CN107414602B - 用于立式加工中心触发式测量系统的标定装置和标定方法 - Google Patents

用于立式加工中心触发式测量系统的标定装置和标定方法 Download PDF

Info

Publication number
CN107414602B
CN107414602B CN201710071781.7A CN201710071781A CN107414602B CN 107414602 B CN107414602 B CN 107414602B CN 201710071781 A CN201710071781 A CN 201710071781A CN 107414602 B CN107414602 B CN 107414602B
Authority
CN
China
Prior art keywords
error
formula
touch
axis
measuring head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710071781.7A
Other languages
English (en)
Other versions
CN107414602A (zh
Inventor
杨泽青
张炳寅
刘丽冰
张艳蕊
谭飏
华旭峰
彭凯
李莉
朱金达
张俊峰
李欣蕊
陈英姝
杨伟东
韩靖
范敏
李增强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN201710071781.7A priority Critical patent/CN107414602B/zh
Publication of CN107414602A publication Critical patent/CN107414602A/zh
Application granted granted Critical
Publication of CN107414602B publication Critical patent/CN107414602B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/20Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

本发明公开了一种用于立式加工中心触发式测量系统的标定装置和标定方法。该标定装置由底层、中层和顶层三层结构组成;所述底层为正六棱柱结构,中层为圆柱结构,顶层为长方体结构;所述正六棱柱底面正六边形的中心、圆柱底面圆形的中心和长方体底面的中心的连线垂直于水平面,且长方体的一个侧面是s1与正六棱柱的一个侧面s2垂直。该标定方法能够得知Z轴负方向的碰触误差、偏心误差(Δx,Δy)、X‑Y平面上的误差和沿参数化方向碰触工件的碰触误差,从而得到任一方向碰触的误差补偿值,将误差补偿值输入立式加工中心当中,最后实现了测头的标定。标定装置结构简单,标定方法考虑了各方向碰触误差的各向异性,能快速标定出测头的偏心误差和碰触误差值。

Description

用于立式加工中心触发式测量系统的标定装置和标定方法
技术领域
本发明涉及数控技术领域,具体是一种用于立式加工中心触发式测量系统的标定装置和标定方法。
背景技术
为提高数控加工精度,减少加工废品率,提升数控机床智能化水平,在立式加工中心配置触发式测量系统,可实现序前辅助零件、夹具装夹和找正,确定加工基准,序中对零件关键尺寸进行监测,序后对成品进行检验,消除零件二次装夹误差。
由于触发式测量系统安装时很难保证测头的中心与立式加工中心的机床主轴的回转中心完全一致,所以需要对误差进行标定;另外触发式测头从刚碰触工件到发出触发信号、控制机床停止运动、读取机床当前坐标这一系列过程中,会产生碰触误差即存在预行程,并且测头沿着不同方向碰触误差也不同,所以在使用触发式测量系统进行工件加工精度检测之前,需要对其进行误差标定。现有的标定方法大多采用标准件如标准球或环规来确定其误差值,没有考虑碰触误差的各向异性,不能保障沿大角度方向碰触的测量精度。申请号201310057385.0公开了一种扫描测头标定方法,采用的标定装置是标准球,标定原理是驱动扫描测头按照一定顺序在球面上测出足够多的点,再用数学方法(非线性最小二乘迭代)拟合出一个球面,得到拟合球的半径及拟合球的球心坐标,由标准球的理论半径和拟合球半径得到碰触误差,该计算过程将不同方向的碰触误差视为同一值,忽略了碰触误差的各向异性。另外,该方法需要测量的点数较多并且分布均匀,测点数的选择直接影响标定精度和效率。
发明内容
针对现有技术的不足,本发明拟解决的技术问题是,提供一种用于立式加工中心触发式测量系统的标定装置和标定方法。该标定装置结构简单。该标定方法能一次快速标定出测头的偏心误差和沿不同方向碰触的预行程误差值,并且可以把该误差直接保存于机床中,为后续检测程序生成及检测值补偿提供依据。
本发明解决所述标定装置技术问题的技术方案是,提供一种用于立式加工中心触发式测量系统的标定装置,其特征在于该标定装置由底层、中层和顶层三层结构组成;所述底层为正六棱柱结构,中层为圆柱结构,顶层为长方体结构;所述正六棱柱结构的中心、圆柱结构的中心和长方体结构的中心的连线垂直于水平面,且长方体结构中由长和高组成的侧面与正六棱柱的一个侧面垂直。
本发明解决所述标定方法技术问题的技术方案是,提供一种用于立式加工中心触发式测量系统的标定装置,其特征在于包括以下步骤:
(1)将标定装置安装在立式加工中心的工作台面上,安装时确保正六棱柱结构的侧面s2平行于X轴正方向、长方体结构的侧面s1平行于Y轴正方向;
(2)将测头的坐标系原点定在几何中心即圆柱结构的中心处;开始标定,先对Z轴进行标定,驱动测头沿Z轴负方向碰触长方体结构的上表面;标定装置的高为H,得到Z轴负方向碰触误差Ez,Z0为测头碰触长方体结构的上表面时得到的Z向坐标值,Z1是无碰触误差的Z向坐标值;
Ez=Z1-Z0 式1
(3)标定X-Y平面上的误差;误差分为碰触误差和偏心误差;
不考虑碰触误差,单独考虑偏心误差的作用,当测头按X+、X-、Y+和Y-方向运动并沿圆柱结构的径向测量时,理论的测头与圆柱结构的侧面的碰触位置与实际的碰触位置有固定的偏移量,用矢量(Δx,Δy)表示;测头半径为r,由于偏心误差造成测头的碰触方向与被测点方向的矢量方向不一致,使得理论的测头碰触点与实际的测头碰触点有偏差,称为余弦误差,在建立模型时考虑余弦误差,在不考虑碰触误差的数学模型是:
(x+Δx-rcosα)2+(y+Δy-rsinα)2=R2 式2
Figure SMS_1
R为圆柱结构底面圆的半径;
下面过程同时考虑碰触误差和偏心误差,驱动测头沿平行于Y轴的负方向碰触圆柱结构的径向的侧面于碰触点1,此时的碰触误差记为E270°,得到式3:
(x1+Δx-rsinα1)2+(y1+Δy-rcosα1+E270°)2=R2 式3
Figure SMS_2
R为圆柱结构底面圆的半径;
驱动测头沿平行于Y轴的正方向碰触圆柱结构的径向的侧面于碰触点2,此时的碰触误差记为E90°,得到式4:
(x2+Δx-rsinα2)2+(y2+Δy+rcosα2-E90°)2=R2 式4
Figure SMS_3
R为标准圆柱的半径;
驱动测头沿Y轴正方向触碰正六棱柱结构平行于X轴的侧面于碰触点3,由正六边形的几何特性方程得到式5;驱动测头沿Y轴负方向触碰正六棱柱结构平行于X轴的侧面于碰触点4,由正六边形的几何特性方程得到式6;正六棱柱的底面边长为L;
Figure SMS_4
Figure SMS_5
联立式3、式4、式5和式6,得到一组由偏心误差(Δx,Δy)、E270°和E90°为未知量的关系式;
同样的,驱动测头沿平行于X轴的负方向碰触圆柱结构的径向的侧面于碰触点5,此时的碰触误差记为E180°,得到式7;驱动测头沿平行于X轴的正方向碰触圆柱结构的径向的侧面于碰触点6,此时的碰触误差记为E,得到式8;驱动测头沿平行于X轴正方向碰触长方体结构于碰触点7,得到式9;驱动测头沿平行于X轴负方向碰触长方体结构于碰触点8,得到式10:
Figure SMS_6
Figure SMS_7
Figure SMS_8
L为正六棱柱的底面边长;A为长方体的宽;
联立式7、式8、式9和式10,得到一组关于偏心误差(Δx,Δy)、E180°和E为未知量的关系式;
联立式3、式4、式5、式6、式7、式8、式9和式10求解得到Δx、Δy、E、E180°、E90°和E270°
Δx的计算步骤如下:
由式5和式6得到
Figure SMS_9
Figure SMS_10
将式11、cosα1、sinα1和式12、cosα2、sinα2分别代入式3和式4得到:
Figure SMS_11
Figure SMS_12
式13减去式14得到:
Figure SMS_13
同理,可得:
Figure SMS_14
Figure SMS_15
Figure SMS_16
Figure SMS_17
Figure SMS_18
/>
(4)驱动测头分别沿与X轴正方向成330°、210°、150°和30°角的圆柱结构的径向触碰正六棱柱结构的四个侧面,碰触点分别是碰触点9、碰触点10、碰触点11和碰触点12,由碰触点9、碰触点10、碰触点11和碰触点12分别在直线
Figure SMS_19
和/>
Figure SMS_20
上,可以得到下列方程组:
Figure SMS_21
求解得到沿与X轴正方向成330°、210°、150°和30°角的碰触误差E330°、E210°、E150°和E30°
Figure SMS_22
Figure SMS_23
Figure SMS_24
Figure SMS_25
(5)根据上述求得的结果,得到沿任意方向上任意一点的误差都满足式29,用于标定X-Y平面任意方向上的误差;
[x-(Eθ-r)cosθ+Δx]2+[y-(Eθ-r)sinθ+Δy]2=R2 式29
Δx为最终得到的偏心误差的X轴方向分量;Δy为最终得到的偏心误差的Y轴方向分量;θ为测头碰触方向与X轴正方向的夹角;
由此得到任一方向上的误差补偿值,即(Δx-(Eθ-r)cosθ,Δy-(Eθ-r)sinθ),补偿到触发式测量系统中,完成了对测头的标定。
与现有技术相比,本发明有益效果在于:本发明的标定装置结构简单、标定过程操作简便,同时考虑了各方向碰触误差的各向异性,能一次快速标定出测头的偏心误差和沿不同方向碰触的预行程误差值,具有一定的精度,可以满足复杂型面零件的测量精度要求。
附图说明
图1为本发明用于立式加工中心触发式测量系统的标定装置的三视图;其中图1(a)为主视图,图1(b)为右视图,图1(c)为俯视图;
图2为本发明用于立式加工中心触发式测量系统的标定方法中测头沿Z轴负方向碰触标定装置的示意图;
图3为本发明用于立式加工中心触发式测量系统的标定方法中测头沿平行于X轴和Y轴的径向碰触标定装置圆柱结构侧面的理论位置与实际位置分布图;
图4本发明用于立式加工中心触发式测量系统的标定方法中测头沿Y轴方向碰触标定装置的示意图;
图5本发明用于立式加工中心触发式测量系统的标定方法中测头沿X轴方向碰触标定装置的示意图;
图6本发明用于立式加工中心触发式测量系统的标定方法中测头沿与X轴正方向成330°、210°、150°和30°角的方向碰触标定装置的示意图;
具体实施方式
下面给出本发明的具体实施例。具体实施例仅用于进一步详细说明本发明,不限制本申请权利要求的保护范围。
本发明提供了一种用于立式加工中心触发式测量系统的标定装置(参见图1,简称标定装置),该标定装置由底层101、中层102和顶层103三层结构组成;所述底层101为正六棱柱结构,中层102为圆柱结构,顶层103为长方体结构;所述正六棱柱结构的中心、圆柱结构的中心和长方体结构的中心的连线垂直于水平面,且长方体的一个侧面s1与正六棱柱的一个侧面s2垂直;正六棱柱的底面边长为L,圆柱的底面圆直径为D,长方体长为B、宽为A,三层结构高为H;材料不做具体限定,可采用性质稳定且不易发生形变的材质加工而成。
本发明提供了一种用于立式加工中心触发式测量系统的标定装置(简称标定方法),其特征在于包括以下步骤:
(1)将标定装置安装在立式加工中心的工作台面上,安装时确保正六棱柱结构的侧面s2平行于X轴正方向、长方体结构的侧面s1平行于Y轴正方向,采用百分表确保平行;
(2)通过百分表确定出标定装置的几何中心,即圆柱结构的中心;然后将测头的坐标系原点定在几何中心处;开始标定,先对Z轴进行标定,驱动测头沿Z轴负方向碰触长方体结构的上表面(参见图2);标定装置的高为H,得到Z轴负方向碰触误差Ez,Z0为测头碰触长方体结构的上表面时得到的Z向坐标值,Z1是无碰触误差的Z向坐标值,Z1可由触发式测量系统得到:在无测量速度的状态下,控制测头运动到碰触的临界状态,记录此时Z向坐标值Z1;然后控制测头运行1μm,测头触发,测杆变形,测头停止运动并回退安全距离,测量系统自动记录触发时的主轴位置坐标Z0
Ez=Z1-Z0 式1
(3)标定X-Y平面上的误差;误差由两部分组成:一部分是与碰触的方向有关的可以正交分解的误差,统称为碰触误差;另一部分是由于安装不当造成偏心等因素,导致理论值与测量系统的测量值之间存在固定的偏移量,统称为偏心误差;
不考虑碰触误差,单独考虑偏心误差的作用,当测头按X+、X-、Y+和Y-方向运动并沿圆柱结构的径向测量时(参见图3),实际的运动轨迹如实线所示,理论的运动轨迹如虚线所示,理论的测头与圆柱结构的侧面的碰触位置与实际的碰触位置有固定的偏移量,用矢量(Δx,Δy)表示;测头半径为r,由于偏心误差造成测头的碰触方向与被测点方向的矢量方向不一致,使得理论的测头碰触点与实际的测头碰触点有偏差,由此造成的误差称为余弦误差,在建立模型时必须将余弦误差考虑进去,在不考虑碰触误差的数学模型是:
(x+Δx-r cosα)2+(y+Δy-r sinα)2=R2 式2
Figure SMS_26
R为圆柱结构底面圆的半径;/>
下面过程同时考虑碰触误差和偏心误差,驱动测头沿平行于Y轴的负方向碰触圆柱结构的径向的侧面于碰触点1(参见图4),此时的碰触误差记为E270°,得到式3:
(x1+Δx-r sinα1)2+(y1+Δy-r cosα1+E270°)2=R2 式3
Figure SMS_27
R为圆柱结构底面圆的半径;
驱动测头沿平行于Y轴的正方向碰触圆柱结构的径向的侧面于碰触点2(参见图4),此时的碰触误差记为E90°,得到式4:
(x2+Δx-r sinα2)2+(y2+Δy+r cosα2-E90°)2=R2 式4
Figure SMS_28
R为标准圆柱的半径;
驱动测头沿Y轴正方向触碰正六棱柱结构平行于X轴的侧面于碰触点3(参见图4),由正六边形的几何特性方程得到式5;驱动测头沿Y轴负方向触碰正六棱柱结构平行于X轴的侧面于碰触点4(参见图4),由正六边形的几何特性方程得到式6;正六棱柱的底面边长为L;
Figure SMS_29
Figure SMS_30
联立式3、式4、式5和式6,得到一组由偏心误差(Δx,Δy)、E270°和E90°为未知量的关系式;
同样的,驱动测头沿平行于X轴的负方向碰触圆柱结构的径向的侧面于碰触点5,此时的碰触误差记为E180°,得到式7;驱动测头沿平行于X轴的正方向碰触圆柱结构的径向的侧面于碰触点6,此时的碰触误差记为E,得到式8;驱动测头沿平行于X轴正方向碰触长方体结构于碰触点7,得到式9;驱动测头沿平行于X轴负方向碰触长方体结构于碰触点8,得到式10(参见图5):
Figure SMS_31
Figure SMS_32
Figure SMS_33
L为正六棱柱的底面边长;A为长方体的宽;
联立式7、式8、式9和式10,得到一组关于偏心误差(Δx,Δy)、E180°和E为未知量的关系式;
联立式3、式4、式5、式6、式7、式8、式9和式10求解得到Δx、Δy、E、E180°、E90°和E270°
Δx的计算步骤如下:
由式5和式6得到
Figure SMS_34
Figure SMS_35
将式11、cosα1、sinα1和式12、cosα2、sinα2分别代入式3和式4得到:
Figure SMS_36
Figure SMS_37
式13减去式14得到:
Figure SMS_38
同理,可得:
Figure SMS_39
Figure SMS_40
Figure SMS_41
Figure SMS_42
Figure SMS_43
(4)驱动测头分别沿与X轴正方向成330°、210°、150°和30°角的圆柱结构的径向触碰正六棱柱结构的四个侧面,碰触点分别是碰触点9、碰触点10、碰触点11和碰触点12(参见图6),由碰触点9、碰触点10、碰触点11和碰触点12分别在直线
Figure SMS_44
和/>
Figure SMS_45
Figure SMS_46
上,可以得到下列方程组:
Figure SMS_47
求解得到沿与X轴正方向成330°、210°、150°和30°角的碰触误差E330°、E210°、E150°和E30°
Figure SMS_48
/>
Figure SMS_49
Figure SMS_50
Figure SMS_51
(5)根据上述求得的结果,得到沿任意方向上任意一点的误差都满足式29,用于标定X-Y平面任意方向上的误差;
[x-(Eθ-r)cosθ+Δx]2+[y-(Eθ-r)sinθ+Δy]2=R2 式29
Δx为最终得到的偏心误差的X轴方向分量;Δy为最终得到的偏心误差的Y轴方向分量;θ为测头碰触方向与X轴正方向的夹角;
由此得到任一方向上的误差补偿值,即(Δx-(Eθ-r)cosθ,Δy-(Eθ-r)sinθ),补偿到触发式测量系统中,完成了对测头的标定。
本发明未述及之处适用于现有技术。

Claims (1)

1.一种用于立式加工中心触发式测量系统的标定方法,其特征在于,该方法基于以下标定装置实现:标定装置由底层、中层和顶层三层结构组成;所述底层为正六棱柱结构,中层为圆柱结构,顶层为长方体结构;所述正六棱柱结构的中心、圆柱结构的中心和长方体结构的中心的连线垂直于水平面,且长方体结构中由长和高组成的侧面与正六棱柱的一个侧面垂直;
该方法包括以下步骤:
(1)将标定装置安装在立式加工中心的工作台面上,安装时确保正六棱柱结构的侧面s2平行于X轴正方向、长方体结构的侧面s1平行于Y轴正方向;
(2)将测头的坐标系原点定在几何中心即圆柱结构的中心处;开始标定,先对Z轴进行标定,驱动测头沿Z轴负方向碰触长方体结构的上表面;标定装置的高为H,得到Z轴负方向碰触误差Ez,Z0为测头碰触长方体结构的上表面时得到的Z向坐标值,Z1是无碰触误差的Z向坐标值;
Ez=Z1-Z0 式1
(3)标定X-Y平面上的误差;误差分为碰触误差和偏心误差;
不考虑碰触误差,单独考虑偏心误差的作用,当测头按X+、X-、Y+和Y-方向运动并沿圆柱结构的径向测量时,理论的测头与圆柱结构的侧面的碰触位置与实际的碰触位置有固定的偏移量,用矢量(Δx,Δy)表示;测头半径为r,由于偏心误差造成测头的碰触方向与被测点方向的矢量方向不一致,使得理论的测头碰触点与实际的测头碰触点有偏差,称为余弦误差,在建立模型时考虑余弦误差,在不考虑碰触误差的数学模型是:
(x+Δx-rcosα )2+(y+Δy-rsinα )2=R2 式2
Figure FDA0004185995020000011
R为圆柱结构底面圆的半径;
下面过程同时考虑碰触误差和偏心误差,驱动测头沿平行于Y轴的负方向碰触圆柱结构的径向的侧面于碰触点1,此时的碰触误差记为E270°,得到式3:
(x1+Δx-rsinα1 )2+(y1+Δy-rcosα1+E270° )2=R2 式3
Figure FDA0004185995020000021
R为圆柱结构底面圆的半径;
驱动测头沿平行于Y轴的正方向碰触圆柱结构的径向的侧面于碰触点2,此时的碰触误差记为E90°,得到式4:
(x2+Δx-rsinα2 )2+(y2+Δy+rcosα2-E90°)2=R2 式4
Figure FDA0004185995020000022
R为标准圆柱的半径;
驱动测头沿Y轴正方向触碰正六棱柱结构平行于X轴的侧面于碰触点3,由正六边形的几何特性方程得到式5;驱动测头沿Y轴负方向触碰正六棱柱结构平行于X轴的侧面于碰触点4,由正六边形的几何特性方程得到式6;正六棱柱的底面边长为L;
Figure FDA0004185995020000023
Figure FDA0004185995020000024
联立式3、式4、式5和式6,得到一组由偏心误差(Δx,Δy)、E270°和E90°为未知量的关系式;
同样的,驱动测头沿平行于X轴的负方向碰触圆柱结构的径向的侧面于碰触点5,此时的碰触误差记为E180°,得到式7;驱动测头沿平行于X轴的正方向碰触圆柱结构的径向的侧面于碰触点6,此时的碰触误差记为E,得到式8;驱动测头沿平行于X轴正方向碰触长方体结构于碰触点7,得到式9;驱动测头沿平行于X轴负方向碰触长方体结构于碰触点8,得到式10:
Figure FDA0004185995020000025
Figure FDA0004185995020000031
Figure FDA0004185995020000032
L为正六棱柱的底面边长;A为长方体的宽;
联立式7、式8、式9和式10,得到一组关于偏心误差(Δx,Δy)、E180°和E为未知量的关系式;
联立式3、式4、式5、式6、式7、式8、式9和式10求解得到Δx、Δy、E、E180°、E90°和E270°
Δx的计算步骤如下:
由式5和式6得到
Figure FDA0004185995020000033
Figure FDA0004185995020000034
将式11、cosα1、sinα1和式12、cosα2、sinα2分别代入式3和式4得到:
Figure FDA0004185995020000035
Figure FDA0004185995020000036
式13减去式14得到:
Figure FDA0004185995020000037
同理,可得:
Figure FDA0004185995020000038
Figure FDA0004185995020000039
/>
Figure FDA00041859950200000310
Figure FDA00041859950200000311
Figure FDA0004185995020000041
(4)驱动测头分别沿与X轴正方向成330°、210°、150°和30°角的圆柱结构的径向触碰正六棱柱结构的四个侧面,碰触点分别是碰触点9、碰触点10、碰触点11和碰触点12,由碰触点9、碰触点10、碰触点11和碰触点12分别在直线
Figure FDA0004185995020000042
和/>
Figure FDA0004185995020000043
Figure FDA0004185995020000044
上,可以得到下列方程组:
Figure FDA0004185995020000045
求解得到沿与X轴正方向成330°、210°、150°和30°角的碰触误差E330°、E210°、E150°和E30°
Figure FDA0004185995020000046
Figure FDA0004185995020000047
Figure FDA0004185995020000048
Figure FDA0004185995020000049
(5)根据上述求得的结果,得到沿任意方向上任意一点的误差都满足式29,用于标定X-Y平面任意方向上的误差;
[x-(Eθ-r)cosθ +Δx]2+[y-(Eθ-r)sinθ+Δy ]2=R2 式29
Δx为最终得到的偏心误差的X轴方向分量;Δy为最终得到的偏心误差的Y轴方向分量;θ为测头碰触方向与X轴正方向的夹角;
由此得到任一方向上的误差补偿值,即(Δx-(Eθ-r)cosθ,Δy-(Eθ-r)sinθ),补偿到触发式测量系统中,完成了对测头的标定。
CN201710071781.7A 2017-02-09 2017-02-09 用于立式加工中心触发式测量系统的标定装置和标定方法 Active CN107414602B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710071781.7A CN107414602B (zh) 2017-02-09 2017-02-09 用于立式加工中心触发式测量系统的标定装置和标定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710071781.7A CN107414602B (zh) 2017-02-09 2017-02-09 用于立式加工中心触发式测量系统的标定装置和标定方法

Publications (2)

Publication Number Publication Date
CN107414602A CN107414602A (zh) 2017-12-01
CN107414602B true CN107414602B (zh) 2023-05-26

Family

ID=60423116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710071781.7A Active CN107414602B (zh) 2017-02-09 2017-02-09 用于立式加工中心触发式测量系统的标定装置和标定方法

Country Status (1)

Country Link
CN (1) CN107414602B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107900781B (zh) * 2017-12-25 2023-09-22 河北工业大学 用于车床的接触式在线检测系统的标定装置和标定方法
CN110860947B (zh) * 2018-08-27 2022-04-08 成都飞机工业(集团)有限责任公司 一种定位找正的方法
CN110674466B (zh) * 2019-09-17 2022-04-08 成都飞机工业(集团)有限责任公司 一种多基准条件下飞机复杂焊接导管测量及匹配方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098516A (ja) * 2000-09-22 2002-04-05 Canon Inc 三次元測定方法
CN102785128A (zh) * 2012-07-30 2012-11-21 广东工业大学 面向数控车床的零件加工精度在线检测系统及检测方法
JP2013011443A (ja) * 2011-06-28 2013-01-17 Mitsubishi Heavy Ind Ltd 形状測定用測定子の校正方法
WO2013131354A1 (zh) * 2012-03-07 2013-09-12 天津大学 机床分度误差补偿方法及装置
CN103398660A (zh) * 2013-08-05 2013-11-20 河北工业大学 用于获取焊缝高度信息的结构光视觉传感器参数标定方法
CN103481122A (zh) * 2013-08-08 2014-01-01 哈尔滨理工大学 面向自由曲面的接触式测量误差补偿方法及补偿系统
CN103659467A (zh) * 2013-11-15 2014-03-26 西安理工大学 触发式测头轴向预行程的标定方法
CN103692292A (zh) * 2013-11-25 2014-04-02 湖北三江航天险峰电子信息有限公司 在车床上进行工件尺寸在线测量的方法
CN105371793A (zh) * 2015-10-29 2016-03-02 华中科技大学 一种五轴机床旋转轴几何误差一次装卡测量方法
CN106247914A (zh) * 2016-07-11 2016-12-21 合肥工业大学 一种坐标测量机触发式测头标定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101255479B1 (ko) * 2010-01-19 2013-04-16 경북대학교 산학협력단 다축 제어 기계의 직선축과 회전축 간의 기하학적 오차 평가 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098516A (ja) * 2000-09-22 2002-04-05 Canon Inc 三次元測定方法
JP2013011443A (ja) * 2011-06-28 2013-01-17 Mitsubishi Heavy Ind Ltd 形状測定用測定子の校正方法
WO2013131354A1 (zh) * 2012-03-07 2013-09-12 天津大学 机床分度误差补偿方法及装置
CN102785128A (zh) * 2012-07-30 2012-11-21 广东工业大学 面向数控车床的零件加工精度在线检测系统及检测方法
CN103398660A (zh) * 2013-08-05 2013-11-20 河北工业大学 用于获取焊缝高度信息的结构光视觉传感器参数标定方法
CN103481122A (zh) * 2013-08-08 2014-01-01 哈尔滨理工大学 面向自由曲面的接触式测量误差补偿方法及补偿系统
CN103659467A (zh) * 2013-11-15 2014-03-26 西安理工大学 触发式测头轴向预行程的标定方法
CN103692292A (zh) * 2013-11-25 2014-04-02 湖北三江航天险峰电子信息有限公司 在车床上进行工件尺寸在线测量的方法
CN105371793A (zh) * 2015-10-29 2016-03-02 华中科技大学 一种五轴机床旋转轴几何误差一次装卡测量方法
CN106247914A (zh) * 2016-07-11 2016-12-21 合肥工业大学 一种坐标测量机触发式测头标定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
三轴立式加工中心几何误差补偿方法的研究;何春燕;李为民;张建军;黄田;;兵工学报(12);全文 *
加工中心在线检测误差补偿技术研究;刘丽冰,刘又午,赵小松,章青,方沂;中国机械工程(03);全文 *

Also Published As

Publication number Publication date
CN107414602A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
CN109032070B (zh) 一种采用电涡流位移传感器的非接触式R-test测量仪标定方法
US9212906B2 (en) Device for detecting axis coplanarity of orthogonal rotary shafts having built-in intersection and precision detecting method
CN109032069B (zh) 一种采用电涡流位移传感器的非接触式R-test测量仪球心坐标计算方法
JP5294949B2 (ja) 回転体の肉厚等測定装置
US20080201005A1 (en) Machine tool having workpiece reference position setting function by contact detection
CN107414602B (zh) 用于立式加工中心触发式测量系统的标定装置和标定方法
CN102937409A (zh) 一种极坐标齿轮测量中心及其零点标定方法
CN112008491B (zh) 一种基于测头的ca型五轴数控机床rtcp精度标定方法
TWI704028B (zh) 因應治具偏移的刀具路徑定位補償系統
CN109253710B (zh) 一种revo测头a轴零位误差标定方法
CN115979118B (zh) 圆柱形零件垂直度误差和误差方位角的测量装置及方法
CN107900781B (zh) 用于车床的接触式在线检测系统的标定装置和标定方法
CN108801193B (zh) 一种基于误差与变异规律的三坐标测量机误差测量方法
CN112247670A (zh) 一种单轴测量式测头及其测量方法
CN206160911U (zh) 一种用于零件中心孔深度的测量装置
CN108534676B (zh) 一种坐标测量机测量空间内空间误差的检验方法
CN114253217A (zh) 带有自修正功能的五轴机床rtcp自动标定方法
CN206425903U (zh) 一种用于立式加工中心的工件测头误差标定装置
CN216846033U (zh) 基于深矢高工件的内壁测量系统
TWM462360U (zh) 垂直軸之檢測裝置
CN214054599U (zh) 一种单轴测量式测头
CN111922783B (zh) 基于杠杆原理的机床多维几何误差测量方法
CN103659466B (zh) 触发式传感器轴向触发行程的检定方法及检定辅具
CN209085507U (zh) 内孔倒角深度的快速检测装置
CN109822397B (zh) 一种用于调校雷尼绍测头的机构及调校方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant