CN107488839B - (Fe-Co)-BaTiO3芯-管复相多铁材料的制备方法 - Google Patents

(Fe-Co)-BaTiO3芯-管复相多铁材料的制备方法 Download PDF

Info

Publication number
CN107488839B
CN107488839B CN201710727983.2A CN201710727983A CN107488839B CN 107488839 B CN107488839 B CN 107488839B CN 201710727983 A CN201710727983 A CN 201710727983A CN 107488839 B CN107488839 B CN 107488839B
Authority
CN
China
Prior art keywords
batio
core
nanotube
aao template
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710727983.2A
Other languages
English (en)
Other versions
CN107488839A (zh
Inventor
杨薇
郭晶
崔春翔
康立丛
张袁袁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN201710727983.2A priority Critical patent/CN107488839B/zh
Publication of CN107488839A publication Critical patent/CN107488839A/zh
Application granted granted Critical
Publication of CN107488839B publication Critical patent/CN107488839B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1291Process of deposition of the inorganic material by heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Electrochemistry (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明为一种(Fe‑Co)‑BaTiO3芯‑管复相多铁材料的制备方法。该方法采用模板法‑溶胶凝胶法‑直流电化学沉积法相结合技术,在AAO模板上沉积Fe‑Co纳米线之前,首先以AAO模板的孔径为依附体制备了BaTiO3纳米管,然后再沉积Fe‑Co纳米线,其中BaTiO3纳米管为铁电相,Fe‑Co纳米芯为铁磁相,利用铁电相的压电效应和铁磁相的压磁效应,从而制得(Fe‑Co)‑BaTiO3芯‑管复相多铁材料。本发明工艺简单,成本低且成功率高,产品孔结构参数即孔的直径、长度及孔间距可调,烧结质量高,具有良好的铁电性和铁磁性,适用于作为新型的复相多铁材料。

Description

(Fe-Co)-BaTiO3芯-管复相多铁材料的制备方法
技术领域
本发明的技术方案涉及有复相多铁材料的制造,具体地说是Fe3Co7-BaTiO3、FeCo-BaTiO3、Fe0.28Co0.72-BaTiO3、Fe7Co3-BaTiO3芯-管复相多铁材料的制备方法。
背景技术
随着科技的快速发展、信息技术的不断更新,性能单一的材料己经很难满足当前对新型器件微型化和多功能化的要求。多铁材料作为近几年快速发展的磁电功能材料,是集铁磁性、铁电性及磁电耦合特性于一体的共存体。其特有的磁电耦合效应即电场不仅诱导电极化还能引发磁相变,同理磁场不仅诱导磁化还能引发电相变,这种新的效应无疑为新一代功能器件的设计又多提供一个新的自由度,同时还拓宽了多铁性材料的应用范围。单相多铁材料由于 d轨道电子填充方式的矛盾导致单相多铁材料在自然界中很少存在,且利用己知的单相多铁材料并未生产出具备实际应用价值的设备,与此同时市场迫切需求可在一种元件中实现多种功能的实用型磁电材料的出现,故到目前为止压电材料与磁致伸缩材料组成的复相多铁材料被广泛的研究。
JunwuNiea将两相单体通过机械球磨的物理方法混合,达到两相均匀分布,之后压片,烧结致密化,从而制备出了CoFe2O4/BaTiO3陶瓷复合体系。这种复合方法存在两相颗粒较大、界面复合较差的缺点,又由于铁磁相被铁电相隔离开,导致材料的铁磁性变差,矫顽力大大下降。(JunwuNiea,Guoyue Xu,et al.Strongmagnetoelectric coupling inCoFe2O4–BaTiO3 composites preparedby molten-salt synthesis method.MaterialsChemistry andPhysics 115(2009) 400–403)。V.Corra-Flores等人采用的方法为目前CoFe2O4/BaTiO3核壳结构的主流制备方法,首先通过化学共沉淀法制备了CoFe2O4颗粒并在表面包覆油酸,获得CoFe2O4磁流体,然后在溶胶凝胶合成BaTiO3粉体的溶胶阶段,加入CoFe2O4磁流体,磁流体在BaTiO3溶胶中可均匀分散。将凝胶干燥后锻烧就制备出了具有核壳结构的CoFe2O4为核,BaTiO3为壳的 CoFe2O4/BaTiO3复合粉体。该种方法合成路线较为复杂,且在后期固相烧结中容易出现两相之间的化学反应,从而降低了磁电耦合效应。因此开发新型结构的磁电复合材料,对于拓展复相多铁材料的种类具有重要意义。模板法-溶胶凝胶法-直流电化学沉积法相结合的制备方法,不需要烧结即可将铁磁性和铁电相两相结合,这样两相之间不会发生化学反应。又由于的芯-管式铁电/铁磁纳米复合材料包覆性良好,Fe-Co铁磁相纳米线被BaTiO3铁电相纳米管紧紧包裹,Fe-Co铁磁相并没有被BaTiO3铁电相隔离开,因此材料的磁性能良好。在此方面的研究中,目前有报道是采用在AAO模板上直接沉积Fe-Co纳米线,制备的材料只有铁磁性,没有铁电性,材料的矫顽力和饱和磁化强度受到限制,很难提高。在AAO模板上直接沉积Fe7Co3、Fe3Co7和Fe1Co1纳米线在平行于纳米线方向的矫顽力仅为633.17Oe、564.28Oe和 498.32,通过改变Fe-Co的成分,并没有提高纳米线的磁性能。
发明内容
本发明的目的为针对当前技术中存在的不足,提供一种(Fe-Co)-BaTiO3芯-管复相多铁材料的制备方法。该方法采用模板法-溶胶凝胶法-直流电化学沉积法相结合技术,在AAO模板上沉积Fe-Co纳米线之前,首先以AAO模板的孔径为依附体制备了BaTiO3纳米管,然后再沉积Fe-Co纳米线,其中BaTiO3纳米管为铁电相,Fe-Co纳米芯为铁磁相,利用铁电相的压电效应和铁磁相的压磁效应,从而制得(Fe-Co)-BaTiO3芯-管复相多铁材料。本发明工艺简单,成本低且成功率高,产品孔结构参数即孔的直径、长度及孔间距可调,烧结质量高,具有良好的铁电性和铁磁性,适用于作为新型的复相多铁材料。
本发明解决该技术问题的技术方案是:
一种(Fe-Co)-BaTiO3芯-管复相多铁材料的制备方法,包括以下步骤:
第一步,AAO模板的预处理
将AAO模板放在离紫外灯源相距2cm~4cm处照射,其中,每一面各照射0.5h~1h,紫外灯的功率为30W~50W;
第二步,BaTiO3溶胶的配制
将Ba(OH)2·8H2O溶于CH3COOH中,65℃~80℃搅拌下回流反应1h~2h,然后冷却至室温,再在搅拌下向其再滴加混合液,35min~50min内滴加完成后,得到钛酸钡溶胶液;
其中,每34mL的CH3COOH中加入14g~17g的Ba(OH)2·8H2O,以及45mL~70mL混合液;混合液由钛酸四丁酯和无水乙醇混合而成,体积比钛酸四丁酯:无水乙醇=(15~20)mL: (30~50)mL;
第三步,BaTiO3纳米管/AAO模板复合结构的制备
将盛有BaTiO3溶胶的容器放在磁力搅拌器上,打开磁力搅拌器单相旋转,转速为4r/s~8r/s,将预处理后的AAO模板竖直浸没入BaTiO3溶胶液中,并且AAO模板的平面与搅拌造成的溶胶凝胶旋转方向相垂直;10min~20min后取出模板,用去离子水冲淋模板表面的溶胶后干燥;最后将浸泡过BaTiO3溶胶的模板放在空气气氛马弗炉中以80℃/h~100℃/h的升温速率升至730℃~750℃,保温10h~12h后以80℃/h~100℃/h的降温速率冷却至室温,即可得到BaTiO3纳米管/AAO模板复合结构;
第四步,BaTiO3纳米管/AAO模板喷金处理
将BaTiO3纳米管/AAO模板复合结构放入小型离子溅射仪中,以Au为靶材,溅射电流为8mA~10mA、真空度为5x10-2Pa~8x10-2Pa的条件下喷金2min~5min,在BaTiO3纳米管/AAO 模板的一面溅射一层Au原子,Au层的厚度为1μm~10μm;
第五步,Fe-Co沉积液的配制
将FeCl2·4H2O、CoCl2·6H2O、柠檬酸、H3BO3和抗坏血酸加入到去离子水中,配制得到 Fe-Co合金电解沉积液;其中,合金电解沉积液中,FeCl2·6H2O的浓度为0.25mol/L~0.35mol/L, CoCl2·6H2O的浓度为0.25mol/L~0.35mol/L,柠檬酸浓度为0.05mol/L~0.07mol/L,H3BO3的浓度为40g/L,抗坏血酸的浓度为4g/L;
第六步,(Fe-Co)-BaTiO3芯-管复相多铁材料的制得
以石墨电极为阳极,将第四步喷金后的BaTiO3纳米管/AAO模板为阴极,将第五步配制好的Fe-Co合金电解沉积液倒入电解沉积槽中,同时采用直流2V~3V电压沉积纳米线20min-60min,即可得到(Fe-Co)-BaTiO3芯-管复相多铁材料。
所述的第三步中的干燥具体为在80℃~100℃干燥箱中干燥20min~30min。
上述(Fe-Co)-BaTiO3芯-管复相多铁材料的制备方法,其中所用化学试剂是商购所得,工艺和设备均为本领域公知的。
本发明的有益效果是:
本发明(Fe-Co)-BaTiO3芯-管复相多铁材料的制备方法所具有突出的实质性特点如下:
(1)本发明解决了在制备BaTiO3纳米管时溶胶进入模板纳米通道的唯一驱动力是毛细作用力,当孔径较小时,驱动力不够大,溶胶不能完全进入通道或堵塞通道的问题。利用磁力搅拌器的单向搅拌功能,使BaTiO3溶胶旋转产生流体涡流,通过控制AAO模板孔的方向与涡流旋转方向平形,使涡流带动BaTiO3溶胶进入AAO模板。通过多次浸泡和干燥,可以控制BaTiO3纳米管的直径,这种方法简便有效,制备的BaTiO3纳米管形状规则,直径可调,成功率高。
(2)本发明创造了一种磁电耦合复合材料的新结构,并提供了模板法-溶胶凝胶法-直流电化学沉积法相结合的制备方法。到目前为止,对于磁电耦合复合材料的制备多为壳核结构、层状结构和薄膜结构,因此开发理想的芯-管型纳米磁电复合材料对推动多铁性材料的技术应用意义重大,制备包覆良好的芯-管式铁电/铁磁纳米复合线体是制备纳米磁电复合材料的关键。BaTiO3和Fe-Co合金分属于重要的铁电和铁磁材料。BaTiO3铁电性能比较优异、环保污染小,而且Fe-Co合金系中Fe7Co3相在铁钴合金中具有最大的玻尔磁子,因此具有最高的饱和磁化强度和较高的电阻率。因而将Fe-Co合金系的物相和BaTiO3制备为芯-管型纳米磁电复合材料具有重大意义。
本发明(Fe-Co)-BaTiO3芯-管复相多铁材料的制备方法所具有显著地进步如下:
(1)本方法的模板法-溶胶凝胶法-直流电化学沉积法相结合的制备方法,工艺及设备简单,易于实现规模化生产,成本低且成功率高,产品孔结构参数即孔的直径、长度及孔间距可调,烧结质量高,具有良好的铁电性和铁磁性,适用于作为新型的复相多铁材料。此项专利技术涉及的制备方法非常新颖,目前没有跟我们相似的制备技术。目前常见的几种结构都是首先制备铁磁相和铁电相单体,然后将两种单体混合后进行同相烧结从而得到复合材料,烧结过程中还往往出现成分偏析现象及一些对性能不利的副相。而我们的制备方法利用了 AAO模板的纳米孔洞为依附体从而很容易烧结出纳米级别的BaTiO3管,再利用直流电化学沉积的方法在BaTiO3管中沉积铁电相,即可得到包覆性良好的芯-管复相多铁材料。利用模板法-溶胶凝胶法-直流电化学沉积法相结合的制备方法制备的芯-管复相多铁材料不需要将铁电相单体与铁磁相单体烧结结合,便能轻松组装,这是一种组合技术上的突破,而且没有成分偏析及出现附加相的现象。
本发明方法通过将BaTiO3铁电相与Fe-Co铁磁相制备为纳米级别的芯-管复合多铁材料,改变了传统的复合材料相连通的方式,有效保证了两相的接触面积和异质结构,制备出的 (Fe-Co)-BaTiO3芯-管复相多铁材料不仅同时具有铁磁性和铁电性的,还具有铁磁相的磁致伸缩效应和铁电相的压电效应产生出的磁电耦合效应,从而增强了材料的铁磁性。单相Fe7Co3纳米线阵列材料与Fe7Co3-BaTiO3芯-管复相多铁材料的VSM图如图6所示,从图中可以看出由于BaTiO3纳米管对Fe7Co3纳米芯产生的压磁效应,使得Fe7Co3-BaTiO3芯-管复相多铁材料的矫顽力急剧增加,使得Fe7Co3纳米芯的矫顽力提高了122%倍。具体磁性能数值如表1和表2所示。又因为(Fe-Co)-BaTiO3芯-管复相多铁材料宏观为薄膜结构,微观为线性阵列,长径比较大,具有非常高的垂直磁各向异性,可作为磁传感器应用在磁的存储和读出设备、磁力成像技术和检测并屏蔽磁场来保护数据库方面;亦能应用于多态记忆元件、电场控制的铁磁回声装置、磁调节压电传感器、微波泄漏探测器、高能电子转换系统中的磁电泄漏探测器等。
(2)本发明制备的(Fe-Co)-BaTiO3芯-管复相多铁材料铁电相和铁磁相结合方式新颖,同时具有铁电性和铁磁性,产品结构参数可调,且工艺及设备简单,易于实现规模化生产,适用于作为新型的复相多铁材料。
本发明方法也适用于其他铁磁相与BaTiO3铁电相复合的多铁材料的制备。
附图说明
图1为自制的Fe-Co磁性纳米线沉积装置的构成示意图。
图2采用Philips PW1700型X射线衍射仪对本发明实施例1制得的BaTiO3纳米管/AAO 模板复合结构的XRD图谱。
图3采用Philips PW1700型X射线衍射仪对本发明实施例1制得的Fe7Co3-BaTiO3芯-管复相多铁材料的XRD图谱。
图4采用Hitachi S-4800型场发射扫描电镜对本发明实施例1制得的BaTiO3纳米管/AAO 模板复合结构经5%wt的NaOH溶液腐蚀表面后的FESEM图谱。
图5采用Tecnai G2F20扫描电镜对本发明实施例1制得的Fe7Co3-BaTiO3芯-管复相多铁材料经5%wt的NaOH溶液解离后的TEM图谱。
图6采用Lake Shore Model 7407型振动样品磁强计对本发明实施例1制得的无BaTiO3纳米管的Fe7Co3和Fe7Co3-BaTiO3芯-管复相多铁材料的磁性能的VSM图谱,其中,图6(a) 为无BaTiO3纳米管的Fe7Co3;图6(b)为Fe7Co3-BaTiO3芯-管复相多铁材料。
具体实施方式
本发明涉及的AAO模板(阳极氧化铝模板)为公知材料,其制备方法可参见[江小雪,赵乃勤.多孔氧化铝膜的制备与形成机理的研究概况.功能材料.2005,4(36):487-489.];以下实施例具体得制备过程主要包括以下步骤:
采用纯度为99.999%、厚度为0.3mm的高纯铝箔,将高纯铝箔裁剪成直径为20mm的小圆片,经过500℃退火处理后,在丙酮和无水乙醇中先后清洗以去除表面的油污,然后将铝片在5%wt的NaOH溶液中去除表面氧化皮,然后再酒精和高氯酸配制的抛光液中抛光5min。铝片经过预处理后在0.3mol/L的草酸溶液中进行氧化,直流电压为40V,温度保持5℃,一次氧化3h,氧化完成后在0.3mol/L的H3PO4和0.5mol/L的H2CrO3配成的溶液中去除第一次形成的氧化膜,第二次氧化电压和温度保持不变,时间为5h,氧化后的AAO模板用饱和的 CuCl2溶液进行去底,然后在5%wt的H3PO4溶液中扩孔1h,即可制得两面通透的AAO模板。
实施例1
第一步,AAO模板的预处理
将AAO模板放在离紫外灯源相距2cm处共照射1h,其中模板每面各照射30min;紫外灯的功率为50W;
第二步,BaTiO3溶胶的配制
将Ba(OH)2·8H2O溶于CH3COOH中,65℃、搅拌下回流反应2h,然后冷却至室温,再在搅拌下向其再滴加钛酸四丁酯和无水乙醇的混合液,50min后,得到钛酸钡溶胶液;
其中,每34mL的CH3COOH中加入17g的Ba(OH)2·8H2O及45mL混合液;混合液中,钛酸四丁酯为15mL,无水乙醇为30mL;
第三步,BaTiO3纳米管/AAO模板复合结构的制备
将盛有BaTiO3溶胶的烧杯放在磁力搅拌器上,打开磁力搅拌器单相旋转,转速为4r/s,用夹子夹住预处理后的AAO模板浸泡入制备好的BaTiO3溶胶液中,调整AAO方向,使溶胶旋转方向与AAO模板垂直。10min~20min取出模板,用去离子水冲淋模板表面的溶胶,然后放在80℃干燥箱中干燥30min;最后将浸泡过BaTiO3溶胶的模板放在空气气氛马弗炉中以 100℃/h的升温速率升至730℃,保温12h后以100℃/h的降温速率冷却至室温,即可得到BaTiO3纳米管/AAO模板;
第四步,BaTiO3纳米管/AAO模板喷金处理
将BaTiO3纳米管/AAO模板复合结构放入小型离子溅射仪中,以Au为靶材,溅射电流为8mA、真空度为5x10-2Pa的条件下喷金5min,在BaTiO3纳米管/AAO模板的一面溅射一层Au原子,Au层的厚度为10μm;
第五步,Fe-Co沉积液的配制
将FeCl2·4H2O、CoCl2·6H2O、柠檬酸、H3BO3和抗坏血酸加入到去离子水中,配制得到 Fe-Co合金电解沉积液。FeCl2·4H2O的浓度为0.35mol/L,CoCl2·6H2O的浓度为0.35mol/L,柠檬酸浓度为0.07mol/L,H3BO3的浓度为40g/L,抗坏血酸的浓度为4g/L;
第六步,(Fe-Co)-BaTiO3芯-管复相多铁材料的制得
以石墨电极为阳极,BaTiO3纳米管/AAO模板为阴极,将第四步配制好的Fe-Co沉积液倒入电解沉积槽中,同时采用直流3V电压沉积纳米线20min,即可得到(Fe-Co)-BaTiO3芯- 管复相多铁材料。
所述的电解沉积槽为公知装置,其结构示意图如图1所示,直流稳压电源正极接石墨,负极接Cu片,BaTiO3纳米管/AAO模板安装在垫圈与Cu片之间,并且为了增加导电性,Cu片要与AAO模板的喷金面紧密接触。垫圈中间有1cm的孔,Fe-Co沉积液通过孔与BaTiO3纳米管/AAO模板相接触。接通电源后,BaTiO3纳米管/AAO模板带负电,Fe-Co沉积液中的 Fe2+和Co2+在BaTiO3纳米管/AAO模板中的BaTiO3纳米管的中得电子被还原,最终在BaTiO3纳米管中生长成Fe-Co纳米线,形成(Fe-Co)-BaTiO3芯-管复相多铁材料。
图3是带有AAO模板的Fe7Co3-BaTiO3芯-管复相多铁材料XRD图,从图中更可以看出,除了Fe7Co3、BaTiO3、Al2O3三种物相外,还出现了FeCo2O4相,这主要是由于覆盖在模板表层的Fe7Co3薄膜被空气氧化所致。图5是Fe7Co3-BaTiO3芯-管复相多铁材料的TEM照片,从图5中可以看到清晰的Fe7Co3-BaTiO3芯-管包覆纳米线结构,其中还有一些空的BaTiO3纳米管,可能是由于我们在解离震荡样品过程中Fe7Co3纳米芯被脱出所致。图6为单相Fe7Co3纳米线阵列材料与Fe7Co3-BaTiO3芯-管复相多铁材料的VSM图,从图中可以看出由于BaTiO3纳米管对Fe7Co3纳米芯产生的压磁效应,使得Fe7Co3-BaTiO3芯-管复相多铁材料的矫顽力急剧增加,使得Fe7Co3纳米芯的矫顽力提高了122%倍。
具体磁性能数值如表1和表2所示。
表1外磁场平行于纳米线长轴方向的磁性能数据
表2外磁场垂直于纳米线长轴方向的磁性能数据
表1展示了外磁场平行于单相Fe7Co3纳米线阵列与复相Fe7Co3-BaTiO3芯-管纳米线阵列的磁性能数据,表2展示了外磁场垂直于单相Fe7Co3纳米线阵列与复相Fe7Co3-BaTiO3芯-管纳米线阵列的磁性能数据,从两表对比可以看出:无论是磁场平行于纳米线方向还是垂直于纳米线方向,由于BaTiO3纳米管对Fe7Co3纳米芯产生的强烈压磁效应,Fe7Co3-BaTiO3芯-管复相多铁材料的矫顽力、剩磁及饱和磁化强度远远高于单相Fe7Co3纳米线阵列。
实施例2
第一步,AAO模板的预处理
将AAO模板放在离紫外灯源相距4cm处共照射1h,其中模板每面各照射30min,紫外灯的功率为50W;
第二步,BaTiO3溶胶的配制
将Ba(OH)2·8H2O溶于CH3COOH中,80℃、搅拌下回流反应2h,然后冷却至室温,再在搅拌下向其再滴加钛酸四丁酯和无水乙醇的混合液,45min后,得到钛酸钡溶胶液;
其中,每34mL的CH3COOH中加入14g的Ba(OH)2·8H2O,以及70mL混合液;混合液中,钛酸四丁酯为20mL,无水乙醇为50mL;
第三步,BaTiO3纳米管/AAO模板复合结构的制备
将盛有BaTiO3溶胶的烧杯放在磁力搅拌器上,打开磁力搅拌器单相旋转,转速为6r/s,用夹子夹住预处理后的AAO模板浸泡入制备好的BaTiO3溶胶液中,调整AAO方向,使溶胶旋转方向与AAO模板垂直。15min取出模板,用去离子水冲淋模板表面的溶胶,然后放在90℃/h干燥箱中干燥25min;最后将浸泡过BaTiO3溶胶的模板放在空气气氛马弗炉中以 90℃/h的升温速率升至740℃,保温10h后以90℃/h的降温速率冷却至室温,即可得到BaTiO3纳米管/AAO模板复合结构;
第四步,BaTiO3纳米管/AAO模板喷金处理
将BaTiO3纳米管/AAO模板复合结构放入小型离子溅射仪中,以Au为靶材,溅射电流为10mA、真空度为5x10-2Pa的条件下喷金4.5min,在BaTiO3纳米管/AAO模板的一面溅射一层Au原子,Au层的厚度为8μm;
第五步,Fe-Co沉积液的配制
将FeCl2·4H2O、CoCl2·6H2O、柠檬酸、H3BO3和抗坏血酸加入到去离子水中,配制得到 Fe-Co合金电解沉积液。FeCl2·6H2O的浓度为0.25mol/L,CoCl2·6H2O的浓度为0.25mol/L,柠檬酸浓度为0.06mol/L,H3BO3的浓度为40g/L,抗坏血酸的浓度为4g/L;
第六步,(Fe-Co)-BaTiO3芯-管复相多铁材料的制得
以石墨电极为阳极,BaTiO3纳米管/AAO模板为阴极,将第四步配制好的Fe-Co沉积液倒入电解沉积槽中,同时采用直流2.5V电压沉积纳米线30min,即可得到(Fe-Co)-BaTiO3芯- 管复相多铁材料。
实施例3
第一步,AAO模板的预处理
将AAO模板放在离紫外灯源相距3cm处照射1.5h,其中模板每面各照射0.75h,紫外灯的功率为45W;
第二步,BaTiO3溶胶的配制
将Ba(OH)2·8H2O溶于CH3COOH中,70℃、搅拌下回流反应1.6h,然后冷却至室温,再在搅拌下向其再滴加钛酸四丁酯和无水乙醇的混合液,39min后,得到钛酸钡溶胶液;
其中,每34mL的CH3COOH中加入14g的Ba(OH)2·8H2O,以及60mL混合液;混合液中,钛酸四丁酯为18mL,无水乙醇为42mL;
第三步,BaTiO3纳米管/AAO模板复合结构的制备
将盛有BaTiO3溶胶的烧杯放在磁力搅拌器上,打开磁力搅拌器单相旋转,转速为8r/s,用夹子夹住预处理后的AAO模板浸泡入制备好的BaTiO3溶胶液中,调整AAO方向,使溶胶旋转方向与AAO模板垂直。20min后取出模板,用去离子水冲淋模板表面的溶胶,然后放在100℃/h干燥箱中干燥20min;最后将浸泡过BaTiO3溶胶的模板放在空气气氛马弗炉中以88℃/h的升温速率升至740℃,保温11h后以88℃/h的降温速率冷却至室温,即可得到BaTiO3纳米管/AAO模板复合结构;
第四步,BaTiO3纳米管/AAO模板喷金处理
将BaTiO3纳米管/AAO模板复合结构放入小型离子溅射仪中,以Au为靶材,溅射电流为9mA、真空度为6x10-2Pa的条件下喷金2min,在BaTiO3纳米管/AAO模板的一面溅射一层Au原子,Au层的厚度为4μm;
第五步,Fe-Co沉积液的配制
将FeCl2·4H2O、CoCl2·6H2O、柠檬酸、H3BO3和抗坏血酸加入到去离子水中,配制得到 Fe-Co合金电解沉积液。FeCl2·6H2O的浓度为0.3mol/L,CoCl2·6H2O的浓度为0.3mol/L,柠檬酸浓度为0.06mol/L,H3BO3的浓度为40g/L,抗坏血酸的浓度为4g/L;
第六步,(Fe-Co)-BaTiO3芯-管复相多铁材料的制得
以石墨电极为阳极,BaTiO3纳米管/AAO模板为阴极,将第四步配制好的Fe-Co沉积液倒入电解沉积槽中,同时采用直流2.7V电压沉积纳米线30min,即可得到(Fe-Co)-BaTiO3芯- 管复相多铁材料。
实施例4
第一步,AAO模板的预处理
将AAO模板放在离紫外灯源相距2cm处照射2h,其中模板每面各照射1h,紫外灯的功率为30W;
第二步,BaTiO3溶胶的配制
将Ba(OH)2·8H2O溶于CH3COOH中,75℃、搅拌下回流反应1.4h,然后冷却至室温,再在搅拌下向其再滴加钛酸四丁酯和无水乙醇的混合液,42min内后,得到钛酸钡溶胶液;
其中,每34mL的CH3COOH中加入17g的Ba(OH)2·8H2O,以及62mL混合液;混合液中,钛酸四丁酯为18mL,无水乙醇为44mL;
第三步,BaTiO3纳米管/AAO模板复合结构的制备
将盛有BaTiO3溶胶的烧杯放在磁力搅拌器上,打开磁力搅拌器单相旋转,转速为7r/s,用夹子夹住预处理后的AAO模板浸泡入制备好的BaTiO3溶胶液中,调整AAO方向,使溶胶旋转方向与AAO模板垂直。18min取出模板,用去离子水冲淋模板表面的溶胶,然后放在92℃/h干燥箱中干燥25min;最后将浸泡过BaTiO3溶胶的模板放在空气气氛马弗炉中以 92℃/h的升温速率升至735℃,保温11h后以92℃/h的降温速率冷却至室温,即可得到BaTiO3纳米管/AAO模板复合结构;
第四步,BaTiO3纳米管/AAO模板喷金处理
将BaTiO3纳米管/AAO模板复合结构放入小型离子溅射仪中,以Au为靶材,溅射电流为8mA、真空度为7x10-2Pa的条件下喷金2min,在BaTiO3纳米管/AAO模板的一面溅射一层Au原子,Au层的厚度为3μm;
第五步,Fe-Co沉积液的配制
将FeCl2·4H2O、CoCl2·6H2O、柠檬酸、H3BO3和抗坏血酸加入到去离子水中,配制得到 Fe-Co合金电解沉积液。FeCl2·6H2O的浓度为0.28mol/L,CoCl2·6H2O的浓度为0.28mol/L,柠檬酸浓度为0.06mol/L,H3BO3的浓度为40g/L,抗坏血酸的浓度为4g/L;
第六步,(Fe-Co)-BaTiO3芯-管复相多铁材料的制得
以石墨电极为阳极,BaTiO3纳米管/AAO模板为阴极,将第四步配制好的Fe-Co沉积液倒入电解沉积槽中,同时采用直流3V电压沉积纳米线25min,即可得到(Fe-Co)-BaTiO3芯- 管复相多铁材料。
本发明未尽事宜为公知技术。

Claims (2)

1.一种(Fe-Co)-BaTiO3芯-管复相多铁材料的制备方法,其特征为该方法包括以下步骤:
第一步,AAO模板的预处理
将AAO模板放在离紫外灯源相距2cm~4cm处照射,每一面各照射0.5h~1h,紫外灯的功率为30W~50W;
第二步,BaTiO3溶胶的配制
将Ba(OH)2·8H2O溶于CH3COOH中,65℃~80℃、搅拌下回流反应1h~2h,然后冷却至室温,再在搅拌下向其再滴加混合液,35min~50min内滴加完成后,得到钛酸钡溶胶液;
其中,每34mL的CH3COOH中加入14g~17g的Ba(OH)2·8H2O,以及45mL~70mL混合液;混合液由钛酸四丁酯和无水乙醇混合而成,体积比钛酸四丁酯:无水乙醇=(15~20)mL:(30~50)mL;
第三步,BaTiO3纳米管/AAO模板复合结构的制备
将盛有BaTiO3溶胶的容器放在磁力搅拌器上,打开磁力搅拌器单相旋转,转速为4r/s~8r/s,将预处理后的AAO模板竖直浸没入BaTiO3溶胶液中,并且AAO模板的平面与搅拌造成的溶胶凝胶旋转方向相垂直;10min~20min后取出模板,用去离子水冲淋模板表面的溶胶后干燥;最后将浸泡过BaTiO3溶胶的模板放在空气气氛马弗炉中以80℃/h~100℃/h的升温速率升至730℃~750℃,保温10h~12h后以80℃/h~100℃/h的降温速率冷却至室温,即可得到BaTiO3纳米管/AAO模板复合结构;
第四步,BaTiO3纳米管/AAO模板喷金处理
将BaTiO3纳米管/AAO模板复合结构放入小型离子溅射仪中,以Au为靶材,溅射电流为8mA~10mA、真空度为5× 10-2Pa~8× 10-2Pa的条件下喷金2min~5min,在BaTiO3纳米管/AAO模板的一面溅射一层Au原子,Au层的厚度为1μm~10μm;
第五步,Fe-Co沉积液的配制
将FeCl2·4H2O、CoCl2·6H2O、柠檬酸、H3BO3和抗坏血酸加入到去离子水中,配制得到Fe-Co合金电解沉积液;其中,合金电解沉积液中,FeCl2·4H2O的浓度为0.25mol/L~0.35mol/L,CoCl2·6H2O的浓度为0.25mol/L~0.35mol/L,柠檬酸浓度为0.05mol/L~0.07mol/L,H3BO3的浓度为40g/L,抗坏血酸的浓度为4g/L;
第六步,(Fe-Co)-BaTiO3芯-管复相多铁材料的制得
以石墨电极为阳极,将第四步喷金后的BaTiO3纳米管/AAO模板为阴极,将第五步配制好的Fe-Co合金电解沉积液倒入电解沉积槽中,同时采用直流2V~3V电压沉积纳米线20min-60min,即可得到(Fe-Co)-BaTiO3芯-管复相多铁材料。
2.如权利要求1所述的(Fe-Co)-BaTiO3芯-管复相多铁材料的制备方法,其特征为所述的第三步中的干燥处理,具体为在80℃~100℃干燥箱中干燥20min~30min。
CN201710727983.2A 2017-08-23 2017-08-23 (Fe-Co)-BaTiO3芯-管复相多铁材料的制备方法 Expired - Fee Related CN107488839B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710727983.2A CN107488839B (zh) 2017-08-23 2017-08-23 (Fe-Co)-BaTiO3芯-管复相多铁材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710727983.2A CN107488839B (zh) 2017-08-23 2017-08-23 (Fe-Co)-BaTiO3芯-管复相多铁材料的制备方法

Publications (2)

Publication Number Publication Date
CN107488839A CN107488839A (zh) 2017-12-19
CN107488839B true CN107488839B (zh) 2019-03-19

Family

ID=60646776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710727983.2A Expired - Fee Related CN107488839B (zh) 2017-08-23 2017-08-23 (Fe-Co)-BaTiO3芯-管复相多铁材料的制备方法

Country Status (1)

Country Link
CN (1) CN107488839B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108546124B (zh) * 2018-05-03 2021-07-30 景德镇市鑫惠康电子有限责任公司 一种bczt基无铅压电陶瓷的制备方法
CN108914174B (zh) * 2018-08-07 2019-10-29 河北工业大学 Tb-Dy-Fe-Co合金磁性纳米管阵列的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101265084A (zh) * 2008-04-15 2008-09-17 南京大学 (1-x)(Ba,Bi,Na)TiO3-xCoFe2O4复合多铁陶瓷及其制备方法
CN101376600A (zh) * 2008-09-26 2009-03-04 清华大学 一种利用导电氧化物作为缓冲层的叠层铁电/磁性多铁性磁电复合薄膜及其制备方法
CN101710527A (zh) * 2009-12-14 2010-05-19 华中科技大学 一种双层钛酸钡-钴铁氧体多铁性复合膜材料及制备方法
CN106654001A (zh) * 2016-06-06 2017-05-10 青海民族大学 一种柔性BaTiO3-CoFe2O4磁电复合薄膜

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700985B2 (en) * 2008-06-24 2010-04-20 Seagate Technology Llc Ferroelectric memory using multiferroics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101265084A (zh) * 2008-04-15 2008-09-17 南京大学 (1-x)(Ba,Bi,Na)TiO3-xCoFe2O4复合多铁陶瓷及其制备方法
CN101376600A (zh) * 2008-09-26 2009-03-04 清华大学 一种利用导电氧化物作为缓冲层的叠层铁电/磁性多铁性磁电复合薄膜及其制备方法
CN101710527A (zh) * 2009-12-14 2010-05-19 华中科技大学 一种双层钛酸钡-钴铁氧体多铁性复合膜材料及制备方法
CN106654001A (zh) * 2016-06-06 2017-05-10 青海民族大学 一种柔性BaTiO3-CoFe2O4磁电复合薄膜

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Kuldeep Chand Verma等.Multiferroic effects in MFe2O4/BaTiO3 (M ¼Mn, Co, Ni, Zn) nanocomposites.《Journal of Alloys and Compounds》.2017,第709卷(第30期),第344-355页.
Novel magnetoelectric composites of cobalt iron alloy and barium titanate;Till Walther等;《Journal of The American Ceramic Society》;20170125;第100卷(第4期);第1502-1507页

Also Published As

Publication number Publication date
CN107488839A (zh) 2017-12-19

Similar Documents

Publication Publication Date Title
Han et al. Structural and magnetic properties of various ferromagnetic nanotubes
Zhang et al. Comparative study in fabrication and magnetic properties of FeNi alloy nanowires and nanotubes
Cheng et al. Recent development of metal hydroxides as electrode material of electrochemical capacitors
Wang et al. Template-based synthesis and magnetic properties of Ni nanotube arrays with different diameters
Jin et al. High-filling, large-area Ni nanowire arrays and the magnetic properties
CN107488839B (zh) (Fe-Co)-BaTiO3芯-管复相多铁材料的制备方法
CN104087976B (zh) Sm-Co合金非晶磁性纳米线阵列的制备方法
Tang et al. An internal magnetic field strategy to reuse pulverized active materials for high performance: a magnetic three-dimensional ordered macroporous TiO 2/CoPt/α-Fe 2 O 3 nanocomposite anode
Liang et al. Formation and characterization of iron oxide nanoparticles loaded on self-organized TiO2 nanotubes
Hua et al. Metal nanotubes prepared by a sol–gel method followed by a hydrogen reduction procedure
Yuan et al. Self-assembly synthesis and magnetic studies of Co–P alloy nanowire arrays
Gao et al. Synthesis and anomalous magnetic behaviour of NiO nanotubes and nanoparticles
Li et al. Controllable electrochemical synthesis of CoFe2O4 nanostructures on FTO substrate and their magnetic properties
Daly et al. Synthesis and characterization of highly ordered cobalt–magnetite nanocable arrays
Yang et al. Electrochemical fabrication and magnetic properties of Fe 7 Co 3 alloy nanowire array
Irfan et al. Magnetic investigations of post-annealed metallic Fe nanowires via electrodeposition method
CN108914174B (zh) Tb-Dy-Fe-Co合金磁性纳米管阵列的制备方法
CN107705980A (zh) Nd‑Fe‑Co三元合金磁性纳米线的制备方法
CN105463380B (zh) 高饱和磁化强度氧化物稀磁半导体纳米点阵列的制备方法
Liu et al. Fabrication and magnetic properties of Ni–Zn nanowire arrays
Srivastava et al. Templated assembly of magnetic cobalt nanowire arrays
CN103173646B (zh) 一种铁-钯合金纳米线的制备方法
Han et al. Fabrication and magnetism of α-Fe2O3 nanotubes via a multistep ac electrodeposition
Neupane et al. Surfactant assisted synthesis of SrFe 10 Al 2 O 19: Magnetic and Supercapacitor ferrite
CN108660487A (zh) Nd-Fe-B磁性纳米线阵列的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190319