CN107416940A - 具有非均相光电催化性能的Ir掺杂二氧化钛电极材料 - Google Patents
具有非均相光电催化性能的Ir掺杂二氧化钛电极材料 Download PDFInfo
- Publication number
- CN107416940A CN107416940A CN201710357904.3A CN201710357904A CN107416940A CN 107416940 A CN107416940 A CN 107416940A CN 201710357904 A CN201710357904 A CN 201710357904A CN 107416940 A CN107416940 A CN 107416940A
- Authority
- CN
- China
- Prior art keywords
- electrode
- heterogeneous
- tio
- titania
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007772 electrode material Substances 0.000 title claims abstract description 21
- 239000010936 titanium Substances 0.000 claims abstract description 87
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 63
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 25
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 22
- 230000000694 effects Effects 0.000 claims abstract description 15
- 239000002253 acid Substances 0.000 claims abstract description 7
- 239000011259 mixed solution Substances 0.000 claims abstract description 7
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 claims abstract description 6
- 239000000470 constituent Substances 0.000 claims abstract description 5
- 238000000137 annealing Methods 0.000 claims abstract description 4
- 239000010970 precious metal Substances 0.000 claims abstract description 3
- 238000000576 coating method Methods 0.000 claims description 16
- 238000001816 cooling Methods 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 14
- 239000000243 solution Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 229910021645 metal ion Inorganic materials 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 238000009835 boiling Methods 0.000 claims description 5
- 238000005238 degreasing Methods 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 5
- 230000010355 oscillation Effects 0.000 claims description 5
- 238000005488 sandblasting Methods 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 5
- 230000005611 electricity Effects 0.000 claims description 3
- 230000001699 photocatalysis Effects 0.000 abstract description 15
- 238000002360 preparation method Methods 0.000 abstract description 7
- 238000005286 illumination Methods 0.000 abstract description 2
- 230000001680 brushing effect Effects 0.000 abstract 1
- 238000002203 pretreatment Methods 0.000 abstract 1
- 229910052760 oxygen Inorganic materials 0.000 description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 230000003197 catalytic effect Effects 0.000 description 9
- 239000013078 crystal Substances 0.000 description 8
- 238000006731 degradation reaction Methods 0.000 description 8
- 229910000510 noble metal Inorganic materials 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 7
- 238000007146 photocatalysis Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 5
- 229940012189 methyl orange Drugs 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- 238000000862 absorption spectrum Methods 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910052741 iridium Inorganic materials 0.000 description 4
- HTXDPTMKBJXEOW-UHFFFAOYSA-N iridium(IV) oxide Inorganic materials O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- STZCRXQWRGQSJD-UHFFFAOYSA-M sodium;4-[[4-(dimethylamino)phenyl]diazenyl]benzenesulfonate Chemical compound [Na+].C1=CC(N(C)C)=CC=C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-UHFFFAOYSA-M 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 238000006862 quantum yield reaction Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910003077 Ti−O Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000005622 photoelectricity Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001055 reflectance spectroscopy Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- PZTQVMXMKVTIRC-UHFFFAOYSA-L chembl2028348 Chemical compound [Ca+2].[O-]S(=O)(=O)C1=CC(C)=CC=C1N=NC1=C(O)C(C([O-])=O)=CC2=CC=CC=C12 PZTQVMXMKVTIRC-UHFFFAOYSA-L 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000001453 impedance spectrum Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/468—Iridium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F1/46114—Electrodes in particulate form or with conductive and/or non conductive particles between them
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/08—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46133—Electrodes characterised by the material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46133—Electrodes characterised by the material
- C02F2001/46138—Electrodes comprising a substrate and a coating
- C02F2001/46142—Catalytic coating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Catalysts (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
本发明属于电极材料制备领域,具体涉及一种具有非均相光电催化性能的Ir掺杂二氧化钛电极材料。所述的电极材料为Ti/IrxTi1‑xO2,0.0625≤x≤0.1875。通过将钛板进行预处理后,将氯铱酸、三氯化钛的混合溶液涂刷在预处理后的钛板上,经红外光照固化、热氧化、退火,获得具有非均相光电催化活性的掺杂贵金属活性Ir组元改性Ti/TiO2电极。通过控制合适的Ir掺杂量,不仅能有效提高电极的导电性,还能有效提高其光催化活性。
Description
技术领域
本发明属于电极材料制备领域,具体涉及一种具有非均相光电催化性能的Ir掺杂二氧化钛电极材料。
背景技术
半导体TiO2因其对太阳光的利用率较低而限制了其在污水处理等方面的应用,通过对纳米TiO2的改性,如金属和非金属掺杂等方法可以有效拓宽其光谱响应范围,提高TiO2的光催化效率。目前,对TiO2修饰方面的研究有很多报道,主要的修饰改性手段包括:金属/非金属掺杂、半导体复合、表面染料敏化、贵金属沉积、共掺杂修饰、离子注入、强酸表面修饰等。金属离子掺杂能有效控制晶体的缺陷,进而提高晶体内部光生载流子的迁移率,抑制电子与空穴的复合,拓展光催化剂的吸收光谱响应范围,并最终提高光催化效率。添加Ir组元与金晶石型TiO2基氧化物形成置换固溶体。30%IrO2-TiO2以及50%IrO2-Ta2O5是很重要的电催化材料。特别是50%IrO2-Ta2O5电极,因为在H2SO4溶液中很耐蚀是一种应用很广泛的析氧阳极。
本申请旨在选取具有电催化活性的IrO2作为电催化活性组元掺杂光催化TiO2中,获得一种具有非均相光电催化性能的Ir掺杂Ti/TiO2体系电极材料及其制备方法。本发明与形稳阳极最根本的区别在于贵金属Ir量低和研究的出发点。对于形稳阳极,添加非贵金属氧化物的目的是降低贵金属用量,一般贵金属用量仍然要高达30%以上(贵金属摩尔比),每平方厘米钛上贵金属量最少0.8mg,这样才能保证活性和耐蚀性。另外形稳阳极是应用于电解、电冶金等电化学领域和能源领域。而本发明的贵金属Ir量控制在每平方厘米上重量为0.1~0.6mg就可以有光电催化效果,而且Ir的掺杂量仅需0.625%。应用领域是废水处理。当然,贵金属Ir量高于0.6mg/c2光电催化效果更好,但制造价格显著升高,不利于应用开发。
发明内容
本发明的目的在于针对现有技术的不足,提供一种具有非均相光电催化性能的Ir掺杂二氧化钛电极材料。通过控制合适的Ir掺杂量,同时提高了TiO2体系电极材料的光催化活性和导电性。
为实现本发明的目的,采用如下技术方案:
一种具有非均相光电催化性能的Ir掺杂二氧化钛电极材料:Ti/IrxTi1-xO2,0.0625≤x≤0.1875。
优选的,所述的电极材料为Ti/Ir0.0625Ti0.9375O2。
一种制备如上所述的具有非均相光电催化性能的Ir掺杂二氧化钛电极材料的方法,其特征在于:包括以下步骤:
1)将钛板经去脂、喷砂、20wt%沸腾硫酸溶液刻蚀40 min后,水洗,备用;
2)将氯铱酸、三氯化钛溶液按金属离子摩尔比溶解于无水乙醇中,超声振荡使之溶解均匀,放置24h后,将混合溶液均匀涂敷于经过预处理的钛板基体表面,控制金属Ir在钛上的载量为0.1~0.6mg/cm2,每次涂覆后经红外光照至干,放在500℃的箱式电阻炉中热氧化15 min,出炉冷却;涂敷-固化-热氧化-冷却过程重复3~5次,最后一次热氧化过后进行恒温退火60min,再出炉空冷,获得掺杂贵金属活性Ir组元改性Ti/ TiO2电极。
本发明与现有技术比较具有以下优点:
本发明在Ir-Ti电极材料中掺杂6.25mol%~18.75mol%的Ir,通过控制合适的Ir掺杂量,不仅能有效提高TiO2电极的导电性,还可以引入杂质能级,使禁带的带隙变窄,吸收光谱红移,提高了光子的利用率,光响应范围增大;此外,杂能级能够捕获导带上的光生电子和价带上的光生空穴,降低光生电子-空穴对的复合几率。从而使降解过程中TiO2表面在光辐射作用下产生更多的-OH,提高光催化活性。
附图说明
图1 Ti/IrxTi1-xO2电极的可见-紫外漫反射光谱,(a) 0 mol%、(b) 6.25 mol%、(c) 12.5 mol%、(d) 25 mol%;
图2 Ti/IrxTi1-xO2电极的XRD图谱,(a) 0 mol%、(b) 6.25 mol%、(c) 12.5 mol%、(d)18.75 mol%、(e) 25 mol%;
图3氧化物涂层TiO2和TiO2-IrO2的XPS能谱;
图4 IrxTi1-xO2氧化物涂层的Ti2p X射线光电子能谱,(a) 0 mol%、(b) 6.25 mol%、(c) 12.5 mol%、(d) 25 mol%;
图5钛基表面涂层TiO2中O(1s)的X射线光电子能谱, (a) 0 mol%、(b) 6.25 mol%、(c)12.5 mol%、(d) 25 mol%;
图6 Ti/IrxTi1-xO2(x=0、0.0625、0.125、0.1875、0.25)电极在0.1 M Na2SO4溶液中的Nyquist图,测试电位为0V,频率区间为10-3Hz~105Hz;
图7 Ti/IrxTi1-xO2电极在暗态和光照的极化曲线,(a) 0 mol%、(b) 6.25 mol%、(c)12.5 mol%、c) 18.75 mol%、e) 25 mol%、f)电位-光电流曲线;
图8 Ti/IrxTi1-xO2电极对甲基橙降解150min后的紫外-可见吸收光谱,a) 0 mol%、b)6.25 mol%、c) 12.5 mol%、d) 18.75 mol%、e) 25 mol%;
图9为Ti/IrxTi1-xO2电极在甲基橙溶液的回归曲线。
具体实施方式
为进一步公开而不是限制本发明,以下结合实例对本发明作进一步的详细说明。
实施例1
一种具有非均相光电催化性能的Ir掺杂二氧化钛电极材料的制备方法,包括以下步骤:
1)将1 mm厚的工业TA1钛板经去脂、喷砂、20wt%沸腾硫酸溶液刻蚀40 min后,水洗,备用;
2)将氯铱酸、三氯化钛溶液按金属离子摩尔比1:15溶解于无水乙醇中,超声振荡使之溶解均匀,放置24h后,将混合溶液均匀涂敷于经过预处理的钛板基体表面,控制金属Ir在钛上的载量为0.2mg/cm2,每次涂覆后经红外光照至干,放在500℃的箱式电阻炉中热氧化15 min,出炉冷却;经涂敷-固化-热氧化-冷却过程重复4次,最后一次热氧化后进行恒温退火60min,再出炉空冷,获得具有非均相光电催化活性的Ti/Ir0.0625Ti0.9375O2电极。
实施例2
一种具有非均相光电催化性能的Ir掺杂二氧化钛电极材料的制备方法,包括以下步骤:
1)将1 mm厚的工业TA1钛板经去脂、喷砂、20wt%沸腾硫酸溶液刻蚀40 min后,水洗,备用;
2)将氯铱酸、三氯化钛溶液按金属离子摩尔比1:7溶解于无水乙醇中,超声振荡使之溶解均匀,放置24h后,将混合溶液均匀涂敷于经过预处理的钛板基体表面,控制金属Ir在钛上的载量为0.2mg/cm2,每次涂覆后经红外光照至干,放在500℃的箱式电阻炉中热氧化15min,出炉冷却;经涂敷-固化-热氧化-冷却过程重复3次,最后一次热氧化后恒温退火60min,再出炉空冷,获得具有非均相光电催化活性的Ti/ Ir 0.125Ti0.875O2电极。
实施例3
一种具有非均相光电催化性能的Ir掺杂二氧化钛电极材料的制备方法,包括以下步骤:
1)将工业TA1钛板经去脂、喷砂、20wt%沸腾硫酸溶液刻蚀40 min后,水洗,备用;
2)将氯铱酸、三氯化钛溶液按金属离子摩尔比3:13溶解于无水乙醇中,超声振荡使之溶解均匀,放置24h后,将混合溶液均匀涂敷于经过预处理的钛板基体表面,控制金属Ir在钛上的载量为0.4mg/cm2,每次涂覆后经红外光照至干,放在500℃的箱式电阻炉中热氧化15 min,出炉冷却;经涂敷-固化-热氧化-冷却过程重复5次,最后一次热氧化后进行恒温退火60min,再出炉空冷,获得具有非均相光电催化活性的Ti/ Ir 0.1875Ti0.8125O2电极。
性能测试结果:
1. 组织结构分析
1)能带结构与电子态密度分析
晶体结构的几何结构优化,晶体结构达到稳定状态,然后用广义梯度近似方法处理交换关联泛函得到IrxTi1-xO2晶体在第一布里渊区的能带结构计算,费米能级为零能耗。图1(a)-图1(e)为金红石型IrxTi1-xO2费米能级附近的能带结构与态密度图。从图1(a)可见,当掺杂量为0%时,纯TiO2具有最大的能带间隙1.70eV。随着Ir掺杂量的增加,能带间隙逐渐减小(分别为0.80eV、0.49eV、0.35eV、0.17eV),且图1(a)与图1(b)对比可以看出在掺杂Ir后,在费米能级出现杂质能级,其主要由O2p、Ti 4d和Ir 4d轨道做的贡献。当掺杂25%时(图图1(e))时,能带间隙接近消失,而杂质能级进一步增强。
掺杂Ir能引入中间能级,降低TiO2带隙。由于Ir的d轨道和Ti的d轨道的导带重叠,使禁带的带隙变窄,吸收光谱红移。此外,掺杂能级成为电子和空穴的浅势捕获阱,能抑制光生电子和空穴复合,使Ir的d轨道能捕获来自TiO2价带的电子,使得光生电子和空穴分离,减少了TiO2表面光生电子与光生空穴的复合,从而使TiO2表面在光辐射作用下产生更多的·OH,提高光催化活性。
但是,掺杂过量Ir也会使禁带变窄,禁带过窄使光生电子-空穴对复合的概率增加,进而减小光生载流子和产量。
图2是Ti/IrxTi1-xO2电极涂层的紫外漫反射光谱。纯TiO2的禁带宽度为3.31eV。当TiO2中掺杂Ir后,其禁带宽度随着Ir含量的增大而减小,分别为1.72eV、1.54eV、0.75eV。这与理论计算结果相符合。
图3为Ti/IrxTi1-xO2电极在不同Ir掺杂度下的XRD谱图。除钛基体及涂层氧化物的衍射峰外,无非晶峰存在,说明在退火温度为500℃下,电极涂层以结晶态为主。由图中可看出,在无掺杂时,纯TiO2会形成两种晶体结构,分别为金红石型和锐钛矿型。但在锐钛矿型峰强较明显,说明此时涂层氧化物以锐钛矿为主。随着Ir掺杂量的增加,锐钛峰型减小,当Ir掺杂量为12.5%时完全消失。根据固体理论,两种离子的半径越相近,其越容易形成固溶体。当离子半径差值小于15%,其形成的是置换型固溶体。而IrO2为金红石结构,且Ir和Ti的离子半径相近,分别为0.68 nm和0.67nm,离子半径相差仅为13.3%,所以随着金红石型IrO2的增加,Ir置换部分Ti原子后形成置换固溶体,则锐钛矿型TiO2减少,而金红石型TiO2增加。
此外,根据热力学计算可知,在任何温度下,金红石都是最稳定的相结构,锐钛矿→金红石的相变焓非常低,范围在-1.3~6.0±0.8 KJ/mol,所以锐钛矿相不稳定,容易向金红石相转变。而且在材料的掺杂改性中,TiO2的化学计量比和氧空位的浓度会受到掺杂物质的特性、数量和掺入晶格中的位置等因素的影响。
2)XPS分析
图4是Ti/IrxTi1-xO2电极涂层的全谱图,其主要包含Ir、Ti、O和C元素。与未掺杂的Ti/TiO2电极相比,从掺杂后的全谱图中可以明显看到Ir4d的衍射峰存在。图4-5是Ti2p的高分辨XPS谱,在未掺杂Ir时,图中Ti 2p(1/2)和Ti 2p(3/2)特征峰对应的结合能分别为464.54eV和458.86eV。在掺杂少量Ir后,Ir(IV)和Ti(Ⅳ)阳离子之间发生强烈的化学相互作用,形成的氧缺陷造成Ti 2p(3/2)结合能有所减小。计算结果也表明在掺杂Ir后,TiO2的能级结构也向低能方向移动。
涂层掺杂不同量Ir后O1s的 X射线光电子能谱如图5所示,每个X射线光电子能谱都由两部分组成,即金属Ti与O的结晶峰和O2的吸收峰,其中位于530eV的是Ti-O的晶格峰,而位于531.5eV的是O2的吸收峰。由图6可知,与未掺杂相比,掺杂Ir后的O2吸收峰和Ti-O晶格峰均增大,主要原因是Ir与Ti的原子半径不同,掺杂后形成一定晶格畸变或氧缺陷,而氧缺陷是造成O2吸附的主要原因。
当掺杂量很少时(≤6.25%),掺杂能有效的减少TiO2晶格中光生电子-空穴的复合几率,提高催化剂的光催化活性。当掺杂过多、缺陷浓度过高时,就会产生光生电子-空穴对的复合中心,使光量子产率下降,进而使其光催化性能降低。
2、电化学测量
电化学测试在AutoLabPGST-302N电化学工作站进行,采用三电极测试体系进行测量,以制备的涂层电极为工作电极,面积为1cm2,饱和甘汞电极为参比电极,大面积的钛板为辅助电极。交流阻抗的测试电位为1.5 V,振幅为10 mV,频率范围为10-3Hz~105Hz。极化曲线的测试电位窗口为0.5~0.25 V,扫描速度为5 mV/s。采用100 W紫外高压汞灯作为光催化光源。
1)交流阻抗分析
图7为Ti/IrxTi1-x O2电极在0.75V测得的阻抗复平面图。实轴ZRe反映电极的阻抗性质,虚轴Zim反映电极反应过程的容抗性质。(a)为未掺杂Ti/TiO2电极的交流阻抗图,其中插图为拟合所用的电路图。由图可看出,根据该拟合电路拟合的结果与实验结果较为接近,说明该电路可较好的解释电极机理,即电极在极化过程可分为两部分:赝电容(Cf)和双电层电容(Cdl)。阻抗谱为半圆弧,是由电解质/氧化物界面电荷传输反应而引起的阻抗;半圆的半径为电荷传导电阻Rct,表征电极反应受电荷扩散控制。由图可见随着Ir含量的增加,法拉第传荷电阻Rct减小,说明Ir的加入增加了氧化物电极的导电性,促进电子的转移。
2)极化曲线分析
电极材料作为阳极在电催化降解有机污染物的同时,还存在析氧反应的竞争,因此析氧电位大小是限制电极析氧性能的关键因素。如果电极析氧电位太低,会浪费大量的能量,减少有机污染物的降解效率。因此,寻找具有较高析氧电位的电极材料,是电催化氧化处理废水的关键。
采AutoLab电化学工作站,对Ti/IrxTi1-xO2电极进行LSV测试,图8为Ti/IrxSn1-xO2电极在暗态和光电催化两种条件下降解甲基橙溶液150min后的极化曲线图。(f)表明光电流随着Ir掺杂量的增加先增大而后减小,在Ir含量为6.25%时,相较于其他掺杂度产生的光电流最大。因为在未掺杂时,Ti/TiO2电极涂层的导电性差,且禁带宽度大,产生的光电流小。当掺杂一定的Ir后,涂层的导电性增大,且禁带减小,光生载流子产量增加,所以掺杂Ir6.25%后,其光电流明显增大。而当Ir掺杂量继续增加,虽然导电性会继续增大,但是禁带过窄会导致光生电子-空穴复合率增大,光电流产量反而减小。综上掺杂量为6.25%具有最大的光电流。
3、光电催化降解甲基橙溶液
甲基橙是一种常见的有机染料,本文配制20 mg/L的甲基橙和0.1 M Na2SO4混合溶液,然后将溶液在100W紫外汞灯和恒电位仪进行光降解、光催化降解和光电催化降解。紫外吸光度测试在Cary 50紫外可见分光光度计进行,扫描速度为300nm/min,测试波长范围为200nm~600 nm。总有机碳(TOC)测试在日本岛津TOC-L ASI-L总有机碳分析仪进行。
图9为Ti/IrxTi1-xO2电极催化甲基橙150分钟后紫外吸光度图。由图9可见,甲基橙在277nm和462nm处有2个明显的特征吸收峰,462nm处的吸收峰是甲基橙的-N—N-偶氮显色基团产生的吸收峰。在降解150分钟后,462nm的吸收峰随Ir掺杂量先增加后降低,Ir6.25%的吸收峰最低,说明在Ir掺杂量为6.25%时紫外吸光度最小,即在Ir掺杂量为6.25%时电极具有最好的光电催化效果。
图10为Ti/IrxTi1-xO2电极在甲基橙溶液的回归曲线。在催化降解下,不同掺杂Ir含量的电极其回归曲线均基本符合一级动力学规律。从图10可看出,k随Ir含量的增大先增大后减小,即并不是Ir掺杂量越多越好,掺杂6.25% IrO2的涂层电极具有最好的光电催化降解效果。
以上结果表明,在没有掺杂Ir时,电极以光催化为主,半导体TiO2的禁带较宽,光量子产量较低,所以催化降解效果较差。而当掺杂一定量的Ir(6.25%)后,不仅半导体TiO2的禁带宽度减小,导电性增强,而且在禁带中形成杂质能级,这有利于电子跃迁,大大提高电流效率。此时,电极不仅具有光催化作用,而且具有电催化转化,所以降解效果明显。当Ir含量进一步提高时,虽然导电性增强,但是禁带减小导致电子与空穴复合快,光生量子产量低,且禁带减小导致光生电子与空穴的氧化还原能力减弱,所以其催化效果反而减小。
此外,锐钛矿与金红石在晶格结构中的差别使TiO2的两种晶型在物质密度、电子带结构等方面上产生不同,进而引起不同的光催化效果。通过大量的科学研究发现,TiO2锐钛矿型的光催化活性比金红石型的光催化活性要高,其原因在于:(1)锐钛矿型TiO2晶格中含有较多的缺陷和位错,可产生较多的氧空位来捕获电子,减少了光生空穴与电子对的复合,有利于活性增强;(2)金红石型TiO2禁带宽度较小,其较正的导带可阻碍氧气的还原反应。此外,高温烧结易导致金红石型TiO2比表面积降低也是造成光催化活性下降的原因之一。
根据半导体粒子的催化氧化反应机制,金红石型TiO2的粒子表面吸附氢的能力大大弱于锐钛矿TiO2。Kakitsou在采用TiO2为催化剂,结果表明锐钛矿水解产氢的速率为金红石的7倍,说明锐钛矿型的光催化活性优于金红石型。施利毅等研究发现,锐钛型与金红石TiO2混合物(非简单混合)具有较高光催化活性,由于两种晶型TiO2导带和价带能级的差异,因此减少了电子和空穴的复合几率。综上所述,电极在Ir掺杂量为6.25%时具有最好的光电催化效果。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
Claims (3)
1.一种具有非均相光电催化性能的Ir掺杂二氧化钛电极材料,其特征在于:所述的电极材料为Ti/IrxTi1-xO2,0.0625≤x≤0.1875。
2.根据权利要求1所述的具有非均相光电催化性能的Ir掺杂二氧化钛电极材料,其特征在于:所述的电极材料为Ti/Ir0.0625Ti0.9375O2。
3.一种制备如权利要求1或2所述的具有非均相光电催化性能的Ir掺杂二氧化钛电极材料的方法,其特征在于:包括以下步骤:
1)将钛板经去脂、喷砂、20wt%沸腾硫酸溶液刻蚀40 min后,水洗,备用;
2)将氯铱酸、三氯化钛溶液按金属离子摩尔比溶解于无水乙醇中,超声振荡使之溶解均匀,放置24h后,将混合溶液均匀涂敷于经过预处理的钛板基体表面,控制金属Ir在钛上的载量为0.1~0.6mg/cm2,每次涂覆后经红外光照至干,然后放在500℃的箱式电阻炉中热氧化15 min,出炉冷却;涂敷-固化-热氧化-冷却过程重复3~5次,最后一次热氧化过后进行恒温退火60min,再出炉空冷,获得掺杂贵金属活性Ir组元改性Ti/ TiO2电极。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710357904.3A CN107416940B (zh) | 2017-05-19 | 2017-05-19 | 具有非均相光电催化性能的Ir掺杂二氧化钛电极材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710357904.3A CN107416940B (zh) | 2017-05-19 | 2017-05-19 | 具有非均相光电催化性能的Ir掺杂二氧化钛电极材料 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107416940A true CN107416940A (zh) | 2017-12-01 |
CN107416940B CN107416940B (zh) | 2020-04-10 |
Family
ID=60425173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710357904.3A Active CN107416940B (zh) | 2017-05-19 | 2017-05-19 | 具有非均相光电催化性能的Ir掺杂二氧化钛电极材料 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107416940B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109847743A (zh) * | 2019-03-29 | 2019-06-07 | 福州大学 | 一种Ru掺杂ZnO/Ti复合氧化物电极的制备及其在光电催化降解有机物中的应用 |
CN109911950A (zh) * | 2019-01-31 | 2019-06-21 | 南京邮电大学 | 一种掺铱的钌酸锶掺杂材料、制备方法及应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008210955A (ja) * | 2007-02-26 | 2008-09-11 | Fujitsu Ltd | キャパシタ素子、半導体装置、およびキャパシタ素子の製造方法 |
CN102509633A (zh) * | 2011-10-28 | 2012-06-20 | 泉州师范学院 | 一种高熵混合氧化物电极材料及其制备方法 |
CN103035930A (zh) * | 2012-12-13 | 2013-04-10 | 北京化工大学常州先进材料研究院 | 一种用于锂空气电池的双功能催化剂 |
CN105576258A (zh) * | 2015-11-20 | 2016-05-11 | 陕西聚洁瀚化工有限公司 | 一种Ir0.08Ti0.92O2纳米粉体催化剂的制备方法 |
-
2017
- 2017-05-19 CN CN201710357904.3A patent/CN107416940B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008210955A (ja) * | 2007-02-26 | 2008-09-11 | Fujitsu Ltd | キャパシタ素子、半導体装置、およびキャパシタ素子の製造方法 |
CN102509633A (zh) * | 2011-10-28 | 2012-06-20 | 泉州师范学院 | 一种高熵混合氧化物电极材料及其制备方法 |
CN103035930A (zh) * | 2012-12-13 | 2013-04-10 | 北京化工大学常州先进材料研究院 | 一种用于锂空气电池的双功能催化剂 |
CN105576258A (zh) * | 2015-11-20 | 2016-05-11 | 陕西聚洁瀚化工有限公司 | 一种Ir0.08Ti0.92O2纳米粉体催化剂的制备方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109911950A (zh) * | 2019-01-31 | 2019-06-21 | 南京邮电大学 | 一种掺铱的钌酸锶掺杂材料、制备方法及应用 |
CN109847743A (zh) * | 2019-03-29 | 2019-06-07 | 福州大学 | 一种Ru掺杂ZnO/Ti复合氧化物电极的制备及其在光电催化降解有机物中的应用 |
CN109847743B (zh) * | 2019-03-29 | 2021-09-28 | 福州大学 | 一种Ru掺杂ZnO/Ti复合氧化物电极的制备及其在光电催化降解有机物中的应用 |
Also Published As
Publication number | Publication date |
---|---|
CN107416940B (zh) | 2020-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Improved photoelectrochemical performance of Z-scheme g-C3N4/Bi2O3/BiPO4 heterostructure and degradation property | |
Zhang et al. | Au nanoparticles sensitized ZnO nanorod@ nanoplatelet core–shell arrays for enhanced photoelectrochemical water splitting | |
Fu et al. | Highly photoactive Ti-doped α-Fe2O3 nanorod arrays photoanode prepared by a hydrothermal method for photoelectrochemical water splitting | |
Liu et al. | Photoelectrochemical properties and photocatalytic activity of nitrogen-doped nanoporous WO3 photoelectrodes under visible light | |
Liu et al. | Interfacial engineering of Ti3C2 MXene/CdIn2S4 Schottky heterojunctions for boosting visible-light H2 evolution and Cr (VI) reduction | |
Chen et al. | Properties of sol–gel SnO2/TiO2 electrodes and their photoelectrocatalytic activities under UV and visible light illumination | |
Lin et al. | Direct Z-scheme WO3-x nanowire-bridged TiO2 nanorod arrays for highly efficient photoelectrochemical overall water splitting | |
Hu et al. | The hydrophilic treatment of a novel co-catalyst for greatly improving the solar water splitting performance over Mo-doped bismuth vanadate | |
Yang et al. | Enhanced photoelectrochemical water oxidation on WO3 nanoflake films by coupling with amorphous TiO2 | |
Mahadik et al. | Highly efficient and stable 3D Ni (OH) 2/CdS/ZnIn2S4/TiO2 heterojunction under solar light: effect of an improved TiO2/FTO interface and cocatalyst | |
Huang et al. | TiO2-rutile/anatase homojunction with enhanced charge separation for photoelectrochemical water splitting | |
CN105347694A (zh) | 一种分枝状异相氢化二氧化钛纳米棒阵列电极及制备方法 | |
CN111569896A (zh) | BiVO4-Ni/Co3O4异质结的合成方法及其应用于光电解水 | |
Sun et al. | Preparation of (Ti, Zr) co-doped hematite photoanode for enhanced photoelectrochemical water splitting | |
Yu et al. | Fabrication of heterostructured CdS/TiO2 nanotube arrays composites for photoreduction of U (VI) under visible light | |
Dang et al. | Fabrication of multilayer 1D TiO2/CdS/ZnS with high photoelectrochemical performance and enhanced stability | |
Feng et al. | ITO regulated high-performance n-Si/ITO/α-Fe2O3 Z-scheme heterostructure towards photoelectrochemical water splitting | |
Zhang et al. | Understanding the performance of optofluidic fuel cells: Experimental and theoretical analyses | |
Li et al. | Pre-or post-TiCl4 treated TiO2 nano-array photoanode for QDSSC: Ti3+ self-doping, flat-band level and electron diffusion length | |
Liang et al. | Effects of cathodic electrodeposition conditions on morphology and photoelectrochemical response of α-Fe2O3 photoanode | |
Kaizra et al. | Improved activity of SnO for the photocatalytic oxygen evolution | |
CN109957814B (zh) | 一种Bi-BiOI/TNA复合材料及其应用 | |
Zhang et al. | BaTiO3/Fe2O3/MoS2/Ti photoanode for visible light responsive photocatalytic fuel cell degradation of rhodamine B and electricity generation | |
CN107416940A (zh) | 具有非均相光电催化性能的Ir掺杂二氧化钛电极材料 | |
Balachandran et al. | Photo-electrocatalytic activity of praseodymium oxide modified titania nanorods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |