CN107474550A - 一种快响应高敏感度聚合物基气敏材料及其制备方法与应用 - Google Patents
一种快响应高敏感度聚合物基气敏材料及其制备方法与应用 Download PDFInfo
- Publication number
- CN107474550A CN107474550A CN201710616710.0A CN201710616710A CN107474550A CN 107474550 A CN107474550 A CN 107474550A CN 201710616710 A CN201710616710 A CN 201710616710A CN 107474550 A CN107474550 A CN 107474550A
- Authority
- CN
- China
- Prior art keywords
- montmorillonite
- polymer matrix
- fast
- sensitive
- gas sensitive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/125—Composition of the body, e.g. the composition of its sensitive layer
- G01N27/126—Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/125—Composition of the body, e.g. the composition of its sensitive layer
- G01N27/127—Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Electrochemistry (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明属于功能复合材料技术领域,为了解决导电粒子填充硅橡胶气敏材料气体响应时间较长的问题,提供了一种快响应高敏感度聚合物基气敏材料及其制备方法,该气敏材料包含以下各组分,各组分的质量份为:纳米导电粒子2‑35份,硅橡胶100份,蒙脱土 0.05‑7份;制备工艺为溶液共混后浇膜成型。该材料对有毒、易燃等溶剂蒸汽具有检测和预警功能,气敏响应时间明显减小,短时间内即可达到高的气敏强度,且具有很好的可重复使用稳定性。
Description
技术领域
本发明属于功能复合材料技术领域,具体涉及一种快响应高敏感度的聚合物基气敏材料及其制备方法和应用。
背景技术
硅橡胶的主要成分是含以 -Si-O-为重复单元形成的无机主链、甲基为代表的有机侧链的聚硅烷,由于硅烷链的特殊性,使得硅橡胶具备优异的耐热﹑耐寒、耐老化、耐酸碱及耐溶剂等性能。碳纳米纤维、石墨烯等纳米导电粒子的添加,赋予了硅橡胶材料优异的力学性能同时具有导电、导热等功能特性。目前导电硅橡胶在电磁屏蔽、抗静电、与电阻外场依赖性有关的人工智能皮肤、力敏传感器等很多方面得到了广泛应用。
在粒子填充聚合物基气敏材料已有的报道中,存在这样一个普遍现象:低导电粒子含量时,可以实现快速响应但起始电阻大导致电阻可变范围有限,高导电粒子含量时(渗流区间后网络结构完善区)起始电阻较小但响应缓慢的缺点。这严重限制了导电粒子/硅橡胶导电材料在高要求化气敏材料领域的应用。因此,设计一种新的既能快速响应又具有高敏感性的气敏复合材料,对进一步拓展其应用领域意义重大。
发明内容
为了解决导电粒子填充硅橡胶气敏材料气体响应时间较长的问题,提供了一种快响应高敏感度聚合物基气敏材料及其制备方法,该材料对有毒、易燃等溶剂蒸汽具有检测和预警功能,气敏响应时间明显减小,短时间内即可达到高的气敏强度,且具有很好的可重复使用稳定性。
为了达到上述发明目的,本发明采用以下技术方案:一种快响应高敏感度聚合物基气敏材料包含以下各组份,各组份的重量份为:
纳米导电粒子 2-35份,
硅橡胶 100份,
蒙脱土 0.05-7份。
所述的纳米导电粒子选自炭黑、碳管、碳纳米纤维、石墨烯、石墨烯带等中一种或几种。
所述的硅橡胶选自乙烯基硅橡胶,优选为液态的乙烯基硅油与含氢硅油的交联物。
所述的蒙脱土材料选自烷基铵盐改性的有机蒙脱土。蒙脱土因其具有优异的低用量高力学增强效果与阻燃性能等,已被广泛用来制备高性能聚合物基纳米复合材料。
所述的快响应高敏感度聚合物基气敏材料的制备方法为以下步骤:
(1)填料预分散:将蒙脱土与纳米导电粒子共混,加入溶剂,在室温条件下,超声作用,得到纳米导电粒子和蒙脱土的悬浮分散液;
作为优选,超声分散10-30 min,频率1000-100000Hz;
(2)导电纳米粒子/蒙脱土填充硅橡胶膜材料的制备:先将硅橡胶溶于溶剂,然后与纳米导电粒子和蒙脱土的悬浮分散液高速搅拌混合;条件依次为:首先500 rpm搅拌10 min,然后2000 rpm搅拌15-30 min,最后3000 rpm搅拌15-30 min;得到纳米导电粒子/蒙脱土改性硅橡胶的混合溶液;
上述溶剂为易挥发的硅橡胶的良溶剂,作为优选,选自正己烷、甲苯、四氢呋喃中一种或几种,溶剂的使用量为使溶质溶解或完全分散的量,作为优选,步骤(1)中溶剂的使用量为1 g纳米导电粒子用15-50 ml溶剂;步骤(2)中溶剂使用量为:4 ml溶剂投入1g硅橡胶原料。
(3)步骤(2)得到的混合溶液与含氢硅油、抑制剂混合,然后加入催化剂,机械搅拌混合均匀后倒入模具里浇膜,排溶剂脱气泡后,加热硫化,制备得到纳米导电粒子/蒙脱土填充硅橡胶膜材料;
含氢硅油、抑制剂与催化剂的使用参照常规工艺。作为优选,含氢硅油的使用量为氢与乙烯基官能团的摩尔比例为1~2:1。抑制剂选自氨基化合物、金属盐、有机磷化合物、炔醇类等中一种或几种,用量优选为乙烯基硅油重量的0.05-5%。作为优选,催化剂为铂催化剂,如卡斯特催化剂,优选用量为铂金属可固化硅橡胶中的含量范围以重量计为10 ppm至100ppm。
作为优选,机械搅拌为500 rpm,5-15 min;
作为优选,硫化温度为50-100℃。
所述的一种快响应高敏感度聚合物基气敏材料在挥发性溶剂气敏传感器方面上的应用。蒙脱土对球形粒子而言,其与导电粒子的接触面更大,导电粒子分布受其影响更强。通过调节蒙脱土的含量和分散状态,可与导电粒子结合构筑出不同的导电网络结构。此外,蒙脱土在外场作用下易取向,这也将诱导导电网络随力场作用发生变化。从而实现在基体低溶胀形变的条件下实现导电网络结构的大幅度变化,使复合材料达到快速响应和高敏感度的特性。
与现有技术相比,本发明的有益效果是:
(1)本发明工艺流程简单,操作简单,与直接制备导电粒子/硅橡胶材料一样,无需添加额外步骤;
(2)气敏材料具有较低的初始电阻,但气敏响应度高,响应速度快;
(3)该气敏材料具有良好的稳定性和重复使用性。
附图说明
图1为气体敏感性测试实验装置示意图;
图2为实施例1和对比例1在正己烷溶剂40 ℃饱和蒸汽压下的一次气敏响应测试结果曲线;
图3为实施例1在正己烷溶剂40℃饱和蒸气压下的多次循环电阻变化情况曲线。
具体实施方式
下面通过实施例对本发明作进一步详细说明,实施例中所用原料均可市购或采用常规方法制备,使用量均以重量份表示。
实施例1
(1)填料预分散:将0.5份的季铵盐改性蒙脱土和16份的碳纳米纤维共混,加入正己烷,然后在室温条件下,采用超声10000Hz分散20 min,得到碳纳米纤维和季铵盐改性蒙脱土的悬浮分散液,正己烷的用量为1g碳纳米纤维用20ml正己烷;
(2)碳纳米纤维/季铵盐改性蒙脱土/乙烯基硅油共混物的制备:先将液态的乙烯基硅油100份溶于正己烷,然后将其与碳纳米纤维和季铵盐改性蒙脱土的混合悬浮液混合,并高速搅拌,条件依次为:首先500 rpm搅拌10 min,然后2000 rpm搅拌20 min,最后3000 rpm搅拌20 min;得到碳纳米纤维/季铵盐改性蒙脱土/乙烯基硅油的混合溶液。正己烷中乙烯基硅油的投料比为:4 ml正己烷投入1 g乙烯基硅油;
(3)碳纳米纤维/季铵盐改性蒙脱土/硅橡胶膜材料的成型:将步骤2得到的混合溶液、含氢硅油、乙烯基硅油质量的3%的抑制剂(甲基丁炔醇)混合,含氢硅油中氢官能团与乙烯基与的摩尔比例为2:1,然后加入卡斯特催化剂,其中铂金属在可固化硅橡胶中的含量范围以重量计为50 ppm。机械搅拌:500 rpm,10 min混合均匀。倒入模具里浇膜,排溶剂脱气泡后,加热硫化(温度为80 ℃,时间为10 min),得到含有碳纳米纤维/季铵盐改性蒙脱土的快响应高敏感度聚合物基气敏材料膜状试样1。
实施例2
(1)填料预分散:将7份的十六烷基三甲基溴化铵蒙脱土和35份的炭黑共混,加入溶剂四氢呋喃,然后在室温条件下,采用超声分散100000Hz,10 min,得到炭黑和蒙脱土的悬浮分散液;四氢呋喃用量为1 g炭黑用10 ml四氢呋喃;
(2)炭黑/十六烷基三甲基溴化铵蒙脱土/乙烯基硅油共混物的制备:先将乙烯基硅油100份溶于四氢呋喃,然后将其与炭黑和十六烷基三甲基溴化铵蒙脱土的混合悬浮液混合,并高速搅拌,条件依次为:首先500 rpm搅拌10 min,然后2000 rpm搅拌15 min,最后3000rpm搅拌15 min;得到炭黑/十六烷基三甲基溴化铵蒙脱土/乙烯基硅油的混合溶液,乙烯基硅油的投料比为:4 ml四氢呋喃投入1g乙烯基硅油;
(3)炭黑/十六烷基三甲基溴化铵蒙脱土/硅橡胶膜材料的成型:将步骤2得到的共混溶液、含氢硅油、乙烯基硅油质量的0.4%的抑制剂(甲基丁炔醇)混合,其中含氢硅油中氢官能团与乙烯基与的摩尔比例为1:1,然后加入卡斯特催化剂,其中铂金属在可固化硅橡胶中的含量范围以重量计为10 ppm。机械搅拌10 min混合均匀。倒入模具里浇膜,排溶剂脱气泡后,加热硫化(温度为50 ℃,时间为15 min),得到含有炭黑/十六烷基三甲基溴化铵蒙脱土的快响应高敏感度聚合物基气敏材料状试样2。
实施例3
(1)填料预分散:按重量份数计,将0.05份的蒙脱土和4份硅烷改性碳管共混,加入溶剂甲苯,然后在室温条件下,采用超声分散5000 Hz, 30 min,得到碳管和蒙脱土的悬浮分散液;甲苯的用量为1 g碳管用20 ml溶剂;
(2)碳管/蒙脱土/乙烯基硅油共混物的制备:先将乙烯基硅油100份溶于甲苯,然后将其与碳管和蒙脱土的混合悬浮液混合。并高速搅拌,条件依次为:首先500 rpm搅拌10 min,然后2000 rpm搅拌15 min,最后3000 rpm搅拌15 min;得到碳管/蒙脱土/硅橡胶的混合溶液。乙烯基硅油的投料比为:3 ml甲苯投入1 g乙烯基硅油;
(3)碳管/蒙脱土/硅橡胶膜材料的成型:将步骤2得到的共混溶液与含氢硅油、乙烯基硅油质量的2%的抑制剂(马来酸二烯丙酯)混合,其中含氢硅油中氢官能团与乙烯基与的摩尔比例为1:1,然后加入卡斯特催化剂,其中铂金属在可固化硅橡胶中的含量范围以重量计为100 ppm。机械搅拌10 min混合均匀。倒入模具里浇膜,排溶剂脱气泡后,加热硫化(温度为100 ℃,8 min),得到含有碳管/蒙脱土的快响应高敏感度聚合物基气敏材料膜状样3。
实施例4
(1)填料预分散:按重量份数计,将1份的蒙脱土和4份的石墨烯共混,加入溶剂正己烷,然后在室温条件下,采用超声分散50000Hz,10min,得到石墨烯和蒙脱土的悬浮分散液;正己烷的用量为1 g石墨烯用50 ml溶剂;
(2)石墨烯/蒙脱土/乙烯基硅油共混物的制备:先将乙烯基硅油100份溶于正己烷,然后将其与石墨烯和蒙脱土的混合悬浮液混合。并高速搅拌,条件依次为:首先500 rpm搅拌10 min,然后2000 rpm搅拌15 min,最后3000 rpm搅拌15 min;得到石墨烯/蒙脱土/乙烯基硅油的混合溶液。乙烯基硅油的投料比为:5 ml正己烷投入1 g乙烯基硅油原料;
(3)石墨烯/蒙脱土/硅橡胶膜状样的成型:将步骤2得到的共混溶液与含氢硅油、乙烯基硅油质量的1%的抑制剂(马来酸二烯丙酯)混合,其中含氢硅油中氢官能团与乙烯基与的摩尔比例为2:1,然后加入卡斯特催化剂,其中铂金属在可固化硅橡胶中的含量范围以重量计为80 ppm。机械搅拌10min混合均匀。倒入模具里浇膜,排溶剂脱气泡后,加热硫化(温度为70℃,时间为15 min),得到含有石墨烯/蒙脱土的快响应高敏感度聚合物基气敏材料膜状样4。
对比例1:
取16份碳纳米纤维放于烧杯中,加入适量正己烷,然后在室温条件下,采用超声10000Hz分散20 min配置填料悬浮液,然后与乙烯基硅油的正己烷溶液共混(正己烷溶剂的投料比为4 ml溶剂/1克乙烯基硅油),高速搅拌,条件依次为:500 rpm-10 min,2000 rpm-20 min,3000 rpm-20 min。得到碳纳米纤维/乙烯基硅油的混合溶液。
将得到的共混溶液与含氢硅油、乙烯基硅油质量的3%的抑制剂(甲基丁炔醇)混合,然后加入催化剂,机械搅拌10 min混合均匀。倒入模具里浇膜,排溶剂脱气泡后,加热硫化(温度为80 ℃,时间为10 min),得到含有碳纳米纤维/蒙脱土的硅橡胶复合材料;
测试例:采用以下测试方式对本发明的产品进行气敏性能测试。
图1 为气体敏感性测试实验装置,将膜材料两端接导线后置于密闭三口瓶的液面上方,导电与电阻计相连实时监测材料的电阻变化。测试温度控制在40 ℃,单次敏感性评价时,试样在有机溶剂气氛中每个循环的浸没时间与取出时间依次为250 s、100 s;循环测试时,试样在有机溶剂气氛中每个循环的浸没时间与取出时间均为150 s。
图2为实施例1和对比例1在正己烷溶剂40 ℃饱和蒸汽压下的一次气敏响应测试结果曲线。对比可知蒙脱土的添加使得复合材料对溶剂蒸汽的响应时间明显加快,达到106的气敏响应强度(R/R 0)所需时间由未添加的250 s减小到60 s。图3为实施例1在正己烷溶剂40℃饱和蒸气压下的多次循环电阻变化情况,从中可知碳纳米纤维/蒙脱土/硅橡胶复合材料具有优异的气敏性能,高响应度且循环可重复性好。
Claims (9)
1.一种快响应高敏感度聚合物基气敏材料,其特征在于,所述的聚合物基气敏材料由以下各组份制成,各组份的重量份为:
纳米导电粒子 2-35份,
硅橡胶 100份,
蒙脱土 0.05-7份。
2.根据权利要求1所述的快响应高敏感度聚合物基气敏材料,其特征在于,所述的纳米导电粒子选自炭黑、碳管、碳纳米纤维、石墨烯、石墨烯带中一种或几种。
3.根据权利要求1所述的快响应高敏感度聚合物基气敏材料,其特征在于,所述的硅橡胶选自乙烯基硅橡胶。
4.根据权利要求1所述的快响应高敏感度聚合物基气敏材料,其特征在于,所述的蒙脱土材料选自烷基铵盐改性的有机蒙脱土。
5.一种如权利要求1-4中任一项所述的快响应高敏感度聚合物基气敏材料的制备方法,其特征在于,所述制备方法为以下步骤:
(1)填料预分散:将蒙脱土与纳米导电粒子共混,加入溶剂,在室温条件下,超声作用,得到纳米导电粒子和蒙脱土的悬浮分散液;
(2)导电纳米粒子/蒙脱土填充硅橡胶膜材料的制备:先将硅橡胶溶于溶剂,然后与纳米导电粒子和蒙脱土的悬浮分散液高速搅拌混合;条件依次为:首先500 rpm搅拌10 min,然后2000 rpm搅拌15-30 min,最后3000 rpm搅拌15-30 min;得到纳米导电粒子/蒙脱土改性硅橡胶的混合溶液;
(3)步骤(2)得到的混合溶液与含氢硅油、抑制剂混合,然后加入催化剂,机械搅拌混合均匀后倒入模具里浇膜,排溶剂脱气泡后,加热硫化,制备得到纳米导电粒子/蒙脱土填充硅橡胶膜材料。
6.根据权利要求5所述的一种快响应高敏感度聚合物基气敏材料的制备方法,其特征在于,所述溶剂为易挥发的硅橡胶的良溶剂。
7.根据权利要求5所述的一种快响应高敏感度聚合物基气敏材料的制备方法,其特征在于,抑制剂的用量为含氢硅油重量的0.01-5%。
8.根据权利要求5所述的一种快响应高敏感度聚合物基气敏材料的制备方法,其特征在于,步骤(3)中硫化温度为50-100℃。
9.一种如权利要求1所述的一种快响应高敏感度聚合物基气敏材料在挥发性溶剂气敏传感器方面上的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710616710.0A CN107474550B (zh) | 2017-07-20 | 2017-07-20 | 一种快响应高敏感度聚合物基气敏材料及其制备方法与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710616710.0A CN107474550B (zh) | 2017-07-20 | 2017-07-20 | 一种快响应高敏感度聚合物基气敏材料及其制备方法与应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107474550A true CN107474550A (zh) | 2017-12-15 |
CN107474550B CN107474550B (zh) | 2020-08-11 |
Family
ID=60597820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710616710.0A Active CN107474550B (zh) | 2017-07-20 | 2017-07-20 | 一种快响应高敏感度聚合物基气敏材料及其制备方法与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107474550B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110763737A (zh) * | 2018-11-22 | 2020-02-07 | 上海因士环保科技有限公司 | 一种纳米导电材料/聚合物复合气敏传感器及其制备方法 |
CN113150358A (zh) * | 2021-04-29 | 2021-07-23 | 杭州师范大学 | 一种导电氟硅橡胶泡沫复合材料及其制备方法和应用 |
CN115058120A (zh) * | 2022-06-28 | 2022-09-16 | 中国科学技术大学 | 一种柔性复合导电材料、其制备方法及应用 |
WO2024014446A1 (ja) * | 2022-07-15 | 2024-01-18 | 三洋化成工業株式会社 | 匂い測定装置、センサ素子、およびその製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103525093A (zh) * | 2013-07-16 | 2014-01-22 | 杭州师范大学 | 一种导电粒子/硅橡胶压敏材料及其制备方法与应用 |
CN104327512A (zh) * | 2014-08-18 | 2015-02-04 | 杭州师范大学 | 一种含有碳纳米管的硅橡胶复合材料的制备方法 |
KR20160082093A (ko) * | 2014-12-30 | 2016-07-08 | 그레이스 콘티넨탈 코리아 주식회사 | 실리콘 고무 스펀지용 조성물 및 실리콘 고무 스펀지 제조방법 |
CN106257275A (zh) * | 2016-06-21 | 2016-12-28 | 杭州师范大学 | 一种开孔高分子气敏材料及其制备方法与应用 |
-
2017
- 2017-07-20 CN CN201710616710.0A patent/CN107474550B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103525093A (zh) * | 2013-07-16 | 2014-01-22 | 杭州师范大学 | 一种导电粒子/硅橡胶压敏材料及其制备方法与应用 |
CN104327512A (zh) * | 2014-08-18 | 2015-02-04 | 杭州师范大学 | 一种含有碳纳米管的硅橡胶复合材料的制备方法 |
KR20160082093A (ko) * | 2014-12-30 | 2016-07-08 | 그레이스 콘티넨탈 코리아 주식회사 | 실리콘 고무 스펀지용 조성물 및 실리콘 고무 스펀지 제조방법 |
CN106257275A (zh) * | 2016-06-21 | 2016-12-28 | 杭州师范大学 | 一种开孔高分子气敏材料及其制备方法与应用 |
Non-Patent Citations (1)
Title |
---|
LEI LIU等: "Clay Assisted Dispersion of Carbon Nanotubes in Conductive Epoxy Nanocomposites", 《ADV. FUNCT. MATER.》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110763737A (zh) * | 2018-11-22 | 2020-02-07 | 上海因士环保科技有限公司 | 一种纳米导电材料/聚合物复合气敏传感器及其制备方法 |
CN110763737B (zh) * | 2018-11-22 | 2022-05-31 | 因士(上海)科技有限公司 | 一种纳米导电材料/聚合物复合气敏传感器的制备方法 |
CN113150358A (zh) * | 2021-04-29 | 2021-07-23 | 杭州师范大学 | 一种导电氟硅橡胶泡沫复合材料及其制备方法和应用 |
CN113150358B (zh) * | 2021-04-29 | 2022-06-28 | 杭州师范大学 | 一种导电氟硅橡胶泡沫复合材料及其制备方法和应用 |
CN115058120A (zh) * | 2022-06-28 | 2022-09-16 | 中国科学技术大学 | 一种柔性复合导电材料、其制备方法及应用 |
CN115058120B (zh) * | 2022-06-28 | 2024-09-24 | 中国科学技术大学 | 一种柔性复合导电材料、其制备方法及应用 |
WO2024014446A1 (ja) * | 2022-07-15 | 2024-01-18 | 三洋化成工業株式会社 | 匂い測定装置、センサ素子、およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107474550B (zh) | 2020-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107474550A (zh) | 一种快响应高敏感度聚合物基气敏材料及其制备方法与应用 | |
Xu et al. | Payne effect of carbon black filled natural rubber compounds and their carbon black gels | |
Sun et al. | Improvement of silica dispersion in solution polymerized styrene–butadiene rubber via introducing amino functional groups | |
Downey et al. | Growth mechanism of poly (divinylbenzene) microspheres in precipitation polymerization | |
Reculusa et al. | Synthesis of daisy-shaped and multipod-like silica/polystyrene nanocomposites | |
Castellano et al. | Influence of the silane modifiers on the surface thermodynamic characteristics and dispersion of the silica into elastomer compounds | |
Park et al. | Preparation of thermosensitive PNIPAm‐grafted mesoporous silica particles | |
Ha et al. | Composites of Single‐Walled Carbon Nanotubes and Styrene‐Isoprene Copolymer Latices | |
Schoth et al. | Structure control in PMMA/silica hybrid nanoparticles by surface functionalization | |
Kong et al. | Carbon nanotubes-bridged-fumed silica as an effective binary nanofillers for reinforcement of silicone elastomers | |
Ceylan et al. | Preparation of partially neutralized poly (acrylic acid) microspheres via inverse pickering suspension polymerization | |
CN106543478A (zh) | 一种石墨烯负载富勒烯杂化物的制备及聚合物阻燃应用 | |
CN109735111A (zh) | 一种高导电粘性加成型导电硅橡胶及制备方法 | |
CN109867964A (zh) | 超高压电缆附件用半导电液体硅橡胶组合物及其制备方法 | |
Marins et al. | Ionic liquid-based organically modified silica for the development of new electrorheological fluids | |
Xiang et al. | Grafting polyisoprene onto surfaces of nanosilica via RAFT polymerization and modification of natural rubber | |
Zhang et al. | Effect of agglomeration on the selective distribution of nanoparticles in binary polymer blends | |
Xu et al. | Rheology of end-linking polydimethylsiloxane networks filled with silica | |
Kaneko et al. | Preparation and properties of hyperbranched poly (amidoamine) grafted onto a colloidal silica surface | |
CN104020622B (zh) | 显示用粒子、显示用粒子分散液、显示媒介以及显示装置 | |
Lagazzo et al. | A rheological method for selecting nano-kaolin powder as filler in SBR rubber | |
Wright et al. | Reversible sol–gel transitions of aqueous dispersions of silica nanoparticles grafted with diblock copolymer brushes composed of a thermosensitive inner block and a charged outer block | |
Xiong et al. | Effect of fluorescence labeling on mechanical properties of silica filled silicone rubber | |
CN114854202A (zh) | 碳黑-碳纳米管混合填充硅胶的电极材料及其工艺 | |
Chen et al. | Insights into the preparation and performance of SiO2@ graphene oxide/epoxidized solution‐polymerized styrene butadiene rubber composites through experiments and molecular simulations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |