CN107483137A - 多站高精度时间频率同步方法 - Google Patents

多站高精度时间频率同步方法 Download PDF

Info

Publication number
CN107483137A
CN107483137A CN201710784443.8A CN201710784443A CN107483137A CN 107483137 A CN107483137 A CN 107483137A CN 201710784443 A CN201710784443 A CN 201710784443A CN 107483137 A CN107483137 A CN 107483137A
Authority
CN
China
Prior art keywords
secondary station
station
precision
frequency
main website
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710784443.8A
Other languages
English (en)
Other versions
CN107483137B (zh
Inventor
杨峻巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Electronic Technology Institute No 10 Institute of Cetc
Original Assignee
Southwest Electronic Technology Institute No 10 Institute of Cetc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Electronic Technology Institute No 10 Institute of Cetc filed Critical Southwest Electronic Technology Institute No 10 Institute of Cetc
Priority to CN201710784443.8A priority Critical patent/CN107483137B/zh
Publication of CN107483137A publication Critical patent/CN107483137A/zh
Application granted granted Critical
Publication of CN107483137B publication Critical patent/CN107483137B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Abstract

本发明公开了一种多站高精度时间频率同步方法,利用本发明可有效地解决主站与部分副站不可见的情况下,各站之间高精度时间频率同步的问题。本发明通过下述技术方案予以实现:主站利用铷钟作为参考时钟,产生扩频测距信号,并发射到副站1;副站1接收该测距信号,完成捕获跟踪,将码环滤波器输出的码频率控制字送入直接数字频率合成器DDS,该DSS将输出正弦波信号与副站1的恒温晶振的输出值进行鉴相,实现两站参考时钟的频率同步,基于时延测量值调整1PPS;副站1基于已同步的参考时钟,产生扩频测距信号,并发射到副站2,副站2利用与副站1相同的方法,实现两站参考时钟的时间频率同步,以此类推,实现整个网络各站之间的高精度时间频率同步。

Description

多站高精度时间频率同步方法
技术领域
本发明涉及一种多站高精度时间频率同步方法,该方法可应用于地基区域导航、雷达组阵等技术领域。
背景技术
随着站间协同工作需求的不断增加,地基导航及雷达组阵等多节点系统多站间高精度时间同步有了更高的要求。目前站间时间同步方法主要包括导航卫星共视法和基于通信卫星的双向时间频率传递两种方案。其中导航卫星共视法需两站同时接收导航卫星信号实现站间高精度时间同步,由于两站传输路径不同,无法完全消除对流层和电离层的附加时延误差,且无法实时调整两站的时钟实现时间频率同步;基于通信卫星的双向时间频率传递技术尽管精度较高,但是需两站发射各自发射同步信号到通信卫星,并经通信卫星转发到对方,因此系统较为复杂。
而对于由多站组成的区域组网系统,基于微波链路或光纤传输的站间时间同步技术是一种较为理想的站间整网时间同步方法。传统基于微波链路或者光纤传输的时间同步方法采用双向测量来实现,即两站基于各自的时钟,在同一钟面时刻向对方发射扩频测距信号,并分别基于本地时钟测量信号传输时延,并将两站测量的时延作差求取两站的时差,并通过求微分获取两站的频率差。该时间频率同步方案需要双向测量,系统较为复杂,且要求两站的时钟为同一量级,组网系统成本较高。该方法整网站间时间频率同步往往采取主从模式,即选取其中一个站为主站,其他站分别与主站进行时间频率同步。该方法要求各从站与主站可视或通过光纤直接互联。
发明内容
本发明的目的是针对现有技术存在的不足之处,提供一种同步方案简单,时间频率同步精度高的多站高精度时间频率同步方法,该方法可有效地解决主站与部分副站不可见的情况下,基于微波链路实现整个系统各站之间高精度时间频率同步的问题。
本发明解决现有技术问题所采用的方案是:一种多站高精度时间频率同步方法,其特征在于包括如下步骤:首先,各站之间通过接收卫星导航信号,基于相对定位方法实现站间相对距离高精度测量;其次,主站利用气象计对周围的温度、湿度及气压进行测量,实现对传输路径大气延迟精确估计,主站利用自身配备的铷钟作为参考时钟,由扩频测距信号产生模块产生扩频测距信号,经过发射射频前端,通过天线发射到与主站可视的副站1;副站1接收天线接收该测距信号,通过接收射频前端送入接收信号处理模块,完成对接收信号的捕获跟踪;当跟踪环路跟踪稳定后,副站1将码环滤波器输出的码频率控制字送入高精度直接数字频率合成器DDS,该高精度直接数字频率合成器DSS将输出的正弦波信号与副站的恒温晶振的输出值进行鉴相处理,将鉴相处理器鉴相值送入环路滤波器进行滤波,并送入恒温晶振对晶振输出频率进行调整,实现副站恒温晶振与主站铷钟的频率同步;同时将主站与副站1的几何时延测量值、大气延迟估计值及副站1接收主站帧头与本地1PPS的高精度时延差之和作为调整指令实现对副站1的1PPS精确调整;然后,副站1基于自身的已同步的参考时钟,将扩频测距信号产生模块产生的扩频测距信号,经发射射频前端天线发射到与副站1可视与主站不可视副站2,副站2接收天线接收该测距信号,通过接收射频前端完成对接收信号的捕获跟踪,当跟踪环路跟踪稳定后,将码环滤波器输出的码频率控制字送入直接数字频率合成器DDS,直接数字频率合成器DDS将输出的正弦波信号与副站2锁相环路的恒温晶振进行鉴相,运用恒温晶振输出的高精度参考时钟实现副站2恒温晶振与副站1恒温晶振的频率同步;同时将副站1与副站2的几何时延测量值、大气延迟估计值及副站1接收主站帧头与本地1PPS的高精度时延差之和作为调整指令,实现对副站2的1PPS精确调整,实现副站1与副站2的高精度时间同步;以此类推,实现整个网络各站之间的高精度时间频率同步。
本发明相比于现有技术具有如下有益效果:
1)成本低。本发明通过主站利用自身配备的铷钟作为参考时钟,产生扩频测距信号,并向副站1发射该扩频测距信号,副站1对接收测距信号捕获跟踪,码环滤波器输出的码频率控制字送入高精度DDS,经高精度DDS输出的10.23MHz正弦波信号与副站1锁相环路的恒温晶振进行鉴相,实现副站1恒温晶振与主站铷钟的频率同步;同理利用已与主站铷钟频率同步的恒温晶振实现对副站2恒温晶振的频率同步,依次类推,所有的副站仅需配备恒温晶振,无需昂贵的铷钟作为参考时钟,因此成本低。
2)同步方案简单。本发明采用各站之间通过接收卫星导航信号,基于相对定位方法实现站间相对距离高精度测量;通过主站利用气象计对周围的温度、湿度及气压进行测量,实现对传输路径大气延迟精确估计,主站利用自身配备的铷钟作为参考时钟,由扩频测距信号产生模块产生扩频测距信号,经过发射射频前端,通过天线发射到与主站可视副站1;副站1接收天线接收该测距信号,通过接收射频前端送入接收信号处理模块,完成对接收信号的捕获跟踪,系统较为简单。避免了现有技术基于两站各自的时钟,采用双向测量来实现,在同一钟面时刻向对方发射扩频测距信号,分别基于本地时钟测量信号传输时延,将两站测量的时延作差求取两站的时差,通过求微分获取两站的频率差,时间频率同步方案需要双向测量,系统较为复杂的缺陷。同时本发明通过级联的模式实现整个网络多站之间的时间频率同步,即未同步的站只要与其中已同步的任何一站可视即可实现站间高精度时间频率同步,避免了现有的主从式时间频率同步方案要求整个网络中各副站均与主站可视的不足。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明多站高精度时间频率同步流程框图。
图2本发明主站高精度时间频率同步系统的工作原理框图。
图3是对应图2主站的副站高精度时间频率系统的工作原理框图。
具体实施方式
参阅图1-图2。在以下描述的实例中,本发明的多站高精度时间频率同步方法其工作原理是:首先,各站之间通过接收卫星导航信号基于相对定位方法实现站间相对距离高精度测量;其次,主站利用气象计对周围的温度、湿度及气压进行测量,实现对传输路径大气延迟精确估计,主站利用自身配备的铷钟作为参考时钟,由扩频测距信号产生模块产生扩频测距信号,经过发射射频前端,通过天线发射到副站1(与主站可视);副站1接收天线接收该测距信号,经接收射频前端送入接收信号处理模块,完成对接收信号的捕获跟踪,当跟踪环路跟踪稳定后,副站1将码环滤波器输出的码频率控制字送入高精度直接数字频率合成器DDS,该高精度直接数字频率合成器DSS将输出的正弦波信号与副站的恒温晶振的输出值进行鉴相处理,鉴相处理器将鉴相值送入环路滤波器进行滤波,并送入恒温晶振对晶振输出频率进行调整,实现副站恒温晶振与主站铷钟的频率同步;同时将主站与副站1的几何时延测量值、大气延迟估计值及副站1接收主站帧头与本地1PPS的高精度时延差之和作为调整指令实现对副站1的1PPS精确调整;然后,副站1基于自身的已同步的参考时钟,由扩频测距信号产生模块产生扩频测距信号,经过发射射频前端,通过天线发射到副站2(该站与副站1可视,与主站不可视),副站2接收天线接收该测距信号,经接收射频前端,副站2完成对接收信号的捕获跟踪,当跟踪环路跟踪稳定后,副站2将码环滤波器输出的码频率控制字送入码频率控制字送入直接数字频率合成器DDS,直接数字频率合成器DDS将输出的正弦波信号与副站锁相环路的恒温晶振进行鉴相,运用恒温晶振输出的高精度参考时钟实现副站2恒温晶振与副站1恒温晶振的频率同步;同时将副站1与副站2的几何时延测量值、大气延迟估计值及副站1接收主站帧头与本地1PPS的高精度时延差之和作为调整指令实现对副站2的1PPS精确调整,实现副站1与副站2的高精度时间同步;以此类推,实现整个网络各站之间的高精度时间频率同步。
具体步骤包括:
(1)各站通过卫星导航相对定位技术实现站间相对距离的高精度测量;主站与副1站、副站1与副站2分别通过卫星导航相对定位实现站间相对距离高精度测量,计算扩频测距信号从主站到副站1、副站1到副站2的几何时延;主站采用高精度铷钟输出工作频率为10.23MHz参考时钟,利用气象计对周围的温度、湿度及气压进行测量,精确估计各自传输路径的大气延迟。
(2)主站利用配备的高精度铷钟作为参考时钟,通过扩频测距信号产生模块产生码速率为10.23Mcp扩频码的扩频测距信号,该信号经过发射射频前端并通过天线发射到副站1。副站1接收天线接收该测距信号,经接收射频前端送入接收信号处理模块,完成对接收信号的捕获跟踪,当跟踪环路跟踪稳定后,副站1将码环滤波器输出的码频率控制字送入高精度直接数字频率合成器DDS,该高精度直接数字频率合成器DSS将输出的正弦波信号与副站的恒温晶振的输出值进行鉴相处理,鉴相处理器将鉴相值送入环路滤波器进行滤波,并送入恒温晶振对晶振输出频率进行调整,实现副站恒温晶振与主站铷钟的频率同步;同时将主站与副站1的几何时延测量值、大气延迟估计值及副站1接收主站帧头与本地1PPS的高精度时延差之和作为调整指令实现对副站1的1PPS精确调整;
(3)副站1基于自身的已同步的参考时钟,由扩频测距信号产生模块产生扩频测距信号,经过发射射频前端,通过天线发射到副站2(该站与副站1可视,与主站不可视),副站2接收天线接收该测距信号,经接收射频前端,副站2完成对接收信号的捕获跟踪。当跟踪环路跟踪稳定后,副站2将接收射频前端输出的信号分为两路,两路信号解扩、积分后的捕获跟踪信号送入码环鉴相器和载波鉴相器,通过码环鉴相器和载波鉴相器分别送入载波环滤波器和码环滤波器,载波环滤波器将捕获跟踪信号送入载波DDS产生两路正交的载波信号,一路与i路信号进行混频,一路与q路信号混频,码环滤波器将输出的码频率控制字分为两路,一路通过伪码DDS,伪码DDS产生的伪码产生器驱动频率驱动伪码发生器产生伪码信号并送入解扩模块进行解扩,另一路送入直接数字频率合成器DDS将输出的10.23MHz正弦波信号送入鉴相器,经环路滤波器送入恒温晶振输出高精度的10.23MHz参考时钟,恒温晶振输出的高精度10.23MHz参考时钟通过锁相环路反馈到鉴相器进行鉴相,实现副站2恒温晶振与副站1恒温晶振的频率同步,其中DDS设计为32位。同时将副站1与副站2的几何时延测量值、大气延迟估计值及副站1接收主站帧头与本地1PPS的高精度时延差之和作为调整指令实现对副站2的1PPS精确调整,实现副站1与副站2的高精度时间同步;
(4)以此类推,实现整个网络n个站之间的高精度时间频率同步。

Claims (7)

1.一种多站高精度时间频率同步方法,其特征在于包括如下步骤:首先,各站之间通过接收卫星导航信号,基于相对定位方法实现站间相对距离高精度测量;其次,主站利用气象计对周围的温度、湿度及气压进行测量,实现对传输路径大气延迟精确估计,主站利用自身配备的铷钟作为参考时钟,由扩频测距信号产生模块产生扩频测距信号,经过发射射频前端,通过天线发射到与主站可视副站1;副站1接收天线接收该测距信号,通过接收射频前端送入接收信号处理模块,完成对接收信号的捕获跟踪;当跟踪环路跟踪稳定后,副站1将码环滤波器输出的码频率控制字送入高精度直接数字频率合成器DDS,该高精度直接数字频率合成器DSS将输出的正弦波信号与副站的恒温晶振的输出值进行鉴相处理,将鉴相处理器鉴相值送入环路滤波器进行滤波,并送入恒温晶振对晶振输出频率进行调整,实现副站恒温晶振与主站铷钟的频率同步;同时将主站与副站1的几何时延测量值、大气延迟估计值及副站1接收主站帧头与本地1PPS的高精度时延差之和作为调整指令实现对副站1的1PPS精确调整;然后,副站1基于自身的已同步的参考时钟,将扩频测距信号产生模块产生的扩频测距信号,经发射射频前端天线发射到与副站1可视与主站不可视的副站2,副站2接收天线接收该测距信号,通过接收射频前端完成对接收信号的捕获跟踪,当跟踪环路跟踪稳定后,将码环滤波器输出的码频率控制字送入直接数字频率合成器DDS,直接数字频率合成器DDS将输出的正弦波信号与副站2锁相环路的恒温晶振进行鉴相,运用恒温晶振输出的高精度参考时钟实现副站2恒温晶振与副站1恒温晶振的频率同步;同时将副站1与副站2的几何时延测量值、大气延迟估计值及副站1接收主站帧头与本地1PPS的高精度时延差之和作为调整指令,实现对副站2的1PPS精确调整,实现副站1与副站2的高精度时间同步;以此类推,实现整个网络各站之间的高精度时间频率同步。
2.如权利要求1所述的多站高精度时间频率同步方法,其特征在于:各站通过卫星导航相对定位技术实现站间相对距离的高精度测量;主站与副1站、副站1与副站2分别通过卫星导航相对定位实现站间相对距离高精度测量,计算扩频测距信号从主站到副站1、副站1到副站2的几何时延。
3.如权利要求1所述的多站高精度时间频率同步方法,其特征在于:主站采用高精度铷钟输出工作频率为10.23MHz参考时钟,利用气象计对周围的温度、湿度及气压进行测量,精确估计各自传输路径的大气延迟。
4.如权利要求1所述的多站高精度时间频率同步方法,其特征在于:当跟踪环路跟踪稳定后,副站2将接收射频前端输出的信号分为两路,两路信号解扩、积分后的捕获跟踪信号送入码环鉴相器和载波鉴相器,通过码环鉴相器和载波鉴相器分别送入载波环滤波器和码环滤波器。
5.如权利要求4所述的多站高精度时间频率同步方法,其特征在于:载波环滤波器将捕获跟踪信号送入载波DDS产生两路正交的载波信号,一路与i路信号进行混频,另一路与q路信号混频。
6.如权利要求5所述的多站高精度时间频率同步方法,其特征在于:码环滤波器将输出的码频率控制字分为两路,一路通过伪码DDS,伪码DDS产生的伪码产生器驱动频率驱动伪码发生器产生伪码信号并送入解扩模块进行解扩,另一路送入直接数字频率合成器DDS将输出的10.23MHz正弦波信号送入鉴相器,经环路滤波器送入恒温晶振输出高精度的10.23MHz参考时钟,恒温晶振输出的高精度10.23MHz参考时钟通过锁相环路反馈到鉴相器进行鉴相,实现副站2恒温晶振与副站1恒温晶振的频率同步,其中DDS设计为32位。
7.如权利要求6所述的多站高精度时间频率同步方法,其特征在于:将副站1与副站2的几何时延测量值、大气延迟估计值及副站1接收主站帧头与本地1PPS的高精度时延差之和作为调整指令实现对副站2的1PPS精确调整,实现副站1与副站2的高精度时间同步,以此类推实现整个网络n个站之间的高精度时间频率同步。
CN201710784443.8A 2017-09-04 2017-09-04 多站高精度时间频率同步方法 Active CN107483137B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710784443.8A CN107483137B (zh) 2017-09-04 2017-09-04 多站高精度时间频率同步方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710784443.8A CN107483137B (zh) 2017-09-04 2017-09-04 多站高精度时间频率同步方法

Publications (2)

Publication Number Publication Date
CN107483137A true CN107483137A (zh) 2017-12-15
CN107483137B CN107483137B (zh) 2019-06-28

Family

ID=60603609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710784443.8A Active CN107483137B (zh) 2017-09-04 2017-09-04 多站高精度时间频率同步方法

Country Status (1)

Country Link
CN (1) CN107483137B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108732551A (zh) * 2018-06-01 2018-11-02 航天恒星科技有限公司 基于伪随机编码信号的收发组网雷达自主时间同步系统及方法
CN110113811A (zh) * 2019-05-23 2019-08-09 四川中电昆辰科技有限公司 时钟恢复同步装置、定位系统及定位方法
CN110658498A (zh) * 2019-09-02 2020-01-07 中国航天系统科学与工程研究院 一种网络化雷达系统时频同步方法
CN110752877A (zh) * 2019-11-04 2020-02-04 深圳市慧宇系统有限公司 光纤中传递时间频率信号的系统和方法
CN111917477A (zh) * 2020-08-12 2020-11-10 中国电子科技集团公司第四十四研究所 基于环状拓扑的分布式光纤宽频稳相传输系统及方法
CN111934773A (zh) * 2020-08-12 2020-11-13 中国电子科技集团公司第四十四研究所 基于环路拓扑的分布式光纤宽频稳相传输分配系统及方法
CN113055149A (zh) * 2021-02-20 2021-06-29 郑州中科集成电路与信息系统产业创新研究院 一种射频收发机级联系统下的时间同步和频率同步方法
CN113840370A (zh) * 2021-08-31 2021-12-24 全球能源互联网欧洲研究院 一种无线通信交互的时钟同步方法、装置及电子设备
US20220317315A1 (en) * 2021-04-05 2022-10-06 Bae Systems Information And Electronic Systems Integration Inc. All source position, navigation, and timing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789859A (zh) * 2010-01-29 2010-07-28 中国科学院空间科学与应用研究中心 机群链路双向异步通信信道的非相干测距/时间同步系统
US20110267229A1 (en) * 2010-04-30 2011-11-03 Thales Distributed Distance Measurement System for Locating a Geostationary Satellite
CN103945525A (zh) * 2014-04-30 2014-07-23 国家电网公司 基于层次结构的无线传感器网络时间同步方法
CN104950322A (zh) * 2015-05-21 2015-09-30 中国电子科技集团公司第十研究所 中长基线gnss接收机高精度相对定位方法
CN105842692A (zh) * 2016-03-17 2016-08-10 中国科学院遥感与数字地球研究所 一种insar测量中的大气校正方法
WO2017121452A1 (en) * 2016-01-13 2017-07-20 3Db Access Ag Method, device and system for secure distance measurement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789859A (zh) * 2010-01-29 2010-07-28 中国科学院空间科学与应用研究中心 机群链路双向异步通信信道的非相干测距/时间同步系统
US20110267229A1 (en) * 2010-04-30 2011-11-03 Thales Distributed Distance Measurement System for Locating a Geostationary Satellite
CN103945525A (zh) * 2014-04-30 2014-07-23 国家电网公司 基于层次结构的无线传感器网络时间同步方法
CN104950322A (zh) * 2015-05-21 2015-09-30 中国电子科技集团公司第十研究所 中长基线gnss接收机高精度相对定位方法
WO2017121452A1 (en) * 2016-01-13 2017-07-20 3Db Access Ag Method, device and system for secure distance measurement
CN105842692A (zh) * 2016-03-17 2016-08-10 中国科学院遥感与数字地球研究所 一种insar测量中的大气校正方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
梁丹丹: "基于伪码测距的高精度时间同步技术研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108732551B (zh) * 2018-06-01 2021-10-15 航天恒星科技有限公司 基于伪随机编码信号的收发组网雷达自主时间同步系统及方法
CN108732551A (zh) * 2018-06-01 2018-11-02 航天恒星科技有限公司 基于伪随机编码信号的收发组网雷达自主时间同步系统及方法
CN110113811A (zh) * 2019-05-23 2019-08-09 四川中电昆辰科技有限公司 时钟恢复同步装置、定位系统及定位方法
CN110113811B (zh) * 2019-05-23 2021-11-02 四川中电昆辰科技有限公司 时钟恢复同步装置、定位系统及定位方法
CN110658498A (zh) * 2019-09-02 2020-01-07 中国航天系统科学与工程研究院 一种网络化雷达系统时频同步方法
CN110658498B (zh) * 2019-09-02 2022-05-24 中国航天系统科学与工程研究院 一种网络化雷达系统时频同步方法
CN110752877A (zh) * 2019-11-04 2020-02-04 深圳市慧宇系统有限公司 光纤中传递时间频率信号的系统和方法
CN111917477A (zh) * 2020-08-12 2020-11-10 中国电子科技集团公司第四十四研究所 基于环状拓扑的分布式光纤宽频稳相传输系统及方法
CN111934773B (zh) * 2020-08-12 2021-06-08 中国电子科技集团公司第四十四研究所 一种基于环路拓扑的分布式光纤宽频稳相传输分配系统及方法
CN111917477B (zh) * 2020-08-12 2021-06-01 中国电子科技集团公司第四十四研究所 基于环状拓扑的分布式光纤宽频稳相传输系统及方法
CN111934773A (zh) * 2020-08-12 2020-11-13 中国电子科技集团公司第四十四研究所 基于环路拓扑的分布式光纤宽频稳相传输分配系统及方法
CN113055149A (zh) * 2021-02-20 2021-06-29 郑州中科集成电路与信息系统产业创新研究院 一种射频收发机级联系统下的时间同步和频率同步方法
CN113055149B (zh) * 2021-02-20 2022-09-06 郑州中科集成电路与系统应用研究院 一种射频收发机级联系统下的时间同步和频率同步方法
US20220317315A1 (en) * 2021-04-05 2022-10-06 Bae Systems Information And Electronic Systems Integration Inc. All source position, navigation, and timing
CN113840370A (zh) * 2021-08-31 2021-12-24 全球能源互联网欧洲研究院 一种无线通信交互的时钟同步方法、装置及电子设备
CN113840370B (zh) * 2021-08-31 2023-10-13 全球能源互联网欧洲研究院 一种无线通信交互的时钟同步方法、装置及电子设备

Also Published As

Publication number Publication date
CN107483137B (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
CN107483137B (zh) 多站高精度时间频率同步方法
CN107566070B (zh) 单向同步传输时间频率的方法
CN101644755B (zh) 在位置网络内定位流动位置接收机
CN105871495B (zh) 一种时间同步方法、通信地面站和用户终端
CN102023290B (zh) 高精度分布式脉冲信号到达时间差检测系统
CN107395309A (zh) 基于星间链路的高精度相对测距与时间同步方法
US11804871B2 (en) Systems and methods for synchronizing time, frequency, and phase among a plurality of devices
CN111342888B (zh) 一种无线反馈式伪卫星系统时间同步方法和系统
CN102778678A (zh) 一种高精度载波测距系统和方法
CN102830405A (zh) 一种多点定位系统高精度同步授时方法
CN110350998A (zh) 一种高动态下站间高精度时频同步方法
CN103220774A (zh) 一种借助蜂窝网进行精密授时的方法及系统
CN210742507U (zh) 一种基于全球导航卫星系统的标准时间频率源装置
CN106291642A (zh) 一种基于北斗卫星和伪卫星组合的定位系统
CN113507742B (zh) 一种地基导航定位系统时间同步方法
Qiao et al. Research on the Technology of Wireless Time Synchronization System
KR100521965B1 (ko) 위치추적 단말기의 다운 링크형 위치추적시스템과 그 방법
CN110286580A (zh) 一种光纤和无线授时守时同步无缝对接的授时方法
JP5478358B2 (ja) 位置及び/又は時刻情報配信装置
Ge et al. Wireless clock synchronization based on UWB positioning system and its ranging optimization
CN108549094A (zh) 基于中继卫星辅助的地基导航系统
AU2006202938B2 (en) Frequency Coherence within a Location Network
RU2381538C1 (ru) Способ распределения сигналов точного единого времени (тев) по телекоммуникационной сети и система распределения сигналов точного единого времени
Yi-jing et al. Distributed Node Signal Design and Baseband Processing Algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant