CN107475635A - 一种耐低温高冲击韧性风电用钢及其生产方法 - Google Patents

一种耐低温高冲击韧性风电用钢及其生产方法 Download PDF

Info

Publication number
CN107475635A
CN107475635A CN201710507980.8A CN201710507980A CN107475635A CN 107475635 A CN107475635 A CN 107475635A CN 201710507980 A CN201710507980 A CN 201710507980A CN 107475635 A CN107475635 A CN 107475635A
Authority
CN
China
Prior art keywords
steel
electricity generation
powered electricity
wind
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710507980.8A
Other languages
English (en)
Other versions
CN107475635B (zh
Inventor
王信康
黄胜永
孙晓明
张永
李福勇
李冠军
戴观文
董大西
杨锋功
周玉朋
李汉生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shijiazhuang Iron and Steel Co Ltd
Original Assignee
Shijiazhuang Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shijiazhuang Iron and Steel Co Ltd filed Critical Shijiazhuang Iron and Steel Co Ltd
Priority to CN201710507980.8A priority Critical patent/CN107475635B/zh
Publication of CN107475635A publication Critical patent/CN107475635A/zh
Application granted granted Critical
Publication of CN107475635B publication Critical patent/CN107475635B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Abstract

本发明公开了一种耐低温高冲击韧性风电用钢及其生产方法,风电用钢化学成分组成及质量百分含量为:C:0.30~0.38%、Si:0.20~0.35%、Mn:0.55~0.80%、Cr:0.85~1.15%、Mo:0.15~0.25%、Ni:0.10~0.20%、Al:0.020~0.040%、P≤0.018%、S≤0.008%、N:0.0040~0.0080%,余量为Fe和不可避免的杂质;生产方法包括冶炼、连铸、加热、轧制、调质处理工序。本发明通过Al和Ni的复合作用,显著提高了普通CrMo钢在高寒地区耐低温冲击韧性,达到了风电用钢的低温性能要求。本发明风电用钢‑40℃冲击功Akv2≥75J。

Description

一种耐低温高冲击韧性风电用钢及其生产方法
技术领域
本发明属于冶金技术领域,具体涉及一种耐低温高冲击韧性风电用钢及其生产方法。
背景技术
近年来能源短缺和环境污染问题成为世界关注的焦点,风能作为一种清洁的可再生能源越来越受到各国的重视。随着国家对风电产业的重视及扶持,许多传统电力设备制造企业纷纷加入到风电机组制造行列。高强度螺栓是风电机组安装和整体连接中至关重要的连接件,其质量是否能达到设计需要直接影响风电机组整体结构的承载能力、使用寿命与安全性能。高强度螺栓脆性断裂是一种危险性非常大的破坏形式,因此提供高质量的高强度螺栓成为保证整机性能和质量的必然要求,尤其在低温环境下服役的螺栓必须具有高冲击韧性和低的韧脆转变温度,才能保证工件的安全工作。
目前传统的风电螺栓一般采用35CrMo、42CrMo等牌号的钢种,力学性能达不到低温高冲击韧性要求(要求-40℃冲击功Akv2≥75J)。现有的传统螺栓仅能满足非高寒地区风电螺栓要求,不能达到在高寒地区工作的风电螺栓对强度与韧性的双向需要,迫切需要一种耐低温高冲击韧性兼顾强度的风电螺栓用钢。
发明内容
本发明要解决的技术问题是提供一种耐低温高冲击韧性风电用钢;本发明还提供一种耐低温高冲击韧性风电用钢的生产方法。
为解决上述技术问题,本发明采取的技术方案是:一种耐低温高冲击韧性风电用钢,所述风电用钢化学成分组成及质量百分含量为:C:0.30~0.38%、Si:0.20~0.35%、Mn:0.55~0.80%、Cr:0.85~1.15%、Mo:0.15~0.25%、Ni:0.10~0.20%、Al:0.020~0.040%、P≤0.018%、S≤0.008%、N:0.0040~0.0080%,余量为Fe和不可避免的杂质。
本发明各化学成分在钢中的作用机理为:
C:提高钢材硬度和强度的主要元素,C含量过低,材料在热处理后强度过低,无法满足风电用钢所需强度要求;C含量过高容易降低材料塑、韧性。
Si:显著强化铁素体,是保证强度的必须元素,过低强度不够;过高引起铁素体基体变脆,韧性下降。
Mn:为珠光体形成元素,可降低相变温度,对强度和韧性均有良好作用;但Mn含量过高则容易生成贝氏体,降低材料组织及硬度均匀性。
Cr:降低珠光体转变温度的合金元素,本发明中Cr、Mn同时加入,可有效降低珠光体片层间距,提高钢材强度和韧性;但Cr含量过高则容易生成贝氏体,降低钢材组织及硬度均匀性。
N:最经济有效的合金化元素,可以通过与Al结合形成AlN加强沉淀强化及细化晶粒效果;但是N含量过高容易生成较多的AlN增大连铸坯裂纹敏感性,同时增加钢中TiN夹杂的含量及尺寸,损害钢材韧性。
Al:与N结合细化晶粒,利于提高强韧性;但Al含量过高容易引起连铸时流动性变差,连铸坯容易产生裂纹,增大钢的冶炼难度。
S:元素控制过高会降低钢的洁净度,恶化钢的性能。
P:增加钢的脆性,降低冲击性能,将P元素含量控制在不超过0.018%,可以防止降低钢的综合性能。
Ni:既能提高钢的强度、又能提高其塑性与韧度。Ni在钢中不形成碳化物,只能固溶于奥氏体与铁素体,起着细化晶粒、强化铁素体、改善韧性,特别是改善低温冲击韧性能力的作用,同时又能增大钢的淬透性,对机械性能要求较高且均匀的大截面风电高强度螺栓特别有用。
本发明所述风电用钢力学性能:-40℃冲击功Akv2≥75J。
本发明所述风电用钢生产方法包括冶炼、连铸、加热、轧制、调质处理工序;所述冶炼工序转炉出钢过程添加镍板,VD真空脱气处理后喂入铝丝;所述调质处理工序采用整体调质热处理工艺。
本发明所述冶炼工序,转炉出钢过程钢包内加镍板1.0-2.5kg/t钢,VD真空脱气处理后喂入铝丝0.1-0.5kg/t钢。
本发明所述连铸工序,连铸中包样的化学成分组成及质量百分含量为:C:0.30~0.38%、Si:0.20~0.35%、Mn:0.55~0.80%、Cr:0.85~1.15%、Mo:0.15~0.25%、Ni:0.10~0.20%、Al:0.020~0.040%、P≤0.018%、S≤0.008%、N:0.0040~0.0080%,余量为Fe和不可避免的杂质。
本发明所述加热工序,钢坯加热至1050~1180℃,保温0.5~0.75h;为防止奥氏体晶粒过分长大在对钢坯的加热过程要严格控制加热温度及保温时间。
本发明所述轧制工序,开轧温度970~1030℃,终轧温度980~1050℃。
本发明所述调质处理工序,采用整体调质热处理工艺,淬火温度835~865℃,回火温度620~640℃。
采用上述技术方案所产生的有益效果在于:1、本发明通过添加Al形成AlN粒子,细化晶粒,提高强度的同时不损害钢的韧性。2、本发明通过添加Ni来降低钢的韧脆转变温度,Ni在钢中不形成碳化物,只能固溶于奥氏体与铁素体,起着细化晶粒、强化铁素体、改善韧性,既能提高钢的强度、又能提高其塑性与韧度,特别是改善低温冲击性能的同时又能增大钢的淬透性。3、通过Al和Ni的复合作用,显著提高了普通CrMo钢在高寒地区耐低温冲击韧性,达到了风电用钢的低温性能要求。4、本发明采用“转炉+LF+VD+连铸+连轧+调质处理”的工艺生产,生产流程简便,产品-40℃冲击功Akv2≥75J,性能稳定。
具体实施方式
下面结合具体实施例对本发明作进一步详细的说明。
实施例1
本实施例耐低温高冲击韧性风电用钢化学成分组成及质量百分含量见表1。
本实施例耐低温高冲击韧性风电用钢生产方法包括冶炼、连铸、加热、轧制、调质处理工序,具体工艺步骤如下所述:
(1)冶炼工序:转炉出钢过程钢包内加镍板1.0㎏/t钢,VD真空脱气处理后喂入铝丝0.3㎏/t钢;
(2)连铸工序:连铸中包样的化学成分组成及质量百分含量见表1;
(3)加热工序:钢坯加热至1107℃,保温0.6h;
(4)轧制工序:开轧温度988℃,终轧温度1008℃;
(5)调质处理工序:采用整体调质热处理工艺,淬火温度851℃,回火温度633℃。
本实施例耐低温高冲击韧性风电用钢性能见表3。
实施例2
本实施例耐低温高冲击韧性风电用钢化学成分组成及质量百分含量见表1。
本实施例耐低温高冲击韧性风电用钢生产方法包括冶炼、连铸、加热、轧制、调质处理工序,具体工艺步骤如下所述:
(1)冶炼工序:转炉出钢过程钢包内加镍板2.5㎏/t钢,VD真空脱气处理后喂入铝丝0.36㎏/t钢;
(2)连铸工序:连铸中包样的化学成分组成及质量百分含量见表1;
(3)加热工序:钢坯加热至1150℃,保温0.65h;
(4)轧制工序:开轧温度1000℃,终轧温度1011℃;
(5)调质处理工序:采用整体调质热处理工艺,淬火温度855℃,回火温度640℃。
本实施例耐低温高冲击韧性风电用钢性能见表3。
实施例3
本实施例耐低温高冲击韧性风电用钢化学成分组成及质量百分含量见表1。
本实施例耐低温高冲击韧性风电用钢生产方法包括冶炼、连铸、加热、轧制、调质处理工序,具体工艺步骤如下所述:
(1)冶炼工序:转炉出钢过程钢包内加镍板1.8㎏/t钢,VD真空脱气处理后喂入铝丝0.2㎏/t钢;
(2)连铸工序:连铸中包样的化学成分组成及质量百分含量见表1;
(3)加热工序:钢坯加热至1180℃,保温0.5h;
(4)轧制工序:开轧温度1030℃,终轧温度1050℃;
(5)调质处理工序:采用整体调质热处理工艺,淬火温度845℃,回火温度620℃。
本实施例耐低温高冲击韧性风电用钢性能见表3。
实施例4
本实施例耐低温高冲击韧性风电用钢化学成分组成及质量百分含量见表1。
本实施例耐低温高冲击韧性风电用钢生产方法包括冶炼、连铸、加热、轧制、调质处理工序,具体工艺步骤如下所述:
(1)冶炼工序:转炉出钢过程钢包内加镍板1.8㎏/t钢,VD真空脱气处理后喂入铝丝0.36㎏/t钢;
(2)连铸工序:连铸中包样的化学成分组成及质量百分含量见表1;
(3)加热工序:钢坯加热至1083℃,保温0.6h;
(4)轧制工序:开轧温度994℃,终轧温度1027℃;
(5)调质处理工序:采用整体调质热处理工艺,淬火温度856℃,回火温度630℃。
本实施例耐低温高冲击韧性风电用钢性能见表3。
实施例5
本实施例耐低温高冲击韧性风电用钢化学成分组成及质量百分含量见表1。
本实施例耐低温高冲击韧性风电用钢生产方法包括冶炼、连铸、加热、轧制、调质处理工序,具体工艺步骤如下所述:
(1)冶炼工序:转炉出钢过程钢包内加镍板2.0㎏/t钢,VD真空脱气处理后喂入铝丝0.5㎏/t钢;
(2)连铸工序:连铸中包样的化学成分组成及质量百分含量见表1;
(3)加热工序:钢坯加热至1051℃,保温0.75h;
(4)轧制工序:开轧温度970℃,终轧温度980℃;
(5)调质处理工序:采用整体调质热处理工艺,淬火温度865℃,回火温度635℃。
本实施例耐低温高冲击韧性风电用钢性能见表3。
实施例6
本实施例耐低温高冲击韧性风电用钢化学成分组成及质量百分含量见表1。
本实施例耐低温高冲击韧性风电用钢生产方法包括冶炼、连铸、加热、轧制、调质处理工序,具体工艺步骤如下所述:
(1)冶炼工序:转炉出钢过程钢包内加镍板1.6㎏/t钢,VD真空脱气处理后喂入铝丝0.1㎏/t钢;
(2)连铸工序:连铸中包样的化学成分组成及质量百分含量见表1;
(3)加热工序:钢坯加热至1104℃,保温0.6h;
(4)轧制工序:开轧温度996℃,终轧温度1006℃;
(5)调质处理工序:采用整体调质热处理工艺,淬火温度835℃,回火温度632℃。
本实施例耐低温高冲击韧性风电用钢性能见表3。
实施例7
本实施例耐低温高冲击韧性风电用钢化学成分组成及质量百分含量见表1。
本实施例耐低温高冲击韧性风电用钢生产方法包括冶炼、连铸、加热、轧制、调质处理工序,具体工艺步骤如下所述:
(1)冶炼工序:转炉出钢过程钢包内加镍板1.3㎏/t钢,VD真空脱气处理后喂入铝丝0.16㎏/t钢;
(2)连铸工序:连铸中包样的化学成分组成及质量百分含量见表1;
(3)加热工序:钢坯加热至1050℃,保温0.5h;
(4)轧制工序:开轧温度975℃,终轧温度988℃;
(5)调质处理工序:采用整体调质热处理工艺,淬火温度840℃,回火温度625℃。
本实施例耐低温高冲击韧性风电用钢性能见表3。
实施例8
本实施例耐低温高冲击韧性风电用钢化学成分组成及质量百分含量见表1。
本实施例耐低温高冲击韧性风电用钢生产方法包括冶炼、连铸、加热、轧制、调质处理工序,具体工艺步骤如下所述:
(1)冶炼工序:转炉出钢过程钢包内加镍板2.0㎏/t钢,VD真空脱气处理后喂入铝丝0.44㎏/t钢;
(2)连铸工序:连铸中包样的化学成分组成及质量百分含量见表1;
(3)加热工序:钢坯加热至1115℃,保温0.7h;
(4)轧制工序:开轧温度1005℃,终轧温度1015℃;
(5)调质处理工序:采用整体调质热处理工艺,淬火温度860℃,回火温度631℃。
本实施例耐低温高冲击韧性风电用钢性能见表3。
对比例1
本对比例耐低温高冲击韧性风电用钢化学成分组成及质量百分含量见表2。
本对比例耐低温高冲击韧性风电用钢生产方法包括冶炼、连铸、加热、轧制、调质处理工序,具体工艺步骤如下所述:
(1)冶炼工序:转炉出钢过程钢包内加镍板0㎏/t钢,VD真空脱气处理后喂入铝丝0㎏/t钢;
(2)连铸工序:连铸中包样的化学成分组成及质量百分含量见表2;
(3)加热工序:钢坯加热至1168℃,保温0.7h;
(4)轧制工序:开轧温度1028℃,终轧温度1044℃;
(5)调质处理工序:采用整体调质热处理工艺,淬火温度843℃,回火温度558℃。
本对比例耐低温高冲击韧性风电用钢性能见表3。
对比例2
本对比例耐低温高冲击韧性风电用钢化学成分组成及质量百分含量见表2。
本对比例耐低温高冲击韧性风电用钢生产方法包括冶炼、连铸、加热、轧制、调质处理工序,具体工艺步骤如下所述:
(1)冶炼工序:转炉出钢过程钢包内加镍板0㎏/t钢,VD真空脱气处理后喂入铝丝0㎏/t钢;
(2)连铸工序:连铸中包样的化学成分组成及质量百分含量见表2;
(3)加热工序:钢坯加热至1102℃,保温0.65h;
(4)轧制工序:开轧温度1005℃,终轧温度1007℃;
(5)调质处理工序:采用整体调质热处理工艺,淬火温度851℃,回火温度563℃。
本对比例耐低温高冲击韧性风电用钢性能见表3。
对比例3
本对比例耐低温高冲击韧性风电用钢化学成分组成及质量百分含量见表2。
本对比例耐低温高冲击韧性风电用钢生产方法包括冶炼、连铸、加热、轧制、调质处理工序,具体工艺步骤如下所述:
(1)冶炼工序:转炉出钢过程钢包内加镍板0㎏/t钢,VD真空脱气处理后喂入铝丝0㎏/t钢;
(2)连铸工序:连铸中包样的化学成分组成及质量百分含量见表2;
(3)加热工序:钢坯加热至1089℃,保温0.5h;
(4)轧制工序:开轧温度994℃,终轧温度989℃;
(5)调质处理工序:采用整体调质热处理工艺,淬火温度847℃,回火温度545℃。
本对比例耐低温高冲击韧性风电用钢性能见表3。
对比例4
本对比例耐低温高冲击韧性风电用钢化学成分组成及质量百分含量见表2。
本对比例耐低温高冲击韧性风电用钢生产方法包括冶炼、连铸、加热、轧制、调质处理工序,具体工艺步骤如下所述:
(1)冶炼工序:转炉出钢过程钢包内加镍板0㎏/t钢,VD真空脱气处理后喂入铝丝 0㎏/t钢;
(2)连铸工序:连铸中包样的化学成分组成及质量百分含量见表2;
(3)加热工序:钢坯加热至1071℃,保温0.55h;
(4)轧制工序:开轧温度972℃,终轧温度985℃;
(5)调质处理工序:采用整体调质热处理工艺,淬火温度865℃,回火温度541℃。
本对比例耐低温高冲击韧性风电用钢性能见表3。
表1 实施例1-8风电用钢的化学成分组成及质量百分含量(%)
表1中,余量为Fe和不可避免的杂质。
表2 对比例1-4风电用钢的化学成分组成及质量百分含量(%)
表2中,余量为Fe和不可避免的杂质。
表3 实施例和对比例的性能检测结果
由表3中产品性能检测结果可知实施例1-8中耐低温高冲击韧性风电用钢产品-40℃冲击功Akv2明显优于对比例1-4,满足在高寒地区耐低温冲击韧性,达到了风电螺栓用钢的低温性能要求,且产品性能稳定。
以上实施例仅用以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。

Claims (8)

1.一种耐低温高冲击韧性风电用钢,其特征在于,所述风电用钢化学成分组成及质量百分含量为:C:0.30~0.38%、Si:0.20~0.35%、Mn:0.55~0.80%、Cr:0.85~1.15%、Mo:0.15~0.25%、Ni:0.10~0.20%、Al:0.020~0.040%、P≤0.018%、S≤0.008%、N:0.0040~0.0080%,余量为Fe和不可避免的杂质。
2.根据权利要求1所述的一种耐低温高冲击韧性风电用钢,其特征在于,所述风电用钢力学性能:-40℃冲击功Akv2≥75J。
3.基于权利要求1或2所述的一种耐低温高冲击韧性风电用钢的生产方法,其特征在于,所述风电用钢生产方法包括冶炼、连铸、加热、轧制、调质处理工序;所述冶炼工序转炉出钢过程添加镍板,VD真空脱气处理后喂入铝丝;所述调质处理工序采用整体调质热处理工艺。
4.根据权利要求3所述的一种耐低温高冲击韧性风电用钢的生产方法,其特征在于,所述冶炼工序,转炉出钢过程钢包内加镍板1.0-2.5kg/t钢,VD真空脱气处理后喂入铝丝0.1-0.5kg/t钢。
5.根据权利要求3所述的一种耐低温高冲击韧性风电用钢的生产方法,其特征在于,所述连铸工序,连铸中包样的化学成分组成及质量百分含量为:C:0.30~0.38%、Si:0.20~0.35%、Mn:0.55~0.80%、Cr:0.85~1.15%、Mo:0.15~0.25%、Ni:0.10~0.20%、Al:0.020~0.040%、P≤0.018%、S≤0.008%、N:0.0040~0.0080%,余量为Fe和不可避免的杂质。
6.根据权利要求3-5任意一项所述的一种耐低温高冲击韧性风电用钢的生产方法,其特征在于,所述加热工序,钢坯加热至1050~1180℃,保温0.5~0.75h。
7.根据权利要求3-5任意一项所述的一种耐低温高冲击韧性风电用钢的生产方法,其特征在于,所述轧制工序,开轧温度970~1030℃,终轧温度980~1050℃。
8.根据权利要求3-5任意一项所述的一种耐低温高冲击韧性风电用钢的生产方法,其特征在于,所述调质处理工序,采用整体调质热处理工艺,淬火温度835~865℃;回火温度620~640℃。
CN201710507980.8A 2017-06-28 2017-06-28 一种耐低温高冲击韧性风电用钢及其生产方法 Active CN107475635B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710507980.8A CN107475635B (zh) 2017-06-28 2017-06-28 一种耐低温高冲击韧性风电用钢及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710507980.8A CN107475635B (zh) 2017-06-28 2017-06-28 一种耐低温高冲击韧性风电用钢及其生产方法

Publications (2)

Publication Number Publication Date
CN107475635A true CN107475635A (zh) 2017-12-15
CN107475635B CN107475635B (zh) 2019-10-11

Family

ID=60596241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710507980.8A Active CN107475635B (zh) 2017-06-28 2017-06-28 一种耐低温高冲击韧性风电用钢及其生产方法

Country Status (1)

Country Link
CN (1) CN107475635B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108559909A (zh) * 2018-05-18 2018-09-21 石家庄钢铁有限责任公司 一种高强韧性和良好焊接性矿山机械用钢及其生产方法
CN109112398A (zh) * 2018-08-29 2019-01-01 承德建龙特殊钢有限公司 一种含铬合金棒材及其制备方法
CN112779468A (zh) * 2020-12-16 2021-05-11 石家庄钢铁有限责任公司 一种高性能汽车齿轮用钢及其生产方法
CN114891947A (zh) * 2022-04-29 2022-08-12 石钢京诚装备技术有限公司 一种提高风电法兰用钢低温冲击性能的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102367549A (zh) * 2011-11-09 2012-03-07 南京钢铁股份有限公司 一种大型风力发电机齿轮用棒材及其制备方法
JP2014177687A (ja) * 2013-03-15 2014-09-25 Jfe Steel Corp 落重特性に優れた高張力鋼板およびその製造方法
CN104694851A (zh) * 2015-03-13 2015-06-10 山东钢铁股份有限公司 一种风电偏航齿圈用钢及其制造方法
CN106391982A (zh) * 2016-08-31 2017-02-15 张家港中环海陆特锻股份有限公司 大型风电用叶轮锁紧环锻件的制造方法
CN106435332A (zh) * 2015-08-06 2017-02-22 江苏金源锻造股份有限公司 一种低风速风电机组的40CrNiMoA中碳合金钢风电主轴制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102367549A (zh) * 2011-11-09 2012-03-07 南京钢铁股份有限公司 一种大型风力发电机齿轮用棒材及其制备方法
JP2014177687A (ja) * 2013-03-15 2014-09-25 Jfe Steel Corp 落重特性に優れた高張力鋼板およびその製造方法
CN104694851A (zh) * 2015-03-13 2015-06-10 山东钢铁股份有限公司 一种风电偏航齿圈用钢及其制造方法
CN106435332A (zh) * 2015-08-06 2017-02-22 江苏金源锻造股份有限公司 一种低风速风电机组的40CrNiMoA中碳合金钢风电主轴制造方法
CN106391982A (zh) * 2016-08-31 2017-02-15 张家港中环海陆特锻股份有限公司 大型风电用叶轮锁紧环锻件的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵沛 主编: "《炉外精炼及铁水预处理实用技术手册》", 30 June 2004, 冶金工业出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108559909A (zh) * 2018-05-18 2018-09-21 石家庄钢铁有限责任公司 一种高强韧性和良好焊接性矿山机械用钢及其生产方法
CN109112398A (zh) * 2018-08-29 2019-01-01 承德建龙特殊钢有限公司 一种含铬合金棒材及其制备方法
CN112779468A (zh) * 2020-12-16 2021-05-11 石家庄钢铁有限责任公司 一种高性能汽车齿轮用钢及其生产方法
CN114891947A (zh) * 2022-04-29 2022-08-12 石钢京诚装备技术有限公司 一种提高风电法兰用钢低温冲击性能的方法
CN114891947B (zh) * 2022-04-29 2023-08-22 石钢京诚装备技术有限公司 一种提高风电法兰用钢低温冲击性能的方法

Also Published As

Publication number Publication date
CN107475635B (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
KR102516710B1 (ko) 일종의 풍력 발전기 메인 샤프트 베어링용 강재 및 제조 방법
CN103122433B (zh) 一种超高碳型轴承钢
CN105506494B (zh) 一种屈服强度800MPa级高韧性热轧高强钢及其制造方法
CN102676945B (zh) 一种水电工程用易焊接调质高强韧性钢板及其生产方法
CN107475635B (zh) 一种耐低温高冲击韧性风电用钢及其生产方法
CN108220807B (zh) 一种低密度高铝超高碳轴承钢及其制备方法
CN101016603A (zh) 一种含颗粒状硼化物的高硼铸钢及其制备方法
WO2014139453A1 (zh) 富Cu纳米团簇强化的超高强度铁素体钢及其制造方法
CN101348878A (zh) 等温淬火贝氏体球墨铸铁及其应用
CN109023119A (zh) 一种具有优异塑韧性的耐磨钢及其制造方法
CN109735770B (zh) 含石墨高强韧性贝氏体耐磨钢及其制备方法
CN1851026A (zh) 高铬铸钢磨球及制备方法
JP2021188116A (ja) 高炭素軸受鋼及びその製造方法
CN110257695B (zh) 一种含铜cadi耐磨材料及其热处理工艺
CN105624562A (zh) 一种超高强度抽油杆用钢及制造方法
CN108179356B (zh) 一种高淬透大尺寸风电螺栓用钢及其制造方法
CN102851569B (zh) 一种耐高温抗磨白口铸铁件及生产方法
CN106756509A (zh) 一种耐高温合金结构钢及其热处理工艺
CN104018081B (zh) 一种耐低温专用钢筋及生产方法
CN111850399A (zh) 具有良好耐磨性耐蚀塑料模具钢及其制备方法
CN108048741A (zh) 热轧贝氏体钢轨及其制备方法
CN105568113A (zh) 一种高强度Fe-Ni-Cr基高温耐蚀合金的复合强韧化工艺
CN113897541B (zh) 一种高铬耐磨钢球及其铸造工艺
CN1080327A (zh) 低合金球磨机耐磨衬板及制造工艺
CN106893941A (zh) 一种低合金耐磨钢及其热处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant