CN107500787A - 一种微波冶金窑车用莫来石‑氧氮化硅复合耐火材料 - Google Patents

一种微波冶金窑车用莫来石‑氧氮化硅复合耐火材料 Download PDF

Info

Publication number
CN107500787A
CN107500787A CN201710736868.1A CN201710736868A CN107500787A CN 107500787 A CN107500787 A CN 107500787A CN 201710736868 A CN201710736868 A CN 201710736868A CN 107500787 A CN107500787 A CN 107500787A
Authority
CN
China
Prior art keywords
mullite
silicon oxynitride
powder
parts
composite refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710736868.1A
Other languages
English (en)
Other versions
CN107500787B (zh
Inventor
王玉霞
徐恩霞
董萌蕾
刘萍
葛铁柱
李婕
薛娟娟
王建武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinosteel luonai Technology Co., Ltd
Original Assignee
Sinosteel Refractory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinosteel Refractory Co Ltd filed Critical Sinosteel Refractory Co Ltd
Priority to CN201710736868.1A priority Critical patent/CN107500787B/zh
Publication of CN107500787A publication Critical patent/CN107500787A/zh
Application granted granted Critical
Publication of CN107500787B publication Critical patent/CN107500787B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种低电磁波吸收率,优异的透波性,高温体积稳定性好,抗热震性好,抗侵蚀优良的微波冶金窑车用莫来石‑氮氧化硅复合耐火材料及其制备方法。原始料为:莫来石骨料和细粉、SiO2微粉、Si粉,采用压制成型方法成型,在N2气氛下通过原位氮化反应烧结制备得到。本发明所述的莫来石‑氧氮化硅复合耐火材料的主晶相为莫来石和氧氮化硅,同时在基质中有少量的β‑Si3N4、β‑Sialon和O′‑Sialon,体积密度在2.5‑3.0g/cm3之间,常温耐压强度:100‑130MPa,常温抗折强度:15‑30MPa,1400℃时热态抗折强度在10‑20MPa左右,具有良好的透波性。

Description

一种微波冶金窑车用莫来石-氧氮化硅复合耐火材料
技术领域
本发明涉及一种微波冶金窑车用耐火材料,尤其涉及一种通过添加Si粉和Si02粉原位反应制备莫来石-氧氮化硅复合耐火材料及其制备方法。
背景技术
随着科技的不断发展,环境保护在生活、生产中得到越来越高的重视。传统重工业特别是金属冶炼等高温工业,迫切需要改变生产方式以适应国家发展要求。微波加热技术的出现使得高温加热有了更节能环保的加热方式,其中用微波加热的方式来冶炼金属被称为绿色冶金,是近年来兴起的新技术。
由于微波冶金技术的出现,微波冶金窑车用耐火材料主要作为承载物料的窑车载体使用,物料在窑车上从窑炉进入,经过微波冶炼后从窑尾出料,由于微波加热的快速升温和出料时窑车直接在室温下卸料,所以对窑车用耐火材料有较高的性能要求:(1)低电磁波吸收率和优异的透波性:一是防止在电磁波作用下耐火材料自身吸收较多的电磁能造成温度过高而对材料造成破坏,二是可以节约能源,使有限的电磁能被冶金物料所吸收,缩短冶炼时间;(2)优良的抗热震性:在微波加热快速升温过程中能抵抗较大的热应力对材料的冲击;(3)良好的高温力学性能:在微波冶金反应过程中炉衬材料要承受各种结构应力机械作用;(4)抗侵蚀性优良:耐火材料在高温下长时间与冶金物料接触,容易与冶金物料发生化学反应导致耐火材料结构被破坏。
传统的耐火材料并不能较好满足微波冶金窑车的要求,如纯莫来石质材料,抗侵蚀性较差,材料容易与冶金熔渣反应,导致材料的损坏等。
然而,氧氮化硅具有优良的透波性、温稳定性及抗侵蚀性,都具备作为微波冶金材料的潜力。因此使用氮氧化硅复合可以提高耐火材料在微波冶金窑车上的使用性能。直接用氮氧化硅和莫来石烧成制备莫来石-氧氮化硅复合材料虽然可以保证氧氮化硅的稳定性,但由于氧氮化硅与莫来石都属于高熔点物相,不仅需要较高的烧成温度或加助烧剂,同时也不利于材料更好的复合,对复合材料的高温性能会有一定的影响。
目前还没有针对微波冶金用耐火材料系统的研究,如果能够研发制备出符合微波冶金窑车使用环境的耐火材料,不仅可以增加窑车的使用寿命,提高冶金效率,降低生产成本,也对地球上越来越少的资源较为合理的利用,减少资源的浪费和消耗。
发明内容
为解决目前耐火材料不能满足微波冶金窑车对其性能的要求,本发明提供一种低电磁波吸收率,优异的透波性,高温体积稳定性好,抗热震性好,抗侵蚀优良的微波冶金窑车用莫来石-氮氧化硅复合耐火材料及其制备方法。
为了实现上述目的,本发明采用的技术方案为:
一种莫来石-氧氮化硅复合耐火材料,原始料为:莫来石骨料和细粉、SiO2微粉、Si粉,采用压制成型方法成型,在N2气氛下通过原位氮化反应烧结制备得到。
本发明原始料的加入重量份数为:莫来石骨料65-70份、莫来石细粉10-20份、SiO2微粉2-5份、Si粉10-15份,结合剂加入量为原始料总重量的3-6%。
所述莫来石骨料为电熔莫来石或烧结莫来石的一种或两种,粒度≤3mm;
所述莫来石细粉为电熔莫来石或烧结莫来石中的一种或两种,粒度≤0.075mm;
所述SiO2微粉为超细天然石英砂粉、硅微粉和气相氧化硅微粉中的一种或两种以上;纯度≥98%,粒径小于10μm。
其中SiO2粉的粒度要求是为了:SiO2粒度达到了微粉级,SiO2粉可充分渗入原料的缝隙中,可以使最终产品的主晶相为原位生成的氮氧化硅晶相,因为生成的氮氧化硅晶相具有低电磁波吸收率和优异的透波性。
所述Si粉纯度≥99%,粒度≤0.045mm;
其中Si粉在烧成过程中与氮气反应原位生成氮化硅、氧氮化硅等物相,促进了材料的烧结,提高了复合材料热态强度和透波性的同时,增加了材料的致密度提高抗侵蚀性。Si粉粒度≤0.045mm;目的是为了让硅粉更容易在制备温度下完全氮化形成氮氧化硅。
其中加入的莫来石骨料和细粉是材料的主晶相起骨架作用,基质中的SiO2微粉和Si粉在高温流动氮气中原位生成Si2N2O并与莫来石骨料结合在一起,由于Si粉的过剩及部分超微粉莫来石的存在,基质中除了Si2N2O外还有部分Si3N4和Sialon相生成。Si2N2O等非氧化物晶相呈柱状生长在莫来石骨料表面,不仅提高了最终产品的材料强度及透波性,而且缓冲了材料内部热应力,提高了复合材料的韧性,有利于热震稳定性提高和膨胀系数的降低。
所述结合剂为糊精、聚乙烯醇、羧甲基纤维素、酚醛树脂、纸浆废液中的一种或几种复合。
本发明的这种莫来石-氧氮化硅复合耐火材料的制备方法为:
步骤一、先将莫来石细粉10-20份、SiO2微粉2-5份、Si粉10-15份,放入球磨机中按照刚玉球和物料比1:1,在转速为1000~1200rpm下,研磨120-180分钟,得到预混合细粉;
步骤二、将莫来石骨料65-70份倒入混碾机中,然后加入3-6wt%结合剂,打开混碾机搅拌5-10min,使结合剂均匀粘附在莫来石颗粒表面与其润湿,再加入步骤一得到的预混合细粉,搅拌10-20min,使物料充分混合均匀;
步骤三、将混合后的物料装入密封袋中在室温下空气湿度为50-60%的空气气氛中置放12-24h困料;
步骤四、困料后,将混合均匀的物料用液压机在120MPa压力下制成砖坯,将成型后的砖坯在120℃干燥箱中干燥24小时;
步骤五、将干燥后的试样称重后运入氮化炉中,密封炉门通入氮气,在微正压流动氮气气氛下以5-8℃/min的升温速率升温至1100℃,保温2小时后再以1-5℃/min速率升温至1450℃并保温24小时,然后随炉冷却至室温,即可得到莫来石-氧氮化硅复合耐火材料。
其中步骤一先把莫来石细粉、SiO2粉和Si粉进行预混合,目的是为了SiO2粉,Si粉和莫来石细粉能均匀混合,使氮化后形成的短柱状晶体氧氮化硅均匀分布,增强材料的强度和透波性。
其中步骤三目的是为了使其结合剂中的水分均匀分布,改善坯料的成型性能,使砖坯骨料和细粉均匀分布,不产生偏析,从而使最终产品具有低电磁波吸收率和优异的透波性。
其中步骤五中1100℃下保温因为在此温度下氮化反应开始,1450℃长时间保温有利于更多的氮氧化硅生成和材料的进一步烧结。
本发明通过莫来石为基料,引入一定量的氧化硅微粉和硅粉、原料的优化组合、合理的粒度配比、采用高温氮气气氛下原位氮化反应一步烧成制备出莫来石--氮氧化硅复合耐火材料,该材料的主晶相莫来石和氮氧化硅,次晶相为β-Si3N4、β-Sialon、O′-Sialon等非氧化物结合相,因此具有优异的透波性,良好的高温体积稳定性、抗热震性和抗侵蚀性能。
本发明采用了原位反应烧成制备莫来石-氮氧化硅复合材料,而不采用直接在原料加入氮氧化硅,这是因为氮氧化硅与莫来石都属于高熔点物相,需要较高的烧成温度或加助烧剂,同时也不利于材料更好的复合,对复合材料的高温性能会有较大的影响。本发明采用了原位反应烧成制备莫来石-氮氧化硅复合材料,不仅可以降低烧结温度,原位生成的氮氧化硅可以更好与莫来石结合,同时制备过程中生成的少量的β-Si3N4及Sialon固溶体,这些生成物都对材料的透波性,热膨胀及强度有较大的提高。
本发明选用了相对便宜的氧化硅微粉和Si粉作为原料,与用氮氧化硅粉相比,在制得性能良好的莫来石-氮氧化硅复合耐火材料的同时,显著降低了材料的生产成本。
由于本发明所用的材质主要为莫来石,本发明作为窑车的耐火材料,具有介电常数小,透波性好,更适用于对透波要求较高的窑炉和部位。
本发明为了实现氧氮化硅与耐火材料的复合,克服现有氧化物结合莫来石耐火材料性能的不足,进一步提升非氧化物结合氧化物材料的性能,开拓了其在微波冶金新领域的应用。本发明以氧化硅微粉和硅粉的引入,氮化处理后原位生成高温结合相氧氮化硅及少量β-Sialon和O′Sialon,制备出一种成本较低但性能优良的氧氮化硅结合莫来石复合耐火材料。
本发明通过引入一定量的氧化硅微粉和硅粉、原料的优化组合、合理的粒度配比、采用原位氮化反应一步烧成制备出了热震稳定性好、透波性好、抗侵蚀优良、生产成本低的莫来石-氧氮化硅复合耐火材料。
本发明所得产品为非氧化物与氧化物的复合材料,通过莫来石-氧氮化硅复合耐火材料中断口形貌图,可以看到短柱状的氧氮化硅与长柱状的莫来石结合良好,在材料内部起到缓冲应力的作用,提高了复合材料的韧性,有利于材料热震稳定性提升和膨胀系数的降低,氧氮化硅、β-Si3N4β-Sialon与O′-Sialon物相的低介电常数都有利于材料透波性的提高。
本发明所述的莫来石-氧氮化硅复合-耐火材料的主晶相为莫来石和氧氮化硅,同时在基质中有少量的β- Si3N4、β-Sialon和O′-Sialon,体积密度在2.5-3.0g/cm3之间,常温耐压强度:100-130MPa,常温抗折强度:15-30MPa,1400℃时热态抗折强度在10-20MPa左右,按照YB/T376.1-1995标准1100℃-水冷次数为10-20次,常温介电常数:5-7,介电损耗角正切:0.0014-0.0017,具有良好的透波性。
具体实施方式
下面举例说明本发明的实施及特点,但本发明不局限于下述实施例。
实施例1:
本发明的这种莫来石-氧氮化硅复合耐火材料的制备方法为:
步骤一、先将莫来石细粉10份、SiO2微粉5份、SiO2粉粒径1-5μm ,Si粉15份,放入球磨机中按照刚玉球和物料比1:1,在转速为1000~1200rpm下,研磨120-180分钟,得到预混合细粉;
步骤二、将莫来石骨料70份倒入混碾机中,然后加入3wt%结合剂,打开混碾机搅拌5-10min,使结合剂均匀粘附在莫来石颗粒表面与其润湿,再加入步骤一得到的预混合细粉,搅拌10-20min,使物料充分混合均匀;
步骤三、将混合后的物料装入密封袋中在室温下空气湿度为50-60%的空气气氛中置放12-24h困料;
步骤四、困料后,将混合均匀的物料用液压机在120MPa压力下制成砖坯,将成型后的砖坯在120℃干燥箱中干燥24小时;
步骤五、将干燥后的试样称重后运入氮化炉中,密封炉门通入氮气,在微正压流动氮气气氛下以5-8℃/min的升温速率升温至1100℃,保温2小时后再以1-5℃/min速率升温至1450℃并保温24小时,然后随炉冷却至室温,即可得到莫来石-氧氮化硅复合耐火材料。
所得产品的性能指标为:显气孔率:17.9%,体积密度:2.59g/cm3,常温耐压强度:110.30MPa,常温抗折强度:23.66MPa,1400℃时热态抗折强度:13.95MPa左右,按照YB/T376.1-1995标准1100℃-水冷次数:14次,常温介电常数:5.64,介电损耗角正切:0.0015。
实施例2:
本发明的这种莫来石-氧氮化硅复合耐火材料的制备方法为:
步骤一、先将莫来石细粉20份、SiO2微粉2份、SiO2粉粒径2-8μm ,Si粉10份,放入球磨机中按照刚玉球和物料比1:1,在转速为1000~1200rpm下,研磨120-180分钟,得到预混合细粉;
步骤二、将莫来石骨料68份倒入混碾机中,然后加入3-6wt%结合剂,打开混碾机搅拌5-10min,使结合剂均匀粘附在莫来石颗粒表面与其润湿,再加入步骤一得到的预混合细粉,搅拌10-20min,使物料充分混合均匀;
步骤三、将混合后的物料装入密封袋中在室温下空气湿度为50-60%的空气气氛中置放12-24h困料;
步骤四、困料后,将混合均匀的物料用液压机在120MPa压力下制成砖坯,将成型后的砖坯在120℃干燥箱中干燥24小时;
步骤五、将干燥后的试样称重后运入氮化炉中,密封炉门通入氮气,在微正压流动氮气气氛下以5-8℃/min的升温速率升温至1100℃,保温2小时后再以1-5℃/min速率升温至1450℃并保温24小时,然后随炉冷却至室温,即可得到莫来石-氧氮化硅复合耐火材料。
所得产品的性能指标为:显气孔率:16.9%,体积密度:2.65g/cm3,常温耐压强度:125.90MPa,常温抗折强度:24.33MPa,1400℃时热态抗折强度:18.74MPa左右,按照YB/T376.1-1995标准1100℃-水冷次数:16次,常温介电常数:6.47,介电损耗角正切:0.0014。
实施例3:
本发明的这种莫来石-氧氮化硅复合耐火材料的制备方法为:
步骤一、先将莫来石细粉20份、SiO2微粉3份、SiO2粉粒径6-10μm ,Si粉12份,放入球磨机中按照刚玉球和物料比1:1,在转速为1000~1200rpm下,研磨120-180分钟,得到预混合细粉;
步骤二、将莫来石骨料65份倒入混碾机中,然后加入3-6wt%结合剂,打开混碾机搅拌5-10min,使结合剂均匀粘附在莫来石颗粒表面与其润湿,再加入步骤一得到的预混合细粉,搅拌10-20min,使物料充分混合均匀;
步骤三、将混合后的物料装入密封袋中在室温下空气湿度为50-60%的空气气氛中置放12-24h困料;
步骤四、困料后,将混合均匀的物料用液压机在120MPa压力下制成砖坯,将成型后的砖坯在120℃干燥箱中干燥48小时;
步骤五、将干燥后的试样称重后运入氮化炉中,密封炉门通入氮气,在微正压流动氮气气氛下以5-8℃/min的升温速率升温至1100℃,保温2小时后再以1-5℃/min速率升温至1450℃并保温24小时,然后随炉冷却至室温,即可得到莫来石-氧氮化硅复合耐火材料。
所得产品的性能指标为:显气孔率:16.7%,体积密度:2.73g/cm3,常温耐压强度:107.5MPa,常温抗折强度:20.3MPa,1400℃时热态抗折强度:12.51MPa左右,按照YB/T376.1-1995标准1100℃-水冷次数:16次,常温介电常数:6.06,介电损耗角正切:0.0017。

Claims (7)

1.一种微波冶金窑车用莫来石-氧氮化硅复合耐火材料,其特征在于: 原始料的加入重量份数为:莫来石骨料65-70份、莫来石细粉10-20份、SiO2微粉2-5份、Si粉10-15份,结合剂加入量为原始料总重量的3-6%。
2.根据权利要求1所述的一种微波冶金窑车用莫来石-氧氮化硅复合耐火材料,其特征在于:莫来石骨料为电熔莫来石或烧结莫来石的一种或两种,粒度≤3mm。
3.根据权利要求1所述的一种微波冶金窑车用莫来石-氧氮化硅复合耐火材料,其特征在于:莫来石细粉为电熔莫来石或烧结莫来石中的一种或两种,粒度≤0.075mm。
4.根据权利要求1所述的一种微波冶金窑车用莫来石-氧氮化硅复合耐火材料,其特征在于:SiO2微粉为超细天然石英砂粉、硅微粉和气相氧化硅微粉中的一种或两种以上;纯度≥98%,粒径小于10μm。
5.根据权利要求1所述的一种微波冶金窑车用莫来石-氧氮化硅复合耐火材料,其特征在于:Si粉纯度≥99%,粒度≤0.045mm。
6.根据权利要求1所述的一种微波冶金窑车用莫来石-氧氮化硅复合耐火材料,其特征在于:结合剂为糊精、聚乙烯醇、羧甲基纤维素、酚醛树脂、纸浆废液中的一种或几种复合。
7.根据权利要求1所述的一种微波冶金窑车用莫来石-氧氮化硅复合耐火材料的制备方法,其特征在于:步骤一、先将莫来石细粉10-20份、SiO2微粉2-5份、Si粉10-15份,放入球磨机中按照刚玉球和物料比1:1,在转速为1000~1200rpm下,研磨120-180分钟,得到预混合细粉;步骤二、将莫来石骨料65-70份倒入混碾机中,然后加入3-6wt%结合剂,打开混碾机搅拌5-10min,使结合剂均匀粘附在莫来石颗粒表面与其润湿,再加入步骤一得到的预混合细粉,搅拌10-20min,使物料充分混合均匀;步骤三、将混合后的物料装入密封袋中在室温下空气湿度为50-60%的空气气氛中置放12-24h困料;步骤四、困料后,将混合均匀的物料用液压机在120MPa压力下制成砖坯,将成型后的砖坯在120℃干燥箱中干燥24小时;步骤五、将干燥后的试样称重后运入氮化炉中,密封炉门通入氮气,在微正压流动氮气气氛下以5-8℃/min的升温速率升温至1100℃,保温2小时后再以1-5℃/min速率升温至1450℃并保温24小时,然后随炉冷却至室温,即可得到莫来石-氧氮化硅复合耐火材料。
CN201710736868.1A 2017-08-24 2017-08-24 一种微波冶金窑车用莫来石-氧氮化硅复合耐火材料 Active CN107500787B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710736868.1A CN107500787B (zh) 2017-08-24 2017-08-24 一种微波冶金窑车用莫来石-氧氮化硅复合耐火材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710736868.1A CN107500787B (zh) 2017-08-24 2017-08-24 一种微波冶金窑车用莫来石-氧氮化硅复合耐火材料

Publications (2)

Publication Number Publication Date
CN107500787A true CN107500787A (zh) 2017-12-22
CN107500787B CN107500787B (zh) 2020-06-16

Family

ID=60692738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710736868.1A Active CN107500787B (zh) 2017-08-24 2017-08-24 一种微波冶金窑车用莫来石-氧氮化硅复合耐火材料

Country Status (1)

Country Link
CN (1) CN107500787B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108249922A (zh) * 2018-02-12 2018-07-06 陕西盛华冶化有限公司 一种冶金用匣钵及其制备方法
CN111069579A (zh) * 2019-12-31 2020-04-28 浙江红鹰铭德高温材料科技有限公司 长寿命中间包整体冲击桶、配方及其制作工艺
CN112010661A (zh) * 2020-09-03 2020-12-01 深圳市飞粤新材料科技有限公司 一种锂电池正极材料用匣钵及其制备方法
CN114455941A (zh) * 2022-01-19 2022-05-10 北京科技大学 一种高炉用硅-刚玉-高钛莫来石复合耐火材料及其制备方法
CN116041068A (zh) * 2023-03-07 2023-05-02 宜兴金君耐火炉料有限公司 一种低氧铜杆冶炼熔炉用的抗氧化氧氮化硅结合碳化硅砖

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103896610A (zh) * 2014-03-11 2014-07-02 郑州大学 一种氧氮化硅结合高铝-碳化硅预制件的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103896610A (zh) * 2014-03-11 2014-07-02 郑州大学 一种氧氮化硅结合高铝-碳化硅预制件的制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108249922A (zh) * 2018-02-12 2018-07-06 陕西盛华冶化有限公司 一种冶金用匣钵及其制备方法
CN108249922B (zh) * 2018-02-12 2020-12-29 陕西盛华冶化有限公司 一种冶金用匣钵及其制备方法
CN111069579A (zh) * 2019-12-31 2020-04-28 浙江红鹰铭德高温材料科技有限公司 长寿命中间包整体冲击桶、配方及其制作工艺
CN111069579B (zh) * 2019-12-31 2021-10-15 浙江红鹰铭德高温材料科技有限公司 长寿命中间包整体冲击桶、配方及其制作工艺
CN112010661A (zh) * 2020-09-03 2020-12-01 深圳市飞粤新材料科技有限公司 一种锂电池正极材料用匣钵及其制备方法
CN114455941A (zh) * 2022-01-19 2022-05-10 北京科技大学 一种高炉用硅-刚玉-高钛莫来石复合耐火材料及其制备方法
CN114455941B (zh) * 2022-01-19 2022-12-13 北京科技大学 一种高炉用硅-刚玉-高钛莫来石复合耐火材料及其制备方法
CN116041068A (zh) * 2023-03-07 2023-05-02 宜兴金君耐火炉料有限公司 一种低氧铜杆冶炼熔炉用的抗氧化氧氮化硅结合碳化硅砖
CN116041068B (zh) * 2023-03-07 2023-12-08 宜兴金君耐火炉料有限公司 一种低氧铜杆冶炼熔炉用的抗氧化氧氮化硅结合碳化硅砖

Also Published As

Publication number Publication date
CN107500787B (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
CN107500787A (zh) 一种微波冶金窑车用莫来石‑氧氮化硅复合耐火材料
CN107698266B (zh) 热风炉管道密封料及其制备方法
CN106116596B (zh) 一种抗热震堇青石耐火窑具的制备方法
CN104058754B (zh) β-SiC/Si2N2O复相结合SiC窑具及制备方法
CN103755363A (zh) 一种轻质硅莫复合砖及其制备方法
CN107311634A (zh) 一种氮化物结合三明治承烧板及其制备方法
CN108017404A (zh) 一种莫来石结合碳化硅复相陶瓷材料的制备方法
CN107337462A (zh) 一种烧结耐火砖及其制备方法
CN107162597A (zh) 一种浇注成型氮化硅结合碳化硅制品的配方及其制作方法
CN104844233A (zh) 一种燃烧炉用的特种耐火材料及其制备方法
CN108249922A (zh) 一种冶金用匣钵及其制备方法
CN110683851A (zh) 环保型酸性炉衬干式振动料
CN1748905A (zh) 纤维复合型保温冒口套
CN107140996A (zh) 一种碳化硅‑石墨升液管及制备方法
CN102219530A (zh) 一种硅莫砖及其制备方法
CN106830955A (zh) 一种微波干燥制备不烧改性高纯镁铝尖晶石复合砖的方法
CN101456748B (zh) 软磁铁氧体烧结窑用推板及其制造方法
CN107417287A (zh) 一种微波冶金窑车用刚玉‑氧氮化硅复合耐火材料
CN107459342A (zh) 一种微波冶金窑车用方镁石‑氧氮化硅复合耐火材料
CN101492302A (zh) 机立窑用复合砖及其制备方法
CN105272297A (zh) 一种Fe-Sialon-刚玉复合耐火材料及其制备方法
CN104478442A (zh) 一种水煤浆气化炉炉顶堵口砖及其制备工艺
CN103613392A (zh) 一种rh真空炉内衬耐火材料及其制备方法与rh真空炉
CN103387400B (zh) 一种水煤浆加压气化炉用背衬砖及其制备方法
CN110156481A (zh) 利用熔模铸造废砂制备的耐火材料及耐火材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 471039 No. 1, Xiyuan Road, Jianxi District, Henan, Luoyang

Applicant after: Sinosteel luonai New Material Technology Co., Ltd

Address before: 471039 No. 1, Xiyuan Road, Jianxi District, Henan, Luoyang

Applicant before: SINOSTEEL REFRACTORY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 471039 No. 1, Xiyuan Road, Jianxi District, Henan, Luoyang

Patentee after: Sinosteel luonai Technology Co., Ltd

Address before: 471039 No. 1, Xiyuan Road, Jianxi District, Henan, Luoyang

Patentee before: Sinosteel luonai New Material Technology Co.,Ltd.