CN107417286A - 一种增强超低碳Al2O3‑ZrO2‑SiC‑C耐火材料的制备方法 - Google Patents

一种增强超低碳Al2O3‑ZrO2‑SiC‑C耐火材料的制备方法 Download PDF

Info

Publication number
CN107417286A
CN107417286A CN201710725807.5A CN201710725807A CN107417286A CN 107417286 A CN107417286 A CN 107417286A CN 201710725807 A CN201710725807 A CN 201710725807A CN 107417286 A CN107417286 A CN 107417286A
Authority
CN
China
Prior art keywords
zro
sic
preparation
low carbon
refractory materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710725807.5A
Other languages
English (en)
Other versions
CN107417286B (zh
Inventor
马北越
张亚然
苏畅
李世明
于景坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201710725807.5A priority Critical patent/CN107417286B/zh
Publication of CN107417286A publication Critical patent/CN107417286A/zh
Application granted granted Critical
Publication of CN107417286B publication Critical patent/CN107417286B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

一种增强超低碳Al2O3‑ZrO2‑SiC‑C耐火材料的制备方法,属于洁净钢冶金用耐火材料制备技术领域。具体制备方法为:首先,按照实验配比,将锆英石、活性炭、氧化钇粉体充分球磨,压制成型后在1600℃下保温2h,预先合成ZrO2‑SiC复合微粉;然后,将电熔白刚玉骨料和细粉、α‑Al2O3、锆英石+活性炭、预合成ZrO2‑SiC复合微粉、天然石墨、固体酚醛树脂与添加剂稀土氧化物等按照一定的配比混匀,成型后制得一定尺寸的素坯;最后,将素坯置于具有保护气氛的高温炉中烧结,得到超低碳Al2O3‑ZrO2‑SiC‑C耐火材料。该方法在降低Al2O3‑C耐火材料含碳量的前提下,增强了耐火材料的力学性能与抗热震性。工艺简便易行,原料廉价易得,易于实现大批量投。

Description

一种增强超低碳Al2O3-ZrO2-SiC-C耐火材料的制备方法
技术领域
本发明属于洁净钢冶金用耐火材料制备技术领域,涉及一种增强超低碳Al2O3-ZrO2-SiC-C耐火材料的制备方法。
背景技术
随着钢铁行业的不断发展,对钢的质量性能要求越来越高,低成本高效率洁净钢的生产成为未来钢铁发展的重点。高洁净钢的生产不仅与冶炼工艺有关,还与相关耐火材料的质量息息相关。
Al2O3-C耐火材料具有强度和耐火度高、抗渣侵蚀性能优异等特点,在炼钢和连铸过程中应用广泛。然而,Al2O3-C耐火材料的含碳量一般高于8%,在浇铸洁净钢过程中会使钢水增碳,从而降低钢水的纯净度,并进一步导致钢材性能和使用寿命的大幅度下降。
为了降低碳对钢水的污染,提高钢水的纯净度,在洁净钢连铸过程中,应选用低碳/超低碳Al2O3-C或无碳耐火材料。而低碳/超低碳Al2O3-C或无碳耐火材料因石墨含量的减少,且无熔融石英和碳化硅等抗热震组分的添加,使得耐火材料制品的抗热震性和耐侵蚀性明显下降。因此,降低Al2O3-C耐火材料含碳量的同时,增强耐火材料的力学性质与抗热震性对于炼钢连铸过程尤为重要。
发明内容
在降低Al2O3-C耐火材料含碳量的前提下,增强耐火材料的力学性质与抗热震性,本发明提出了一种增强超低碳Al2O3-ZrO2-SiC-C耐火材料的制备方法。该方法通过添加稀土氧化物,原位形成稀土铝酸盐微晶,以提高耐火材料基体的耐压强度。其主要工序如下:首先,按照实验配比,将锆英石、活性炭、氧化钇充分球磨,压制成型后充分干燥,在氩气气氛下预合成ZrO2-SiC复合微粉;再将各原料按照一定的配比混匀,经成型、干燥后,置于高温炉中烧结,得到超低碳Al2O3-ZrO2-SiC-C耐火材料。
本发明的一种增强超低碳Al2O3-ZrO2-SiC-C耐火材料的制备方法,按以下步骤进行:
步骤1:预合成ZrO2-SiC复合微粉
(1)按照实验配比,将原料锆英石、活性炭和Y2O3粉体充分球磨;
(2)将球磨后的原料压制成素坯;
(3)将素坯在120℃下充分干燥后,置于高温炉内进行碳热还原反应合成ZrO2-SiC复合微粉;
步骤2:超低碳Al2O3-ZrO2-SiC-C耐火材料试样的制备
(1)将电熔白刚玉骨料和细粉、α-Al2O3、锆英石+活性炭、预合成ZrO2-SiC复合微粉、天然石墨、固体酚醛树脂与添加剂稀土氧化物混合均匀;α-Al2O3、天然石墨、预合成ZrO2-SiC复合微粉的质量分数之和为10%~20%,天然石墨的质量分数为1%;锆英石+活性炭中,w(ZrSiO4+C)为5%~30%;
(2)将混匀后的原料压制成素坯;
(3)将素坯于200℃下干燥时间为12~24h。
步骤3:高温烧结
将充分干燥后的素坯置于高温炉中烧结,得到超低碳Al2O3-ZrO2-SiC-C耐火材料。
所述的步骤1(1)中,所述的锆英石、活性炭、氧化钇的质量配比,应根据原料的纯度和碳热还原反应需要的碳量及稳定锆英石中的ZrO2需要的氧化钇量进行计算;
所述的氧化钇作为稳定剂,用于稳定ZrO2,以制备四方和立方ZrO2
所述的球磨设备为行星式球磨机,以300r·min-1转速单向运行4h;
所述的步骤1(2)中,所述压制坯料的压力为50~400MPa;
所述的步骤1(2)中,所述成型方式为模压成型、等静压成型中的一种;
所述的步骤1(3)中,所述的高温炉为可通保护气体的箱式电阻炉、管式电阻炉和隧道窑中的一种;
所述的步骤1(3)中,所述的合成温度为1500~1650℃,保温时间为2~10h;
所述的步骤1(3)中,所述的碳热还原反应过程,需要通入Ar等保护气,其流量为1.0~3.0L·min-1
所述的步骤2(1)中,添加剂稀土氧化物为La2O3、Sm2O3、Y2O3、Nd2O3和Dy2O3中的一种,其质量分数为2%~10%;
所述的酚醛树脂作为结合剂,粘结原料各成分,提高素坯的强度,其质量分数为3%;
所述的原料α-Al2O3、天然石墨、预合成ZrO2-SiC复合微粉的质量分数之和为10%~20%,其中天然石墨的质量分数为1%;
所述的原料锆英石+活性炭,w(ZrSiO4+C)为5%~30%;
所述的步骤2(2)中,所述压制坯料的压力为50~400MPa;
所述的步骤2(3)中,所述的干燥时间为12~24h;
所述的步骤3中,所述的高温炉为可通气氛的箱式电阻炉、管式电阻炉和隧道窑中的一种;
所述的步骤3中,所述高温烧结过程,需要通入Ar等保护气,其流量为1.0~3.0L·min-1
所述的步骤3中,所述的高温烧结温度为1450℃~1650℃,保温时间为2~10h。
本发明的一种增强超低碳Al2O3-ZrO2-SiC-C耐火材料的制备方法,降低了Al2O3-C耐火材料的含碳量,增强了耐火材料的耐压强度,达到了炼钢和连铸工艺对相关耐火材料部件的质量要求。以电熔刚玉、α-Al2O3、锆英石、活性炭和天然石墨为主要原料,采用原位反应烧结工艺,工艺简便易行,有利于大批量生产。
附图说明
图1是本发明的工艺流程图。
具体实施方式
下面结合实施例对本发明作进一步的详细说明。
以下实施例中,一种增强超低碳Al2O3-ZrO2-SiC-C耐火材料的制备方法工艺流程图1。
实施例1
一种增强超低碳Al2O3-ZrO2-SiC-C耐火材料的制备方法,按以下步骤进行:
步骤1:预合成ZrO2-SiC复合微粉
(1)将原料锆英石(ZrO2和SiO2的质量分数分别为66%和33%)、活性炭(化学试剂)、氧化钇(化学试剂)粉体,按照实验配比(100:20:1.9)准确称量并充分球磨;
(2)将球磨后的原料压制成的试样;
(3)将试样在120℃下充分干燥后装入石墨坩埚中,并置于1600℃的高温炉内保温2h进行碳热还原反应合成复合微粉。
步骤2:超低碳Al2O3-ZrO2-SiC-C耐火材料试样的制备
(1)将原料电熔白刚玉骨料和细粉、α-Al2O3、锆英石+活性炭、预合成ZrO2-SiC复合微粉、天然石墨、固体酚醛树脂与添加剂La2O3混合均匀,按照质量配比78%:6%:10%:5%:1%:3%:4%分别称量上述原料,其中,固体酚醛树脂与添加剂La2O3为外加,w(ZrSiO4+C)为10%;
(2)将混匀后的原料压制成的试样;
(3)将试样在200℃干燥箱中下干燥20h;
步骤3:高温烧结
将Φ15mm×15mm的柱状试样置于高温炉中1450℃保温3h,得到超低碳Al2O3-ZrO2-SiC-C耐火材料。
经检测,所得的超低碳Al2O3-ZrO2-SiC-C耐火材料的主晶相为Al2O3、ZrO2和SiC,ZrO2主要以c-ZrO2和t-ZrO2形式存在,且颗粒粒径较小;向试样中添加La2O3后,试样内部形成了板状的LaAl11O18,大幅度提高了试样的常温耐压强度,其高达59MPa,约是不含添加剂试样的5.9倍。
实施例2
一种增强超低碳Al2O3-ZrO2-SiC-C耐火材料的制备方法,同实施例1,不同之处在于,w(ZrSiO4+C)为15%。
经检测,所得的超低碳Al2O3-ZrO2-SiC-C耐火材料的主晶相仍为Al2O3、ZrO2和SiC,ZrO2主要以c-ZrO2和t-ZrO2形式存在;ZrO2衍射强度明显增强,刚玉的衍射强度降低;向试样中添加La2O3后,试样内部形成了板状的LaAl11O18;试样中可观察到大量的板状Al2O3-LaAl11O18复合体,其分布于刚玉颗粒间,大幅度提高了耐火材料基体的常温耐压强度,其高达62MPa,约是不含添加剂试样的6.2倍。
实施例3
一种增强超低碳Al2O3-ZrO2-SiC-C耐火材料的制备方法,同实施例1,不同之处在于,高温烧结温度为1 500℃保温3h。
经检测,所得的超低碳Al2O3-ZrO2-SiC-C耐火材料的主晶相仍为Al2O3、ZrO2和SiC,ZrO2主要以c-ZrO2和t-ZrO2形式存在;向试样中添加La2O3后,试样内部形成了板状的LaAl11O18;试样中可观察到大量的板状Al2O3-LaAl11O18复合体,其分布于刚玉颗粒间大幅度提高了试样的常温耐压强度,其高达68MPa,约是不含添加剂试样的6.8倍。
实施例4
一种增强超低碳Al2O3-ZrO2-SiC-C耐火材料的制备方法,同实施例1,不同之处在于,高温烧结温度为1 550℃保温3h。
经检测,所得的超低碳Al2O3-ZrO2-SiC-C耐火材料的主晶相仍为Al2O3、ZrO2和SiC,ZrO2仍以c-ZrO2和t-ZrO2形式存在,粒径变大但衍射强度降低,且有新相Zr3Y4O12生成;向试样中添加La2O3后,试样内部形成了板状的LaAl11O18,大幅度提高了试样的常温耐压强度,其高达75MPa,约是不含添加剂试样的7.5倍。
实施例5
一种增强超低碳Al2O3-ZrO2-SiC-C耐火材料的制备方法,同实施例1,不同之处在于:
(1)稀土氧化物添加剂为Sm2O3
(2)步骤3中,烧结温度为1500℃。
经检测,所得的超低碳Al2O3-ZrO2-SiC-C耐火材料的主晶相仍为Al2O3、ZrO2和SiC,ZrO2主要以c-ZrO2和t-ZrO2形式存在;向试样中添加Sm2O3后,试样内部形成了SmAlO3,其分布于刚玉颗粒间大幅度提高了试样的常温耐压强度,其高达65MPa,约是不含添加剂试样的6.5倍。
实施6
一种增强超低碳Al2O3-ZrO2-SiC-C耐火材料的制备方法,同实施例1,不同之处在于:
(1)稀土氧化物添加剂为Nd2O3
(2)步骤3中,烧结温度为1500℃
经检测,所得的超低碳Al2O3-ZrO2-SiC-C耐火材料的主晶相仍为Al2O3、ZrO2和SiC,ZrO2主要以c-ZrO2和t-ZrO2形式存在;向试样中添加Nd2O3后,试样内部形成了NdAlO3,其分布于刚玉颗粒间大幅度提高了试样的常温耐压强度,其高达63MPa,约是不含添加剂试样的6.3倍。

Claims (9)

1.一种增强超低碳Al2O3-ZrO2-SiC-C耐火材料的制备方法,其特征在于,按以下步骤进行:
步骤1:预合成ZrO2-SiC复合微粉
(1)按照实验配比,将原料锆英石、活性炭和Y2O3粉体充分球磨;
(2)将球磨后的原料压制成素坯;
(3)将素坯在120℃下充分干燥后,置于高温炉内进行碳热还原反应合成ZrO2-SiC复合微粉;
步骤2:超低碳Al2O3-ZrO2-SiC-C耐火材料的制备
(1)将电熔白刚玉骨料和细粉、α-Al2O3、锆英石+活性炭、预合成ZrO2-SiC复合微粉、天然石墨、固体酚醛树脂与添加剂稀土氧化物混合均匀;α-Al2O3、天然石墨、预合成ZrO2-SiC复合微粉的质量分数之和为10%~20%,天然石墨的质量分数为1%;锆英石+活性炭中,w(ZrSiO4+C)为5%~30%;
(2)将混匀后的原料压制成素坯;
(3)将素坯于200℃下干燥时间为12~24h;
步骤3:高温烧结
将充分干燥后的素坯置于高温炉中烧结,得到超低碳Al2O3-ZrO2-SiC-C耐火材料。
2.如权利要求1所述的制备方法,其特征在于,所述的步骤1(1)中,所述球磨设备为行星式球磨机,以300r·min-1转速单向运行4h。
3.如权利要求1或2所述的制备方法,其特征在于,所述压制的压力为50~400MPa,所述成型方式为模压成型、等静压成型中的一种。
4.如权利要求3所述的制备方法,其特征在于,所述的高温炉为可通保护气体的箱式电阻炉、管式电阻炉和隧道窑中的一种,高温烧结温度为1450℃~1650℃,保温时间为2h~10h。
5.如权利要求1或2或4或所述的制备方法,其特征在于,所述的步骤1(3)中,所述的合成温度为1500~1650℃,保温时间为2~10h。
6.如权利要求5所述的制备方法,其特征在于,所述的步骤1(3)中,所述的碳热还原反应过程,需要通入保护气,其流量为1.0~3.0L·min-1
7.如权利要求1或2或4或6所述的制备方法,所述的步骤2(1)中,添加剂稀土氧化物为La2O3、Sm2O3、Y2O3、Nd2O3和Dy2O3中的一种,其质量分数为2%~10%。
8.如权利要求7所述的制备方法,其特征在于,所述的酚醛树脂作为结合剂,粘结原料各成分,提高坯体的强度,其质量分数为3%。
9.如权利要求1或2或4或6或8所述的制备方法,其特征在于,所述的步骤3中,高温烧结过程,需要通入保护气,其流量为1.0~3.0L·min-1
CN201710725807.5A 2017-08-22 2017-08-22 一种增强超低碳Al2O3-ZrO2-SiC-C耐火材料的制备方法 Active CN107417286B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710725807.5A CN107417286B (zh) 2017-08-22 2017-08-22 一种增强超低碳Al2O3-ZrO2-SiC-C耐火材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710725807.5A CN107417286B (zh) 2017-08-22 2017-08-22 一种增强超低碳Al2O3-ZrO2-SiC-C耐火材料的制备方法

Publications (2)

Publication Number Publication Date
CN107417286A true CN107417286A (zh) 2017-12-01
CN107417286B CN107417286B (zh) 2021-01-08

Family

ID=60434820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710725807.5A Active CN107417286B (zh) 2017-08-22 2017-08-22 一种增强超低碳Al2O3-ZrO2-SiC-C耐火材料的制备方法

Country Status (1)

Country Link
CN (1) CN107417286B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608173A (zh) * 2018-12-28 2019-04-12 青海大学 一种Al2O3基复相陶瓷烧结样品及形状控制方法
CN114524673A (zh) * 2021-12-23 2022-05-24 太仓宏达俊盟新材料有限公司 一种高体积密度的氧化锆耐火材料的制备工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101220195A (zh) * 2008-01-28 2008-07-16 郑州大学 含纳米碳粉的酚醛树脂、纳米碳改性的低碳镁碳砖及制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101220195A (zh) * 2008-01-28 2008-07-16 郑州大学 含纳米碳粉的酚醛树脂、纳米碳改性的低碳镁碳砖及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
穆柏春等: "稀土对Al2O3陶瓷烧结温度、显微组织和力学性能的影响", 《中国稀土学报》 *
黄海等: "添加镍对低碳Al2O3-ZrO2-SiC-C连铸耐火材料制备及性能的影响", 《连铸》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608173A (zh) * 2018-12-28 2019-04-12 青海大学 一种Al2O3基复相陶瓷烧结样品及形状控制方法
CN114524673A (zh) * 2021-12-23 2022-05-24 太仓宏达俊盟新材料有限公司 一种高体积密度的氧化锆耐火材料的制备工艺

Also Published As

Publication number Publication date
CN107417286B (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
CN102730690B (zh) 一种Al4SiC4材料的合成方法
CN107382357A (zh) 一种钢包底吹复合透气砖用弥散材料及其制备方法
US10919811B2 (en) Aluminum-silicon-carbide composite and method of manufacturing same
CN106800420B (zh) 一种碳化硅晶须原位复合刚玉高温陶瓷材料及其制备方法
CN103664199B (zh) 以聚碳硅烷为结合剂制备碳化硅耐火材料的方法
CN108546093B (zh) 一种氧化铝短纤增强氧化镁基坩埚及其制备方法
CN109133935A (zh) 一种利用工业硅基废渣制备碳化硅闭孔陶瓷及其制备方法
CN104844233A (zh) 一种燃烧炉用的特种耐火材料及其制备方法
CN104387073A (zh) 基于反应烧结法制造超细高韧性碳化硅陶瓷材料的方法
CN104150908A (zh) 碳化钛钼陶瓷粉及其制备方法
CN107417286A (zh) 一种增强超低碳Al2O3‑ZrO2‑SiC‑C耐火材料的制备方法
CN103172390A (zh) 一种抗水化高纯氧化钙坩埚的制备方法
CN103553619A (zh) 碳化钛和碳化钒复合材料及其生产方法和应用
CN104073703B (zh) 一种Al2O3-TiN-Al陶瓷复合材料及其制备方法
CN107417260A (zh) 氧化镁陶瓷的热压制备方法
CN106977216A (zh) 用于熔铝炉的抗侵蚀内衬及其制备方法
CN105859305A (zh) 一种抗水化、抗热震的干法氧化钙坩埚制备方法
CN112028642B (zh) 氧化锆耐火材料及其制备方法
CN109160814A (zh) 一种原位碳化硅-铁硅复合材料及其制备方法
CN104911383A (zh) 一种制备Al2O3弥散强化铜合金的方法
CN104911384B (zh) 一种钨基难熔碳化物复合材料的低温制备方法
CN104609864B (zh) 一种利用氮化硅铁粉末制备块体陶瓷材料的方法
CN109305803A (zh) 氧化镁晶须增强陶瓷型芯及其制备方法
CN105152663B (zh) 一种氮化硅结合氮化硅铁材料的制备方法
CN105036699B (zh) 一种利用废铝灰制备的高强耐用清水砖

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant