 2019-05-17 哈尔滨工程大学 一种基于持续同调技术的阿尔兹海默症脑网络特征提取方法
CN109770932A (zh) * 2019-02-21 2019-05-21 河北工业大学 多模态脑部神经影像特征的处理方法
CN109770932B (zh) * 2019-02-21 2022-04-29 河北工业大学 多模态脑部神经影像特征的处理方法
CN110189302A (zh) * 2019-05-07 2019-08-30 上海联影智能医疗科技有限公司 脑图像分析方法、计算机设备和可读存储介质
CN110838173A (zh) * 2019-11-15 2020-02-25 天津医科大学 基于三维纹理特征的个体化脑共变网络构建方法
CN113221952A (zh) * 2021-04-13 2021-08-06 山东师范大学 多中心大脑弥散张量成像图分类方法及系统
CN113221952B (zh) * 2021-04-13 2023-09-15 山东师范大学 多中心大脑弥散张量成像图分类方法及系统
CN113362944A (zh) * 2021-05-14 2021-09-07 西安交通大学 一种基于机器学习的功能性消化不良和针刺疗效的预测
CN113362944B (zh) * 2021-05-14 2023-06-30 西安交通大学 一种基于机器学习的功能性消化不良和针刺疗效预测模型的评估方法

Similar Documents

Publication Publication Date Title
CN107507162A (zh) 一种基于多模态脑影像的基因型分析方法
CN111488914B (zh) 一种基于多任务学习的阿尔茨海默症分类及预测系统
CN107944490B (zh) 一种基于半多模态融合特征约简框架的图像分类方法
CN109528197B (zh) 基于脑功能图谱进行精神疾病的个体化预测方法和系统
CN103699904B (zh) 多序列核磁共振影像的图像计算机辅助判断方法
CN104484886B (zh) 一种mr图像的分割方法及装置
CN105760874A (zh) 面向尘肺的ct图像处理系统及其ct图像处理方法
CN113177943B (zh) 一种脑卒中ct影像分割方法
WO2021103287A1 (zh) 基于弱监督多任务矩阵补全的脑疾病进程预测方法及系统
Wang et al. SOSPCNN: Structurally optimized stochastic pooling convolutional neural network for tetralogy of fallot recognition
CN108345903A (zh) 一种基于模态距离约束的多模态融合图像分类方法
CN111681230A (zh) 脑白质高信号评分系统及其评分方法
Pan et al. Multilevel feature representation of FDG-PET brain images for diagnosing Alzheimer's disease
Štern et al. Multi-factorial age estimation from skeletal and dental MRI volumes
Wu et al. Auto-contouring via automatic anatomy recognition of organs at risk in head and neck cancer on CT images
CN113627564A (zh) 基于深度学习的ct医学影像处理模型训练方法及诊疗系统
CN112233805B (zh) 基于多图谱神经影像学数据进行生物标志物的挖掘方法
CN113255734A (zh) 一种基于自监督学习和迁移学习的抑郁症分类方法
CN116956138A (zh) 一种基于多模态学习的影像基因融合分类方法
Paniagua et al. Combined SPHARM-PDM and entropy-based particle systems shape analysis framework
CN117079328A (zh) 一种基于多尺度特征交叉融合和对比分离多头注意力的面部表情识别方法
Mao et al. Bone age assessment method based on fine-grained image classification using multiple regions of interest
Wang et al. Diagnosis of early mild cognitive impairment based on associated high-order functional connection network generated by multi-modal MRI
Pallawi et al. Study of Alzheimer’s disease brain impairment and methods for its early diagnosis: a comprehensive survey
CN114187962A (zh) 一种基于联合结构约束和不完整多模态数据非线性关联分析方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171222