CN107409372B - 无线通信中的循环移位分集 - Google Patents

无线通信中的循环移位分集 Download PDF

Info

Publication number
CN107409372B
CN107409372B CN201680012185.5A CN201680012185A CN107409372B CN 107409372 B CN107409372 B CN 107409372B CN 201680012185 A CN201680012185 A CN 201680012185A CN 107409372 B CN107409372 B CN 107409372B
Authority
CN
China
Prior art keywords
frame
cyclic shift
csd
communication
wireless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680012185.5A
Other languages
English (en)
Other versions
CN107409372A (zh
Inventor
李庆华
黄柏凯
罗伯特·斯泰西
陈晓刚
朱源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel IP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel IP Corp filed Critical Intel IP Corp
Publication of CN107409372A publication Critical patent/CN107409372A/zh
Application granted granted Critical
Publication of CN107409372B publication Critical patent/CN107409372B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了用于来自多个通信设备的天线的同时无线传输(例如上行链路传输)的循环移位分集(CSD)。

Description

无线通信中的循环移位分集
相关申请交叉引用
本申请涉及并要求以下专利申请的优先权:2015年2月27日提交的美国临时专利申请No.62/126,290、2015年3月24日提交的美国临时专利申请No.62/137,611和2015年12月26日提交的美国专利申请No.14/757,824。上述申请中的每一个的内容通过引用整体合并于此。
背景技术
一些无线通信可以具有可以几乎同时从能发送无线信号的多个用户设备或其它类型的设备发送的公共内容(common content)。因此,内容可能在频率和/或时间上叠加,这可能导致例如源于多径衰落的通信伪影(artifact)。
附图说明
附图形成了本公开的组成部分并且并入本说明书中。附图示出了本公开的示例性实施例,并且用于结合说明书和权利要求至少部分地解释本公开的各种原理、特征或方面。下面参考附图更全面地描述本公开的一些实施例。然而本公开的各个方面可以以许多不同的形式实现,并且不应被解释为限于本文所阐述的实现方式。相同的数字在贯穿全文指代相同的元素。
图1示出了根据本公开的一个或多个实施例的、用于无线通信的操作环境的示例。
图2-3示出了根据本公开的一个或多个实施例的、包括跨不同通信设备的公共传输内容的无线传输的示例。在图2中,公共内容包括公共传统前导码(common legacypreamble),并且图3包括公共允许发送(commom clear to send,CTS)传输。
图4示出了根据本公开的一个或多个实施例的、由于循环移位分集(Cyclic ShiftDiversity,CSD)所致的总接收功率稳定的示例。
图5-6示出了根据本公开的一个或多个实施例的无线传输的示例。
图7A示出了根据本公开的一个或多个实施例的、具有不同数量天线的不同通信设备的CSD值的分配的示例。
图7B示出了根据本公开的一个或多个实施例的、具有不同数量天线的不同通信设备的CSD值的分配的另一示例。
图8A示出了根据本公开的一个或多个实施例的、具有不同数量天线的不同通信设备的CSD值的分配的又一示例。
图8B示出了根据本公开的一个或多个实施例的、具有不同数量天线的不同通信设备的CSD值的分配的又一示例。
图9示出了根据本公开的一个或多个示例实施例的网络环境的示例。
图10-11示出了根据本公开的一个或多个实施例的、用于针对每个LTF符号向不同设备的LTF序列应用正交码的示例模型。
图12示出了根据本公开的一个或多个实施例的、使用预先移位(pre-shift)的LTF序列和/或没有CSD的网络性能的示例性仿真的结果。
图13示出了根据本公开的一个或多个实施例的、将CSD应用到LTF序列的示例。
图14示出了根据本公开的一个或多个实施例的、使用循环移位分集来进行干扰消除的信道估计性能的示例性仿真。
图15呈现了根据本公开的一个或多个实施例的用于无线通信的设备的示例。
图16呈现了根据本公开的一个或多个实施例的用于无线通信的无线电单元的示例。
图17呈现了根据本公开的一个或多个实施例的用于无线通信的计算环境的示例。
图18示出了根据本公开的一个或多个实施例的用于无线通信的通信设备的另一示例。
图19呈现了根据本公开的一个或多个实施例的用于无线通信的示例性方法。
图20描绘了根据本公开的一个或多个实施例的、利用CSD兼容LTF序列的示例性方法。
具体实施方式
本公开在至少一些方面标识和解决具有在频率和/或时间上叠加的公共内容的无线传输(或其它类型的通信)的问题。本公开的一些实施例将循环移位分集(CSD)应用于来自不同通信设备(例如,发送器或接收器)的上行链路同时传输。此外,本公开的实施例可以增强诸如上行链路传输之类的无线通信的可靠性和/或弹性。对于多用户CSD,同时L-SIG和/或同时CTS传输的可靠性也可针对室内环境得以增强。进一步地对于多用户CSD,在一些实现方式中,由本公开的一些实施例所提供的改进可以与具有多个发送天线的单用户CSD提供的改进相媲美甚至超过后者的改进。更具体但不排他地,本公开提供用于来自多个通信设备的天线的同时无线传输(例如,上行链路传输)的循环移位分集的设备、系统、技术和/或计算机程序产品。尽管结合20MHz信道内的通信来说明本公开的各种实施例,但应理解,本公开不限于此方面并且预期了其它信道带宽(40MHz、80MHz、160MHz或80+80MHz)。类似地,本公开内容不受MU传输中所包括的通信设备的数量的限制,并且可以为任何数量的通信设备实现本文描述的CSD特征。此外,本文结合无线通信中的CSD描述的特征可以应用于根据任何无线电技术协议(例如电气和电子工程师协会(IEEE)802.11系列标准)的通信,而不仅仅是根据Wi-Fi协议的通信。
词汇表——在本说明书和附图中使用以下首字母缩写词:AP:接入点;CSD:循环移位分集;CTS:允许发送;DL:下行;HEW:高效无线局域网;ID:标识;L-STF:传统短训练字段;L-LTF:传统长训练字段;L-SIG:传统信号字段;MAC:介质访问控制;MU:多用户;OFDM:正交频分复用;PAID:部分访问ID;RTS:准备发送;STA:台站;以及UL:上行链路。
参考附图,图1示出了根据本公开的至少一些方面的无线通信的示例性操作环境100的框图。操作环境100包括一些电信基础设施和通信设备,它们总体上可以实现或以其它方式构成电信环境。更具体但不排他地,电信基础设施可以包括卫星系统104。如本文所描述的,卫星系统104可以被实现在全球导航卫星系统(GNSS)中或者可以包括GNSS,GNSS例如是全球定位系统(GPS)、伽利略、GLONASS(Globalnaya navigatsionnaya sputnikovayasistema)、北斗导航卫星系统(BDS)和/或准天顶卫星系统(QZSS)。此外,电信基础设施可以包括:由三个基站108a-108c表示的宏小区(macro-cellular)或大小区(large-cell)系统;由三个接入点(或低功率基站)114a-14c表示的微小区(micro-cellular)或小小区(small-cell)系统;以及基于传感器的系统(其可以包括以功能元件116a-116c表示的(一个或多个)接近传感器、(一个或多个)信标设备、(一个或多个)伪固定设备和/或(一个或多个)可穿戴设备)。如图所示,根据本公开的一些方面,在一种实现方式中,包括在相应的计算设备(例如电信基础设施)中的(一个或多个)发送器、(一个或多个)接收器和/或(一个或多个)收发器中的每一个可以根据特定的无线电技术协议(例如,IEEE 802.11a、IEEE 802.11ax等)经由(一个或多个)无线链路与无线设备110a(也称为通信设备110a)功能上耦接(例如,通信地耦接或以其它方式操作地耦接)。对于另一示例,基站(例如,基站108a)可以经由根据用于宏小区无线通信的无线电技术协议(例如,第三代合作伙伴计划(3GPP)通用移动电信系统(UMTS)或“3G”、“3G”;3GPP长期演进(LTE)或LTE)、LTE高级(LTE-A))配置的相应上游无线链路(UL)和下游链路(DL)功能上耦接到无线设备110a、110b、110c和110d。对于又一示例,接入点(例如,接入点114a)可以经由根据用于小小区无线通信的无线电技术协议(例如,毫微微小区协议、Wi-Fi等)配置的相应UL和DL功能上耦接到无线设备110a、110b或110c中的一个或多个。对于又一示例,信标设备(例如,设备116a)可以通过仅UL(ULO)、仅DL或UL和DL功能上耦接到无线设备110a,每个这样的无线链路(以开放箭头表示)可以根据用于点对点或短距离无线通信的无线电技术协议(例如,Zigbee、蓝牙或近场通信(NFC)标准、超声波通信协议等)来配置。
在操作环境100中,小小区系统和/或信标设备可以被包含在受限区域118内,受限区域118可以包括室内区域(例如,诸如商场的商业设施)和/或空间狭窄的室外区域(例如开放或半开放的停车场或车库)。小小区系统和/或信标设备可以向受限区域118内的设备(例如,无线设备110a或110b)提供无线服务。例如,无线设备110a可以从宏小区无线服务切换到由存在于受限区域118内的小小区系统提供的无线服务。类似地,在一些情况下,宏小区系统可以向受限区域118内的设备(例如,无线设备110a)提供无线服务。
在一些实施例中,无线设备110a以及其它在本公开中预期的(无线或有线)通信设备可以包括具有计算资源的电子设备,该计算资源包括处理资源(例如,(一个或多个)处理器)、存储器资源(存储器设备(也称为存储器))、以及用于在计算设备内和/或与其它计算设备交换信息的通信资源。根据具体的设备功能,这样的资源可以具有不同级别的架构复杂性。根据本公开的一些方面的计算设备之间的信息交换可以如本文所描述的那样以无线的方式执行,因此在一个方面,无线设备110a也可以互换地称为无线通信设备110a、无线计算设备110a、通信设备110a或计算设备110a。同样的术语考虑适用于无线设备110b和无线设备110c。更一般地,在本公开中,通信设备也称为计算设备,并且在一些情况下术语“通信设备”可以与术语“计算设备”互换使用,除非上下文明确地指出应该进行区分。此外,根据HEW操作的通信设备(例如,通信设备110a或110b或110c)可以使用或利用物理层融合协议(PLCP)和相关的PLCP协议数据单元(PPDU)来传输和/或接收无线通信。根据本公开的一些方面可以无线通信的计算设备的示例可以包括:具有无线通信资源的台式计算机;移动计算机,诸如平板电脑、智能电话、笔记本电脑、具有无线通信资源的膝上型电脑、UltrabookTM计算机;游戏机,移动电话;刀片式计算机;可编程逻辑控制器;近场通信设备;具有无线通信资源的客户端设备(例如机顶盒、无线路由器、无线电视机等)。无线通信资源可以包括具有用于处理无线信号的电路的无线电单元(也称为无线电)、(一个或多个)处理器、(一个或多个)存储设备等,其中无线电、(一个或多个)处理器和(一个或多个)存储设备可以经由总线架构来耦接。
包括在示例性操作环境100中的计算设备以及本公开中预期的其它计算设备可以实现或以其它方式利用本文描述的CSD方面。应当理解,其它功能元件(例如,服务器、路由器、网关等)可以被包括在操作环境100中。应当理解,本公开的循环移位分集特征可以在包括下述网络的任何电信环境中实现:有线网络(例如,有线网络、互联网协议(IP)网络、工业控制网络、任何广域网(WAN)、局域网(LAN)、个人区域网络(PAN)、基于传感器的网络等);无线网络(例如,小区网络(小小区网络或宏小区网络))、无线WAN(WWAN)、无线LAN(WLAN)、无线PAN(WPAN)、基于传感器的网络、卫星网络等);上述网络的组合,等等。
例如,用于无线通信的一些无线电技术协议可以包括指示或以其它方式允许来自一组通信设备的多个上行链路(UL)通信的信令或其它类型的信息。更具体地,作为说明,IEEE 802.11ax已经定义了同时或基本上同时地触发多个UL传输的触发帧。在一些实施例中,如图2所示,这种同时UL传输可以包括公共传输内容,例如用于UL OFDMA通信的传统前导码(legacy preamble)。更具体地,在一个示例中,四个台站设备(例如,STA设备110a-110d)可以被分配给具有带宽Δ(例如,20MHz)的信道中的相应子载波δ1、δ2、δ3和δ4。AP设备(例如,AP设备114a)可以向每个台站设备发送触发帧210,其中触发帧可以包括公共内容。类似地,四个台站设备中的每个可以将公共传统前导码220发送到分别在子载波δ14中调度的台站设备。随后,如图2所示,四个台站设备中的每个可以发送对在子载波δ14中的一个调度的相应台站设备特定的内容。如示出的,在子载波δ1中调度的第一设备(例如,STA设备110a)可以发送HE前导码(HE-Preamble)230a。在子载波δ2中调度的第二设备(例如,STA设备110b)可以发送HE前导码230b。在子载波δ3中调度的第三设备(例如,STA设备110bc)可以发送HE前导码230c。在子载波δ4中调度的第四设备(例如,STA设备110d)可以发送HE前导码230d。在发送这样的前导码之后,台站设备可以在上行链路中发送各自的数据240a、数据240b、数据240c和数据240d。
附加地或在其它实施例中,如图3所示,同时上行链路传输可以包括诸如公共CTS帧传输之类的其它公共传输内容。可以响应于由AP设备在DL中发送的诸如多用户(MU)CTS帧310之类的其它公共内容来发送公共传输内容。公共传输内容可以实现在分别分配给子载波δ14的台站设备UL所发送的公共CTS传输中,或者可以包括公共CTS传输。此外,公共CTS传输可以用于例如DL数据保护。注意,公共传输内容还可以用于除DL数据保护外的其它目的。响应于MU-CTS阶段的完成,AP设备可以在DL中发送具有DL资源分配的前导码330,并且还可以发送各个台站设备的数据340a、数据340b、数据340c和数据340d;例如,第一设备可以接收数据340a的至少一部分;第二设备可以接收数据340b的至少一部分;第三设备可以接收数据340c的至少一部分;并且至少第四设备可以接收数据340d的至少一部分。尽管结合图2-3参考了20MHz的信道,但本公开不限于此,并且预期了不同信道带宽Δ内的多个同时或几乎同时UL通信。
如示出的,公共传输内容可以在空中(over the air)在时间和频率上叠加。因此,在一个方面,这种传输可被视为来自不同通信设备的(一个或多个)天线的同时传输。另外,在DensiFi文档中引入了物理层欺骗(spoofing)以用于多用户(MU)传输(例如,上行链路OFDMA和上行链路MU-MIMO)。相同的传统前导码可以由不同的上行用户设备同时发送。在用户设备(通常也称为“用户”)处于小环境内(例如,在同一个房间中)的情况下,传统前导码的接收功率可以随机下降到接近零。不意在受到理论和/或建模的限制,这种下降可能是由于多径到达时间大致相同的用户设备信号之间的破坏性衰落。
在一个方面,多径到达时间之间的相似性可以允许多径承载的信号彼此交互,从而导致随机的破坏性衰落。在一个示例中,IEEE 802.11n/ac可以将循环移位分集(CSD)用于具有多个发送天线的单用户传输。在一个方面,CSD可以在FFT域(也称为“相互域”或“频域”)中将不同天线信号的到达时间移位,使得总接收功率可以接近从每个单独天线接收的功率之和。图4示出了根据本公开的一个或多个实施例的、由于实现CSD而导致的总接收功率的稳定。在一个示例中,最小移位可以是50ns,其基本上对应于20MHz信道的一个基带采样(在FFT域中)以及50英尺传播延迟。因此,由于用于上行链路多用户通信的大多数室内场景都在50英尺内,因此当用户设备发送诸如传统前导码和/或同时CTS之类的公共信号时,本发明的一些实施例将CSD添加到上行用户设备(例如,STA设备110a、STA设备110b、STA设备110c、STA设备110d或类似设备)。
在某些情况下,从天线辐射模式(例如同一设备上来自多个天线的MIMO传输)的角度来看,当传输内容相同时可能存在非预期的波束成形,特别是当来自多个通信设备的传播延迟小的时候。因此在一个示例中,可能存在覆盖区域中的大空隙(big void)。这样,根据本文描述的一些方面,本公开的实施例可以通过CSD减轻或去除这种空隙。
本公开的一些实施例可以将CSD应用于同时或基本同时的上行链路传输(例如,L-STF、L-LTF、L-SIG和同时MAC帧(例如CTS帧))的公共内容。在一些实施例中,可以针对多个通信设备以信令形式或以其它方式通信CSD值。在一个实施例中,接入点(例如,AP设备114a)可以通过管理帧静态地向不同的用户分配不同的CSD值。附加地或在另一实施例中,AP可以通过触发帧或调度帧或物理层(PHY)头部(例如,HE-SIG-B)动态地向不同的用户分配不同的CSD值。进一步地或在又一实施例中,CSD值可以在触发帧210中(例如,针对每个被触发设备)、或在调度帧中(针对每次传输)、或在PHY头部中以信令形式传输。进一步地或在其它实施例中,每个设备的天线数量也可以用于确定CSD值。例如,移动台可以将其发送天线的数量报告给AP设备。
在一些实现方式中,可以定义用于应用CSD的表。这样的表格可以被包括作为用于无线通信的无线电技术协议(例如,IEEE 802.11a)的规范的一部分。在一个示例中,该表可以定义针对不同数量的用户设备的CSD。更具体地,作为说明,对于固定数量的用户设备(例如,K个站,其中K为大于一的自然数),该表可以按照特定顺序为相应的用户设备定义K个CSD值。例如:STA设备可以至少基于在触发帧或调度帧或PHY头部中列出的通信地址(例如,MAC地址、IP地址、台站ID等)的相应顺序来从表中获得或以其它方式获取相应的CSD值。在触发帧210触发STA设备以寻址STA1、STA2和STA3的一个示例场景中,STA1可以使用来自用于三个用户设备的表中的第一CSD值。CSD的表可以包括例如用于第i个用户设备的以ns表示的CSD延迟值δt(i-1)。这里,δt可以是定义的或可以其它方式配置的延迟值。因此,针对给定的K,CSD增量可以是常数。在另一示例情况下,可以基于每个用户设备的天线数来定义表。例如,该表可以基于特定窗口中的用户设备来确定第一天线的CSD。此外,用户设备可以将剩余天线的CSD扩展到窗口的其余部分。图8A-8B示出了对各种天线的CSD值的这种确定。
例如,在一些实施例中,用户设备可以响应于UL MU传输或以其它方式由UL MU传输触发来确定或以其它方式配置UL传输的CSD值。在一个示例中,帧的L-LTF、L-SIG和MAC内容可以使用相同的CSD值。附加地或在另一示例中,L-STF可以使用与L-LTF相同或不同的CSD值。在一些实现方式中,如果触发的STA具有多个天线,则触发的STA可以将用于UL MU传输的CSD与用于多天线传输的CSD组合,以确定每个天线处的传输的CSD。例如,求和可能就足够了。对于另一示例,如果对于最大CSD值(即Tmax)存在限制,则可以应用取模运算(modulo operation)以便确定或以其它方式配置STA的CSD值。对于又一示例,触发的STA可以选择或以其它方式确定针对其所有天线仅使用一个或两个CSD值来进行传输。附加地或在其它实现方式中,如果触发的STA具有多个天线,则触发的STA设备可以采用可以由本文所述的表(或其它类型的信息结构)定义的和/或由AP设备(例如,AP设备114a)以信令方式传输的每个天线的CSD的信令。
在一些操作场景中,UL同时传输可以在整个信道带宽Δ(例如,20MHz信道带宽)上发生。在一种这样的情况中,STA设备可以在特定20MHz子载波中以L-SIG进行响应。通常,STA设备必须在主20MHz信道上进行传输。然而,由于上行链路OFDMA可以由触发帧(例如,触发帧210、触发帧510或触发帧610)来调度并且STA设备可以在分别调度的子载波上发送数据,所以STA设备可能不需要在整个20MHz信道上发送L-SIG。图5示出了根据本公开的一个或多个实施例的、L-SIG在不同信道子载波δ123和δ4上的UL传输。如示出的,L-SIG被表示为传统前导码520a、传统前导码520b、传统前导码520c和传统前导码520d。如本文所述,尽管示出了20MHz信道内的通信,但应理解本公开不受此限制,并且可以预期其它信道带宽(40MHz、80MHz、160MHz或80+80MHz等)。类似地,本公开不限于通信设备的数量(例如,四个STA设备),并且本文描述的CSD元素可以针对多于四个台站或少于四个台站来实现。
在一种情况下,STA可以在要发送UL数据的20MHz信道上发送传统前导码。在这种情况下,可以根据20MHz信道中的STA的最大数目来确定或以其它方式配置CSD值的表。附加地或在其它情况下,STA可以在由UL OFDMA传输占用的每个20MHz信道上发送传统前导码。在这种情况下,可以根据上行链路OFDMA传输中的STA的总数或最大数量来确定或以其它方式配置CSD的表。
类似于前面描述的传统前导码的传输,可以提供各种实施方案来用于在具有带宽Δ的信道中同时进行CTS帧传输,如图6所示。在一种情况下,STA设备可以在可发送DL数据的信道上发送CTS。例如,分别分配给子载波δ1、δ2、δ3和δ4的四个STA设备可以分别发送CTS620a、CTS 620b、CTS 620c和CTS 620d。在这种情况下,可以根据在20MHz信道中调度的STA的总数或最大数量来确定或以其它方式配置CSD的表。附加地或在另一情况下,STA可以在由UL OFDMA传输占用的每个20MHz信道上发送传统前导码。因此,例如可以根据下行链路OFDMA传输中的STA的总数或最大数量来确定或以其它方式配置CSD的表。
本公开的一些实施例允许通过提供将CSD值分配给不同用户设备的方案来最大化或以其它方式利用传统重用并降低实现方式复杂度。图7A-7B示出了根据本公开的、针对不同通信设备(例如,第一STA设备STA 1、第二STA设备STA 2以及第三STA设备STA 3,每个都具有不同数量的天线)分配CSD值的示例。在一个方面,这种分配的设计原理是最大化被分配或以其它方式指定CSD值的台站的CSD值跨度(span)。由于如果台站具有多个天线则在一些传统无线电技术协议(例如,IEEE 802.11n/ac)中单个台站的CSD值跨度可以是最大的,所以本公开的实施例可以为具有单个发送天线的台站提供最大或其它令人满意的CSD值跨度。应当理解,在一些实施例中,AP或移动站可能不知道另一通信设备的发送天线的数量。
在一些实施例中,由AP寻址的上行链路台站可以首先了解到它需要与其它台站同时发送相同的信号。具体但不排他地,上行链路台站可以获知其在台站列表中的位置,在该列表中,台站可以在相同的频带或子带上同时发送相同的信号。作为说明,在解码AP的触发帧和/或调度帧之后,上行链路台站可以确定其部分接入ID(PAID)在某个频带或子带的上行链路调度表中第3的位置。如果UL台站具有用于CSD的多个发送天线,则对于单台站传输UL台站可以利用在802.11n/ac中定义的CSD值,其中这样的值可以在约0ns至约-200ns的范围内。替代地,如果UL台站具有单个发送天线,则UL台站需要根据台站在调度表中的位置和/或根据针对频带或子带同时进行发送的台站的总数来选择或以其它方式确定CSD值。
图7A示出了其中三个上行链路台站(可以体现在设备110a中的STA 1;可以体现在设备110b中的STA 2;以及可以体现在设备110c中的STA 3)需要在同一频带或子带上发送公共信号(例如,CTS或传统前导码)的示例。所有这样的UL台站都具有单个天线。因此,在一个示例中,UL台站可以利用在IEEE 802.11n/ac中针对单用户定义的CSD值(3天线CSD)。具体但不排他地,STA 1可以采用0ns,STA 2可以采用-100ns,并且STA 3可以采用-200ns。
图7B示出了STA 2具有两个天线并且STA 1和STA 3各自具有一个天线的示例。在一个示例中,通过具有两个天线,STA 2可以利用在IEEE 802.11n/ac中定义的CSD值(例如,对于第一天线使用0ns,对于第二天线使用-200ns),并且在采用CSD值时可以不予考虑其在调度表中的位置。此外,在这样的示例中,STA 1和STA 3可以根据它们在调度表中的位置(例如,第1和第3位)来采用在IEEE 802.11n/ac中针对3天线设备定义的CSD值。因此,STA 1和STA 3的CSD值分别可以是0ns和-200ns。
在一些实施例中,上行链路台站可能不能访问其在调度表中的位置和/或访问可以同时在相同的频带或子带中发送相同信号的台站的总数。在这样的实施例中,在一个示例中,本公开预期具有多个天线的上行链路台站可以采用在IEEE 802.11n/ac中为单个用户传输定义的相同的CSD值。此外,具有单个天线的另一个上行链路台站可以从具有不同CSD值的表中随机地选择或以其它方式确定CSD值。可以在用于无线通信的无线电技术协议的标准中定义这样的表,或者可以由可以与这样的上行链路台站进行通信的接入点来指定。例如,在IEEE 802.11ac/n中针对8天线台站定义的表可以在本公开的一些实施例中被重用。例如,可以以相等的概率选择每个CSD值。
图8A-8B示出了根据本公开的一个或多个实施例的CSD值的分配或以其它方式指定的另一示例。CSD范围可以分为两个区域:延迟区域1和延迟区域2。区域大小可以基本相等(如图8A所示),或者可以不同(如图8B所示)。在一个示例中,每个台站可以采用第一区域中的CSD值。CSD值可以如本文所述地从表中随机挑选,或者根据本文所述地由台站在调度表中的位置来确定。对于具有多个发送天线的台站,台站可以采用第二区域中的另一CSD值。另一CSD值可以从表中随机选择,或者根据本文所述地由台站在调度表中的位置确定。
在一些传统的无线电技术协议(例如IEEE 802.11n/ac)中,CSD表可用于多达8个天线。因此,对于在调度表中的位置大于8的单天线台站,本公开的实施例可以采用或以其它方式应用取模运算。例如,由于对于M=8,(11mod M)=3,因此在调度表中位于第11位的单天线台站可以采用与第3位的单天线台站相同的CSD值。对于在调度表中第k个位置的台站,单天线台站的CSD值可以是具有Q个条目的CSD的表中的第n个条目,其中对于k不等于Q的倍数的情况n=k mod Q,对于k等于Q的倍数的情况n=Q。
除了触发或调度的上行链路公共传输之外,根据本公开的一些方面,其它上行链路传输也可以应用CSD。例如,基于争用的上行链路传输和/或低功率上行链路传输可以在空中叠加传统前导码。因此,在一些实施例中,每个上行链路设备可以随机选择用于其上行链路传输的CSD。
图9示出了根据本公开的一个或多个实施例的网络环境900的示例。网络环境900可以包括一个或多个无线通信设备,包括接入点(AP)设备910、台站设备920(标记为STA1)、台站设备930(标记为STA 2)和台站设备940(标记为STA 3)。AP设备910包括天线915(例如,八个天线)。这样的无线通信设备可以根据IEEE 802.11通信标准(包括IEEE 802.11ax)进行通信。注意,在一些实施例中,网络环境100可以包括任何数量的台站设备和/或任何其它数量的AP设备。网络环境900中的STA设备中的至少一个(或在一些实施例中,每个STA设备)可以实现为移动站、移动设备、用户设备和/或非静态且不具有固定位置的类似设备和/或其它类型的计算设备,或者可以包括上述各项。类似地,网络环境900中的AP设备中的每个(或在一些实施例中,至少一个)可以是静态的,并且可以具有固定位置。在一些实施例中,(一个或多个)STA和/或(一个或多个)AP可以包括与图15、图17和图18所示类似的一个或多个计算机系统和/或组件。
根据一些IEEE 802.11ax(高效率WLAN(High-Efficiency WLAN,HEW))实施例,接入点设备可以作为主台站设备操作,主台站设备可以被布置为(例如,在争用时段期间)争用无线介质,以在HEW控制时段期间接收对介质的专用控制。主台站设备可以在HEW控制时段的开始时发送HEW主同步传输。在HEW控制时段期间,HEW台站可以根据基于非争用的多址技术与主台站设备进行通信。这不同于其中设备根据基于争用的通信技术而不是多址技术进行通信的传统Wi-Fi通信。在HEW控制时段期间,主台站设备可以使用一个或多个HEW帧与HEW台站通信。此外,在HEW控制时段期间,传统台站不进行通信。在一些实施例中,主同步传输可以被称为HEW控制和调度传输。
在一些实施例中,在HEW控制时段期间使用的多址技术可以包括调度的正交频分多址(OFDMA)技术,尽管这不是必需的。在其它实施例中,多址技术可以是时分多址(TDMA)技术或频分多址(FDMA)技术。在一些实施例中,多址技术可以是空分多址(SDMA)技术。
主台站设备还可以根据传统IEEE 802.11通信技术与传统台站设备和/或其它类型的传统设备进行通信。在一些实施例中,主台站设备还可以能被配置为在HEW控制时段之外根据传统IEEE 802.11通信技术与HEW台站通信,尽管这不是必需的。
根据本公开的一些方面的一个或多个说明性的STA设备可以由一个或多个用户(未示出)来操作。STA设备(例如,STA 1、STA 2、STA 3等)可以包括任何合适的处理器驱动的用户设备,包括但不限于台式计算设备、膝上型计算设备、服务器、路由器、交换机、智能电话、平板电脑、可穿戴无线设备(例如,腕带、手表、眼镜、戒指等)等。
如本文所描述的,任何STA(例如,STA 1、STA 2、STA 3和/或类似设备)和AP设备可以被配置为经由一个或多个通信网络无线地或有线地彼此通信。任何通信网络可以包括但不限于不同类型的合适通信网络的组合中的任何一个,例如广播网络、有线网络、公共网络(例如,互联网)、专用网络、无线网络、小区网络或任何其它合适的私有和/或公共网络。此外,任何通信网络可以具有与之相关联的任何合适的通信范围,并且可以包括例如全球网络(例如,互联网)、城域网(MAN)、广域网(WAN)、局域网(LAN)或个人区域网络(PAN)。此外,任何通信网络可以包括可以承载网络业务的任何类型的介质,包括但不限于同轴电缆、双绞线、光纤、混合光纤同轴(HFC)介质、微波地面收发器、射频通信介质、白空间通信介质、超高频通信介质、卫星通信介质、或其任何组合。
任何STA和AP可以包括一个或多个通信天线。通信天线可以是对应于由STA设备和/或AP设备所使用的通信协议的任何合适类型的天线。合适的通信天线的一些非限制性示例包括Wi-Fi天线、电气和电子工程师协会(IEEE)802.11标准兼容天线系列、定向天线、非定向天线、偶极天线、折叠偶极天线、贴片天线、多重天线-输入多输出(MIMO)天线等。通信天线可以通信地耦接到无线电组件以发送和/或接收信号(例如去往和/或来自STA设备的通信信号)。
任何STA和/或AP可以包括用于在对应于由任何STA和/或AP所使用的通信协议的信道和/或带宽中发送和/或接收射频(RF)信号的任何合适的无线电和/或收发器。无线电组件可以包括根据预先建立的传输协议来调制和/或解调通信信号的硬件和/或软件。无线电组件还可以具有通过电气和电子工程师协会(IEEE)802.11标准的标准化的一个或多个Wi-Fi和/或Wi-Fi直接协议进行通信的硬件和/或软件指令。在一些示例性实施例中,与通信天线协作的无线电组件可以被配置为经由2.4GHz信道(例如,802.11b、802.11g、802.11n),5GHz信道(例如,802.11n、802.11ac),或60GHZ信道(例如802.11ad)通信。在一些实施例中,非Wi-Fi协议(例如,蓝牙、专用短距离通信(DSRC)、超高频(UHF,例如IEEE802.11af、IEEE 802.22)、白带频率(例如,白空间)或其它分组化的无线电通信)可以用于设备之间的通信。无线电组件可以包括适于经由通信协议进行通信的任何已知的接收器和基带。无线电组件还可以包括低噪声放大器(LNA)、附加信号放大器、模数(A/D)转换器、一个或多个缓冲器、以及数字基带。
在一些实施例中,循环移位分集作为IEEE 802.1lax无线通信技术中的标准被包括在内。例如,AP设备可以包括多个天线,每个天线可以被配置为以不同的相位延迟发送数据。以这种方式可以显著增加AP设备的两个或更多个天线之间的空间流分集。然而,在包括使用IEEE 802.11ax上行链路多用户MIMO(UL MU-MIMO)发送的长训练字段(LTF)序列的设计中,将CSD应用于LTF序列可能无法提供足够的增益来用于清晰的接收和/或发送。因此,本文公开了对该增益问题的若干方案。
将CSD应用于LTF序列(例如,从AP发送到一个或多个STA的数据流,其中数据流包括一个或多个LTF符号(例如,数据分组、信息比特、和/或类似符号))通常跨频率将线性相移添加到LTF序列。然而,一些LTF序列设计假设跨相邻子载波(例如,信号)的近似平坦的信道响应,使得可以将短正交码应用于频率上的不同LTF序列。由于一些实体希望使用实质上更大的相移来发送LTF序列,所以这些实体可能关心的是信道响应在相邻子载波之间不保持大致恒定(例如,具有足够的增益)以用于长LTF序列的清晰通信。
在一些实施例中,线性相移可以被添加到原始LTF序列,从而使得移位在与CSD相移的相反方向上。随后可以在头部中将LTF序列定义为标准中的新的LTF序列,和/或以具有补偿移位的其它方法将LTF序列定义为标准中的新的LTF序列。当该序列被应用以相反方向的CSD相移时,所发送的信号与原始LTF序列(例如,没有线性相移的LTF序列)相同,因为所应用的CSD相移抵消了新的LTF序列中的补偿线性相移。其结果是,由一个或多个STA所接收的发送LTF序列在相邻子载波(例如,STA)之间保持正交。等效地,LTF序列保持原始的LTF序列而没有任何相移,并且出于效率原因CSD可以仅被应用于LTF序列的特定数据部分。以这种方式,可以配置大型LTF设计来支持CSD。
如上所述,图10-11示出了示例性的上行链路MU-MIMO系统环境100。不同的STA可以在其时钟中采用不同的载波频率偏移(CFO)。因此,AP可能需要估计每个STA的CFO,并在LTF序列设计过程(例如,相移过程)中补偿它们。
为了如上所述地增加由AP所发送的空间流的分集,802.11n/ac可以利用CSD向正发送的一个或多个信号(例如,LTF序列)添加相移。在一些实施例中,存在两种类型的CSD。第一CSD类型可以跨发送相同数据流的天线,而第二CSD类型可以跨各自发送不同数据流的天线。第二CSD类型通常使用比第一CSD类型大得多的CSD值(例如,较大的相移)。在本公开中,我们解决了由较大的CSD值引起的问题。
为了使AP能够使用LTF序列的LTF符号执行CFO估计,STA可以跨频率向AP发送正交LTF序列。即除了时域中的常规P矩阵码之外,针对每个LTF符号(如图2所示)向不同STA的LTF序列应用正交码。正交码允许AP容易地从相邻子载波的任何块针对每个STA和每个LTF符号获得粗略的信道估计。通过比较来自不同LTF符号的估计的相位差,AP估计每个STA的CFO。另外,AP可以被配置为基于每个相应的STA的估计的CFO来确定要针对每个相应STA应用到每个LTF序列的相移。或者,AP可以使用位置信息(例如,全球定位系统(GPS)坐标等)来确定STA和/或AP之间的距离。
当在STA之间应用较大的CSD值时,通常跨频率将较大的线性相移添加到信道响应中。然而,相邻子载波的信道响应并不保持大致恒定,并且由AP通过相邻子载波从不同STA接收的信号不再彼此正交。这可能会导致AP获得信道和/或CFO估计方面的问题。
为了使CSD到LTF序列的应用是有效的,AP可以在UL MU-MIMO中为不同流、STA和/或天线分配CSD值和/或值范围。在一些实施例中,可以重用针对单个用户和下行链路MU-MIMO在传统802.11n/ac中定义的CSD值(例如,相移)。由于802.11ax通常对数据部分的OFDM符号(例如,LTF序列)使用四倍的持续时间,所以在802.11ax中也可以使用比传统值更大的CSD值。将CSD值分配给UL MU-MIMO台站的分配可以被包括在UL MU-MIMO的触发帧和/或调度帧中,和/或在诸如HE-SIG-B之类的物理层头部中。类似于传统802.11n/ac,可以在802.11ax标准中规定针对不同数目的流、STA和/或天线的CSD值的一个或多个表。此外,在触发帧和/或调度帧中指定的流和/或台站的顺序可以用作从表中查找和/或调用相应的CSD值或值范围的索引。
在一些实施例中,在向LTF序列应用CSD相移之前,LTF序列可以被预先移位(pre-shift)(例如,相移)。在一些实施例中,在新标准中(例如,头部和/或类似物)定义了针对每个流(或每个STA)的新LTF序列。可以将相位的线性预移位添加到公共LTF序列,使得在应用CSD相移之后在所发送的LTF序列处不存在线性相移。即预先移位是在CSD偏移的相反方向上的相移,从而抵消CSD相移的影响。例如,跨子载波的流k的CSD相移可以表示为
Figure BDA0001389059200000171
而具有频域正交码的公共LTF序列可以由[s1(k)ct(k) s2(k)ct(k) … sN(k)ct(k)]表示。在一些实施例中,流k的新LTF序列可以被定义如下:
Figure BDA0001389059200000172
在对LTF序列应用了CSD相移之后,由AP向一个或多个STA发送的流k的结果信号可以被定义为[s1(k)ct(k)s2(k)ct(k) … sN(k)ct(k)],其不具有任何线性相移并且保持流之间的正交性。注意,CSD相移仍然被应用于数据部分的传输,使得CSD增益得以保持。
在其它实施例中,具有频域正交码的LTF序列可以不变,没有CSD相移。为了维持正交性,CSD相移可以不被应用于一个或多个LTF符号的LTF序列。以这种方式,在处理了LTF序列的LTF符号之后,AP和/或STA在不应用CSD相移的情况下获得信道估计和/或CFO估计。为了增加分集,信号(例如,LTF序列)的数据部分的OFDM和/或OFDMA符号与CSD相移一起被发送(例如,包括在头部中、数据分组中等)。因此,用于传输的等效信道是根据LTF符号估计的信道乘以线性相移。例如,根据LTF序列的LTF符号估计的流k的信道响应可表示为[h1(k) h2(k) … hN(k)],而流的CSD相移可被表示为
Figure BDA0001389059200000181
信道估计然后可用于解码数据部分处的后续符号,这表示为
Figure BDA0001389059200000182
也就是说,STA可以不针对特定LTF序列部分(例如,LTF符号部分)应用每个流的CSD相移,而是可以实际上针对第二特定LTF序列部分(例如,数据部分)应用每个流的CSD相移。AP可以通过向根据LTF估计的信道和/或基于CFO估计得到的信道添加CSD相移来合成数据部分的信道响应。此外,由于AP可以在UL MU-MIMO开始时向流和/或STA分配CSD值和/或值范围,因此AP可以确定每个流的CSD相移值和/或值范围。
为比较本文描述的一些方法的性能,可以进行网络性能的仿真。图12示出了这类仿真的结果。更具体地,针对其中LTF序列在应用CSD之前被预先移位的实现方式以及其中未应用CSD(例如,LTF保持不变)的另一实现方式,图12呈现了分组错误率(PER)作为信噪比(SNR)的函数的仿真结果。迹线1210表示CFO严格为零(被表示为0MHz)并且LTF未被预先移位的理想情况。迹线1220和1230分别表示其中CFO为大约200MHz和大约400MHz的情况,在每种情况下,LTF序列如本文所述地被预先移位。从仿真结果可以看出,与没有任何CFO估计的理想情况相比,根据本公开的信道估计方法具有最小的信号劣化。如图所示,对于大约1%的PER,性能下降可以约为0.15dB。在不期望受到理论和/或建模的约束的情况下,性能的实质保留可归因于以下事实:即,CSD相移不影响LTF符号序列的CFO估计。形成鲜明对比的是,所提出的解决方案与802.11ac LTF序列相比具有显著的增益,在802.11ac LTF序列中,在LTF序列部分期间不能估计网络环境中的台站设备的CFO。具体地,迹线1240和1250分别表示CFO为大约200MHz和大约400MHz并且不能根据LTF序列估计CFO的情况。根据本公开的信道估计方法对于大约2%的PER呈现大约3.5dB的增益。
在图12中示出结果的仿真是在下列情况下执行的:(i)具有无线信号的D轮廓模型(profile model)传播的802.11信道模型;(ii)通信网络包括4个STA设备和一个AP设备,每个STA设备具有1个发送器(Tx)天线(例如,参见台站设备940(称为STA 3))),AP设备具有8个接收器(Rx)天线(例如,参见AP设备910,其中,天线915的数目为八);(iii)调制编码方案(MCS)索引等于7;以及(iv)估计的CFO等于大约+/-200MHz和/或+/-400Hz。还可以利用其它MCS索引获得类似的结果。
用于信道估计的另外的或替代的方法包括利用干扰消除(interferencecancellation)。注意,CSD相移可以跨相邻子载波做出有效的信道响应变化,这至少部分地是由于添加的线性相移以及底层信道跨相邻子载波基本保持恒定的事实。此外,在一些实施例中,所添加的线性相移可以由AP设备(例如,AP设备910)通过在上行链路MU-MIMO突发(例如,传输)中向每个上行链路STA设备分配CSD延迟(例如,相移)值和/或值范围来确定。因此,这样的延迟分配可以允许AP设备来访问对每个被调度STA的(一个或多个)信号(例如,信道响应)的到达时间范围的精确或以其它方式令人满意的估计。因此,在一个方面,AP设备的接收器设备(或一些实施例中,电路)可以确定或以其它方式访问每个信道响应的所添加的线性相移,并且可以通过计入不同流的LTF符号序列中的干扰来估计信道响应。在一些实施例中,迫零(zero-forcing)和/或最小均方误差(MMSE)接收器可以用于估计来自相邻子载波的块(例如,图13中所示的块1310和1320)的信道(例如,每个相应信道的信道响应、相移、CFO和/或类似项)。
例如,假定网络环境或系统具有两个STA设备并且每个STA设备具有一个流要发送到AP设备的情况。对于两个相邻子载波的块(例如,块1310或块1320),针对两个STA设备的信道响应可以分别被表示为(a,a)和(b,b)。在一个示例中,没有CSD的LTF序列可被分别定义为
Figure BDA0001389059200000201
Figure BDA0001389059200000202
其中,pi(i是正整数)是用于子载波i的流共用代码,因而跨子载波而发生变化。此外,
Figure BDA0001389059200000203
Figure BDA0001389059200000204
是用于区分流或STA设备的流特定代码。出于低复杂度的目的,CSD可被应用于生成用于跨子载波的流和/或台站的流特定代码,如图13所示。子载波块(例如,块1310或块1320)的两个相邻子载波上的接收信号可被表示为:
Figure BDA0001389059200000205
其中,Δθk是用于流k(自然数)的CSD相移;θk是在当前子载波块(例如,块1310或块1320)用于流k的CSD相移;以及
Figure BDA0001389059200000206
是噪声向量。具有迫零滤波器的信道估计(例如,CFO估计)可被确定为或以其它方式表示为:
Figure BDA0001389059200000207
如果如图13所示在生成流或台站设备特定代码时使用了CSD,则逆
Figure BDA0001389059200000208
可以每Q个子载波重复,其中,Q是指示子载波块大小的自然数(例如,对于图13所示的块1310和块1320,子载波块大小Q=2)。因此,复杂度相对较低,因为可以计算Q次逆,然后用于整个分配的子带。
图14示出了根据本公开的一个或多个实施例、使用循环移位分集来进行干扰消除的网络性能的示例仿真。更具体地,仿真涉及针对定义的网络环境确定PER作为SNR函数的变化。迹线1410和1420分别对应于其中CFO为零或以其它方式可以忽略、以及CFO等于大约+/-400MHz的情况。在这样的信道估计方法中,即使在LTF序列的LTF符号部分中应用了较大的CSD相移,所存在的劣化也可以忽略。仿真是在下列情况中执行的:(i)具有用于无线信号传播的D轮廓模型的802.11信道模型;(ii)通信网络包括6个STA设备和一个AP设备,在每个STA设备处具有1个Tx天线,AP设备具有8个Rx天线(例如,参见AP设备910,其中,天线915的数目为八);(iii)MCS索引等于7;(iv)CSD 800ns;以及(v)估计的CFO等于大约+/-400Hz(当包括在仿真中时)。注意的是,MCS 7对应于64QAM调制和5/6编码率。针对0、200ns、400ns、600ns、以及650ns的CSD值的仿真提供了类似的结果。可以利用其它MCS索引获得类似的仿真结果。
图15示出了可以根据本公开的至少一些方面来操作的通信设备1510的示例实施例1500的框图。示例设备1510可以包括通信设备,并且可以根据本公开的至少一些方面来操作,例如,实现如本文所述的UL LTF。因此,在一些实施例中,设备1510可以体现或可以构成操作环境100中的任意一个设备,例如,AP设备114a、114b、或114c中的一个,或其它所示出的设备中的一个。因此,在一些方面,设备1510可以提供一个或多个特定功能,例如:用作网关设备、路由器设备、或传感器集线器设备;用作数码相机并且生成数字图像(例如,静态图像和/或运动图像);用作导航设备;用作生物识别设备(例如,心率监测器、压力监测器、血糖计、虹膜分析仪、指纹分析仪等);分配和递送一定量的药物或其它化合物;用作传感器并且感测所定义的物理量,例如,温度和/或压力、或运动;用作另一传感器并且感测气相或液相中的化合物;用作控制器,用于配置第二所定义的物理量、管理能量、管理对环境的访问、管理照明和/或声音、调节所定义的过程(例如,自动化控制过程)等;经由导线生成电流、电压、或其它类型的信号;上述项的组合;上述项的衍生功能;或类似项。为此,设备1510可包括一个或多个功能单元1522(称为专用功能单元1522),其可包括:光学元件(例如,透镜、准直器、光导、光源、光检测器(例如,半导体光检测器)、聚焦电路等);温度传感器;压力传感器;气体传感器;运动传感器,包括惯性传感器(例如,线性加速器和/或陀螺仪);机械执行结构(例如,锁、阀等);上述项的组合;或类似项。
此外或在其它方面,可以经由一个或多个处理器1524来提供或以其它方式来实现设备1510的特定功能。在一些实现方式中,(一个或多个)处理器1524中的至少一个处理器可以与专用功能单元1522集成。在一些实现方式中,(一个或多个)处理器中的至少一个处理器(例如(一个或多个)处理器1524中的一个或多个处理器或(一个或多个)其它处理器)可以接收和运算数据和/或专用功能单元1522的组件所生成的其它类型的信息(例如,模拟信号)。至少一个处理器可以执行模块以便运算数据和/或其它类型的信息,并从而提供所定义的功能。模块可被体现在或可包括例如集成在设备中或与设备功能地耦接的存储器设备中所存储的软件应用。例如,模块可以被保持在一个或多个存储器设备1535(统称为专用功能存储装置1535)中,其中,专用功能存储装置1535可被保持在一个或多个其它存储器设备1530(统称为存储器1530)中。此外或在其它实现方式中,(一个或多个)处理器(例如,(一个或多个)处理器1524中的一个或多个处理器或专用功能单元1522可用的(一个或多个)其它处理器)中的至少第二处理器可以控制专用功能单元1522的部分的操作或占空比,以便:收集数据和/或其它类型的信息;提供一定量(或剂量)的化合物或获取另一数量的另一化合物或材料;上述项的组合;或类似项。构成专用功能单元1522的单元中的至少一个单元可以生成控制信号(例如,中断、警报等)和/或可以使得设备1510响应于设备1510或其环境的所定义的条件来在可选的状态之间转换。控制信号中的至少一些控制信号可以经由I/O接口1520的I/O接口被发送到(图15中未描绘的)外部设备。包括在专用功能单元1522中的组件的类型和/或数目可以至少部分地建立设备1510的复杂性。在一些示例中,设备1510可以体现或可以构成AP设备,并且在其它示例中,设备1510可以体现或可以构成用户设备或可以无线通信的另一类型的设备(例如,客户住所装置)。
通信设备810还可用作无线设备,并且如所提及的,可以体现或可以包括接入点、移动计算设备(例如,用户设备或台站设备)、或可以根据本公开来发送和/或接收无线通信的其它类型的通信设备(例如,CPE)。例如,通信设备1510可以体现为AP设备910、或台站STA1 920、STA 2 930、以及STA 3 940中的至少一者。在一些方面,为了允许无线通信,包括根据如本文描述的一些方面的CSD的配置,通信设备1510包括无线电单元1514和通信单元1526。在一些实现方式中,例如,通信单元1526可以经由网络堆栈生成分组或其它类型的信息块,并且可以将分组或其它类型的信息块传送到无线电单元1514以供无线通信。在一个实施例中,网络堆栈(未示出)可被体现在库或其它类型的编程模块中或可以构成库或其它类型的编程模块,并且通信单元1526可以执行网络堆栈以便生成分组或其它类型的信息块。生成分组或信息块可包括例如生成控制信息(例如,校验和数据、(一个或多个)通信地址)、流量信息(例如,有效载荷数据)、和/或将这类信息格式化为特定分组头部。
如图所示,无线电单元1514可包括一个或多个天线1516和多模通信处理单元1518。在一些实施例中,(一个或多个)天线1516可被体现在或可包括定向或全向天线,例如包括:偶极天线、单极天线、贴片天线、环形天线,微带天线、或适于传输RF信号的其它类型的天线。此外或在其它实施例中,(一个或多个)天线1516中的至少一些天线可被物理分离以利用空间分集以及与这类分集相关联的不同信道特性。此外或在其它实施例中,多模通信处理单元1518可以根据一个或多个无线电技术协议和/或模式(例如,MIMO、单输入多输出(SIMO)、多输入单输出(MISO))等来处理至少无线信号。这类(一个或多个)协议中的每个协议可被配置为通过特定空中接口来传送(例如,发送、接收、或交换)数据、元数据和/或信令。一个或多个无线电技术协议可包括:3GPP UMTS;LTE;LTE-A;Wi-Fi协议,例如,电气和电子工程师协会(IEEE)802.11标准系列中的那些;全球微波接入互操作性(WiMAX);用于自组织网络的无线电技术和相关协议,例如,蓝牙或ZigBee;用于分组化无线通信的其它协议;等等。多模通信处理单元1518还可处理非无线信号(模拟信号、数字信号、其组合等)。
在一个实施例中(例如,图15所示的示例实施例1600),多模通信处理单元1518可包括一组一个或多个发送器/接收器1604及其中的组件(放大器、滤波器、模数(A/D)转换器等),它们功能地耦接到复用器/解复用器(mux/demux)单元1608、调制器/解调器(mod/demod)单元1616(也称为调制解调器1616)、以及编码器/解码器单元1612(也称为编解码器1612)。(一个或多个)发送器/(一个或多个)接收器中的每个可以形成相应的(一个或多个)收发器,其可以经由一个或多个天线1516发送和接收无线信号(例如,电磁辐射)。应理解的是,在其它实施例中,多模通信处理单元1518可包括其它功能元件,例如,一个或多个传感器、传感器集线器、卸载引擎或单元、其组合等。尽管被示出为通信设备1510中的单独的块,但应理解的是,在一些实施例中,多模通信处理单元1518和通信单元1526的至少部分可被集成在单个单元(例如,单个芯片组或其它类型的固态电路)中。在一个方面,这样的单元可以由保持在存储器1530和/或集成在单元中的或功能地耦接到单元的其它存储器设备中的编程指令来配置。
电子组件及相关联的电路,例如,复用器/解复用器单元1608、编解码器1612、以及调制解调器1616,可以允许或促进对通信设备1510接收到的(一个或多个)信号和要由通信设备1510发送的(一个或多个)信号的处理或操纵,例如,编码/解码、解密和/或调制/解调。在一个方面,如本文所述,可以根据一个或多个无线电技术协议来调制和/或编码、或以其它方式来处理接收和发送的无线信号。这类(一个或多个)无线电技术协议可包括:3GPPUMTS;3GPP LTE;LTE-A;Wi-Fi协议,例如,IEEE 802.11标准系列(IEEE 802.ac、IEEE802.ax等);WiMAX;用于自组织网络的无线电技术和相关协议,例如,蓝牙或ZigBee;用于分组化无线通信的其它协议;等等。
所描述的通信单元中的电子组件(包括一个或多个发送器/接收器1604)可以通过总线1614交换信息(例如,数据、元数据、代码指令、信令及相关有效载荷数据、其组合等),总线1614可以体现或可以包括下列项中的至少一项:系统总线、地址总线、数据总线、消息总线、参考链路或接口、其组合等。一个或多个接收器/发送器1604中的每个可以将信号从模拟转换为数字,反之亦然。此外或替代地,(一个或多个)接收器/(一个或多个)发送器1604可以将单个数据流划分为多个并行数据流,或执行相反操作。这类操作可以作为各种复用方案的部分来进行。如图所示,复用器/解复用器单元1608功能地耦接到一个或多个接收器/发送器1604,并且可以允许在时域和频域中处理信号。在一个方面,复用器/解复用器单元1608可以根据各种复用方案(例如,时分复用(TDM)、频分复用(FDM)、正交频分复用(OFDM)、码分复用(CDM)、空分复用(SDM))来复用和解复用信息(例如,数据、元数据和/或信令)。此外或替代地,在另一方面,复用器/解复用器单元1608可以根据大多数任意代码(例如,Hadamard-Walsh代码、Baker代码、Kasami代码、多相代码等)来加扰和扩展信息(例如,代码)。调制解调器1616可以根据各种调制技术(例如,频率调制(例如,频移键控)、幅度调制(例如,M进制正交幅度调制(QAM),M是正整数;幅移键控(ASK))、相移键控(PSK)等)来调制和解调信息(例如,数据、元数据、信令、或其组合)。此外,可被包括在通信设备1510中的(一个或多个)处理器(例如,包括在无线电单元1514中的(一个或多个)处理器或通信设备1510的(一个或多个)其它功能元件)可以允许处理数据(例如,符号、位或码片)用于复用/解复用、调制速率的调制/解调(例如,实现直接和反向快速傅立叶变换)选择、数据分组格式的选择、分组间时间等。
编解码器1612可以至少部分地通过从相应的(一个或多个)发送器/(一个或多个)接收器1604形成的一个或多个收发器来根据适于通信的一个或多个编码/解码方案操作信息(例如,数据、元数据、信令、或其组合)。在一个方面,这类编码/解码方案或相关(一个或多个)过程可被保持为一个或多个存储器设备1530(统称为存储器1530)中的一组一个或多个计算机可访问指令(计算机可读指令、计算机可执行指令、或其组合)。在其中通信设备1510和另一计算设备(例如,台站或其它类型的用户设备)之间的无线通信利用MIMO、MISO、SIMO或SISO操作的情况下,编解码器1612可以实现下列项中的至少一项:空间-时间块编码(STBC)及相关联的解码、或空间-频率块编码(SFBC)及相关联的解码。此外或替代地,编解码器1612可以从根据空间复用方案被编码的数据流中提取信息。在一个方面,为了解码接收到的信息(例如,数据、元数据、信令、或其组合),编解码器1612可以实现下列项中的至少一项:计算与特定解调的星座实现相关联的对数似然比(LLR)、最大比率组合(MRC)滤波、最大似然(ML)检测、连续干扰消除(SIC)检测、迫零(ZF)和最小均方误差估计(MMSE)检测等。编解码器1612可以至少部分地利用复用器/解复用器单元1608和调制/解调单元1616来根据本文描述的方面进行操作。
还参考图15,通信设备1510可以在各种无线环境中操作,这些各种无线环境具有在不同电磁辐射(EM)频带中传送的无线信号。至少为此,根据本公开的一些方面的多模通信处理单元1518可以处理(编码、解码、格式化等)包括下列项的中的一项或多项的一组一个或多个EM频带(也称为频带)中的无线信号:EM频谱的射频(RF)部分、EM频谱的(一个或多个)微波部分、或EM频谱的(一个或多个)红外(IR)部分。在一个方面,该组一个或多个频带可包括下列项中的至少一项:(i)全部或大部分许可EM频带(例如,工业、科学、以及医疗(ISM)频带,包括2.4GHz频带或5GHz频带);或(ii)当前可用于电信的全部或大部分未许可频带(例如,60GHz频带)。
通信设备1510可以接收和/或发送根据本公开的一些方面进行编码和/或调制或以其它方式处理的信息。至少为此,在一些实施例中,通信设备1510可以经由无线电单元1514(也称为无线电1514)来无线地获取或以其它方式访问信息,其中,这类信息中的至少部分信息可以根据本文描述的一些方面来编码和/或调制。更具体地,例如,该信息可包括根据本公开的实施例的分组(例如,PPDU),例如,图3-7所示的那些。如图所示,在一些实施例中,通信设备1510可包括一个或多个存储器元件1536(统称为CSD配置规范1536),其可包括对根据本文描述的一个或多个方面可被分配给通信设备1510和/或(一个或多个)天线1516中的至少一个天线的CSD值进行定义或以其它方式进行指定的信息。此外或在其它实施例中,CSD规范配置1536可以指定用于确定或以其它方式配置(一个或多个)天线1516中的天线的CSD值的一个或多个规则或一个或多个标准。这类(一个或多个)规则和/或标准可以根据本文结合指定用于通信和/或其中的天线的CSD值所描述的方面进行定义(参见例如图7A、图7B、图8A和/或图8B)。此外,通信设备1510例如可以通过通信单元1526根据本公开来确定和/或配置CSD值和/或CSD规则,并且可以将这些值保持在一个或多个存储器元件1538(统称为CSD配置信息1538)中。
存储器1530可包含一个或多个存储器元件,其具有适于根据预定义通信协议(例如,IEEE 802.11ac或IEEE 802.11ax)来对接收到的信息进行处理的信息。尽管未示出,但在一些实施例中,存储器1530的一个或多个存储器元件可包括计算机可访问指令,其可以由通信设备1510的一个或多个功能元件来执行,以便实现根据本文描述的一些方面的无线通信中的循环移位分集的功能中的至少一些功能。这类计算机可访问指令的一个或多个组可以体现或可以构成编程接口,其可以允许在通信设备1510的功能元件之间传送信息(例如,数据、元数据和/或信令)以实现这类功能。
如图所示,通信设备1510可包括一个或多个I/O接口1520。(一个或多个)I/O接口1520中的至少一个I/O接口可以允许在通信设备1510和另一计算设备和/或存储设备之间交换信息。这样的交换可以是无线的(例如,经由近场通信或光交换通信)或有线的。(一个或多个)I/O接口1520中的至少另一I/O接口可以允许视觉地、听觉地、和/或经由移动向通信设备1510的最终用户呈现信息。在一个示例中,触觉设备可以体现允许经由移动来传送信息的(一个或多个)I/O接口1520中的I/O接口。此外,在所示出的通信设备1510中,总线架构1542(也称为总线1542)可以允许在通信设备1510的两个或更多个功能元件之间交换信息(例如,数据、元数据和/或信令)。例如,总线1542可以允许在下列项中的两项或更多项之间交换信息:(i)无线电单元1514或其中的功能元件、(ii)(一个或多个)I/O接口1520中的至少一个I/O接口、(iii)通信单元1526、或(iv)存储器1530。此外,通信设备1510还可包括一个或多个应用编程接口(API)(图15中未示出)或可以允许在通信设备1510的两个或更多个功能元件之间交换信息(例如,数据和/或元数据)的其它类型的编程接口。这类(一个或多个)API中的至少一个API可以被保持或以其它方式存储在存储器1530中。在一些实施例中,应理解的是,(一个或多个)API中的至少一个API或其它编程接口可以允许在通信单元1526的组件内的信息交换。总线1542也可允许类似的信息交换。在一些实施例中,总线1552可以体现或可以包括下列项中的至少一项:系统总线、地址总线、数据总线、消息总线、参考链路或接口、其组合等。此外或在其它实施例中,总线1552可以包括例如用于有线和无线通信的组件。
注意的是,通信设备1510的部分可以体现或可以构成装置。例如,多模通信处理单元1518、通信单元1526、(一个或多个)处理器624中的至少一个处理器、以及存储器1530的至少部分可以体现或可以构成可根据本公开的一个或多个方面来操作的装置。具体地,在一些实施例中,这样的装置可包括具有编程指令的至少一个存储器设备(例如,存储器1530)以及至少一个处理器,该至少一个处理器功能地耦接到至少一个存储器设备并且被配置为执行编程指令,并且响应于执行编程指令,该至少一个处理器还可被配置为执行或促进与根据本公开的一些方面的CSD值和/或LTF的配置相关联的各种操作。例如,该至少一个处理器可被配置为接收指示以与至少一个第二通信设备同时地发送信号,并且确定循环移位分集(CSD)值以形成信号。在一些方面,CSD值可以在从大约0ns到大约200ns的范围内。此外或在一些实施例中,装置可包括被配置为生成信号的至少部分的通信单元和被配置为发送信号的无线电单元。此外或在其它实施例中,至少一个处理器可被配置为接收指示CSD值的调度信息,并且配置CSD以形成信号。例如,无线电单元1514可以无线地接收表示调度信息的至少部分的信息。通信单元1526可以对信息进行操作并且可以将第二信息发送到至少一个处理器,其中,第二信息体现或包括调度信息。此外或在其它实施例中,至少一个处理器可被配置为从至少一个存储器设备的存储器设备内的所定义的或以其它方式预定的信息结构中选择CSD值。例如,该信息结构可被保持在CSD配置信息1538和/或存储器1530的其它存储器设备中。
再例如,从多模通信处理单元1518、通信单元1526、(一个或多个)处理器624中的至少一个处理器、以及存储器1530的至少部分的组合形成的装置可包括存储在存储器1530的一个或多个存储器中的计算机可访问指令。响应于执行,该指令可以配置(一个或多个)处理器1524的至少一个处理器来标识从无线通信台站接收的并且与无线通信台站相关联的信道响应,其中,信道响应包括具有一个或多个长训练字段(LTF)符号的LTF序列。该至少一个处理器还可被配置为至少部分地基于信道响应来确定无线通信台站的载波频率偏移(CFO),并且至少基于所计算的CFO来确定接入点和无线通信之间的相位差。此外,该至少一个处理器还可被配置为至少部分地基于所确定的相位差来将第一方向中的第一相移添加到LTF序列的至少部分,从而产生经修改的信道响应。此外或在一些方面,该至少一个处理器可被配置为指示或以其它方式使得通信单元1526和/或无线电单元1514向无线通信台站发送经修改的信道响应。
在这样的装置的一些实施例中,为了将第一方向中的第一相移添加到LTF序列的至少部分,该至少一个处理器可以将第二方向中的第二相移添加到LTF序列的至少部分,其中,第二相移等于第一相移,并且其中,第二方向与第一方向相反。在装置的其它实施例中,为了将第一方向中的第一相移添加到LTF序列的至少部分,该至少一个处理器可被配置为将第一相移添加到LTF序列的数据部分。在其它实施例中,为了将第一方向中的第一相移添加到LTF序列的至少部分,该至少一个处理器可被配置为将第一相移分配给无线通信台站。在一些方面,可以例如由通信单元1526、多模通信处理单元1518、和/或至少处理器中的一个处理器来使用接入点的至少一个迫零最小均方误差(MMSE)接收器来确定无线通信台站的CFO。此外或在一些其它方面,所确定的相位差可被存储在CSD配置信息1538中,例如,在确定时被存储在查找表中并稍后从查找表中调用。
此外或在这样的装置的其它实施例中,通信单元1526和/或无线电单元1514可以通过上行链路多用户多输入多输出(UL MU-MIMO)无线通信网络来接收和/或发送来自/去往无线通信台站的经修改的信道响应。在一些示例中,发送经修改的信道响应可包括在接入点和无线通信台站之间建立安全无线连接。
图17示出了根据本公开的一个或多个方面的用于无线通信的计算环境1700的示例。示例计算环境1700仅是说明性的,并且不旨在建议或以其它方式传达对该计算环境的结构的使用或功能的范围的任何限制。此外,计算环境1700不应被解释为具有与该示例计算环境中示出的组件中的任一组件或组合有关的任何依赖或要求。示例性计算环境1700可以体现或可以包括:例如,计算设备110、基站114a、114b、或114c中的一个或多个基站、和/或可以实现或以其它方式利用本文描述的循环移位分集特征的任意其它计算设备(例如,通信设备1510)。
计算环境1700表示本公开的各个方面或特征的软件实现方式的示例,其中,可以响应于在计算设备1710处执行一个或多个软件组件来执行结合根据本文描述的一些方面的无线通信中的循环移位分集所描述的操作的处理或执行。应理解的是,一个或多个软件组件可以使得计算设备1710或包含这些组件的任意其它计算设备呈现用于根据本文描述的一些方面的无线通信中的循环移位分集以及其它功能目的的特定机器。软件组件可被体现在一个或多个计算机可访问指令中或可以包括一个或多个计算机可访问指令,例如,计算机可读指令和/或计算机可执行指令。计算机可访问指令的至少部分可以体现本文公开的示例技术中的一个或多个示例技术。例如,为了体现一个这样的方法,计算机可访问指令的至少部分可被保存(例如,存储、使得可用、或存储并且使得可用)在计算机存储装置非暂态介质中,并且由处理器执行。体现软件组件的一个或多个计算机可访问(或处理器可访问)指令可被组装在例如可以在计算设备1710处进行编译、链接、和/或执行的一个或多个程序模块或其它计算设备中。通常,这类程序模块包括可以响应于由一个或多个处理器执行来执行特定任务(例如,一个或多个操作)的计算机代码、例程、程序、对象、组件、信息结构(例如,数据结构和/或元数据结构)等,该一个或多个处理器可被集成在计算设备1710中或可以功能地耦接到计算设备1710。
本公开的各个示例实施例可以与许多其它通用或专用计算系统环境或配置一起操作。可适于实现本公开的结合循环移位分集特征的各个方面或特征的公知计算系统、环境、和/或配置的示例可包括:个人计算机;服务器电脑;膝上型设备;手持计算设备,例如,移动平板计算机;可穿戴计算设备;以及多处理器系统。另外的示例可包括:机顶盒、可编程消费电子产品、网络PC、小型计算机、大型计算机、刀片计算机、可编程逻辑控制器、包括任意上述系统或设备的分布式计算环境等。
如图所示,计算设备1710可包括一个或多个处理器1714、一个或多个输入/输出(I/O)接口1716、存储器1730、以及功能地耦接计算设备1710的各个功能元件的总线架构1732(也称为总线1732)。如图所示,计算设备1710还可包括无线电单元1712。在一个示例中,类似于无线电单元1514,无线电单元1712可包括一个或多个天线以及可以允许计算设备1710和另一设备(例如,(一个或多个)计算设备1770中的一个计算设备)之间的无线通信的通信处理单元。在至少一些实施例中,计算设备1710还可包括可以为计算设备1710提供特定功能的专用功能单元1711,类似于上述专用功能单元1522。因此,专用功能单元1711的结构和至少一些功能元件可类似于专用功能单元1522的那些。总线1732可包括系统总线、存储器总线、地址总线、或消息总线中的至少一项,并且可以允许在(一个或多个)处理器1714、(一个或多个)I/O接口1716、和/或存储器1730、或其中的相应功能元件之间交换信息(数据、元数据和/或信令)。在一些情况下,总线1732结合一个或多个内部编程接口1750(也称为(一个或多个)接口1750)可以允许这类信息交换。在其中(一个或多个)处理器1714包括多个处理器的情况下,计算设备1710可以利用并行计算。
(一个或多个)I/O接口1716可以允许或以其它方式促进计算设备和外部设备之间(例如,另一计算设备(例如,网络元件或最终用户设备))之间的信息传送。这类传送可包括直接传送或间接传送,例如,经由网络或其元件的计算设备1710和外部设备之间的信息交换。如图所示,(一个或多个)I/O接口1716可包括(一个或多个)网络适配器1718、(一个或多个)外围设备适配器1722、以及(一个或多个)显示单元1726中的一项或多项。这类(一个或多个)适配器可以允许或促进外部设备和(一个或多个)处理器1714中的一个或多个处理器或存储器1730之间的连接性。在一个方面,(一个或多个)网络适配器1718中的至少一个网络适配器可以将计算设备1710经由一个或多个流量和信令管道1760功能地耦接到一个或多个计算设备1770,该一个或多个流量和信令管道1760可以允许或促进计算设备1710和一个或多个计算设备1770之间的流量1762和信令1764的交换。至少部分地由(一个或多个)网络适配器1718中的至少一个网络适配器提供的这类网络耦接可被实现在有线环境、无线环境、或二者中。因此,应理解的是,在一些实施例中,无线电单元1712的功能可以由(一个或多个)网络适配器1718中的至少一个网络适配器和(一个或多个)处理器1714中的至少一个处理器的组合来提供。因此,在这样的实施例中,计算设备1710可不包括无线电单元1712。由至少一个网络适配器传送的信息可产生自实现本公开的方法中的一个或多个操作。该输出可以是任何形式的视觉表示,包括但不限于:文本、图形、动画、音频、触觉等。在一些情况下,(一个或多个)计算设备1770中的每个可以具有与计算设备1710基本相同的架构。此外或在替代方式中,(一个或多个)显示单元1726可包括可以允许控制计算设备1710的操作、或可以允许传达或展现计算设备1710的操作条件的功能元件(例如,诸如发光二极管这类的灯、诸如液晶显示器(LCD)之类的显示器、其组合等)。
在一个方面,总线1732表示若干可能类型的总线结构中的一种或多种总线结构,包括:存储器总线或存储器控制器、外围设备总线、加速图形端口、以及使用各种总线架构中的任意总线架构的处理器或本地总线。作为说明,这类架构可包括:工业标准架构(ISA)总线、微通道架构(MCA)总线、增强型ISA(EISA)总线、视频电子标准协会(VESA)本地总线、加速图形端口(AGP)总线、以及外围组件互连(PCI)总线、PCI-Express总线、个人计算机存储卡工业协会(PCMCIA)总线、通用串行总线(USB)等。总线1732和本文描述的所有总线可以通过有线或无线网络连接来实现,并且每个子系统(包括(一个或多个)处理器1714、存储器1730及其中的存储器元件、以及(一个或多个)I/O接口1716)可被包含在物理上分离的位置处的一个或多个远程计算设备1770中,这些远程计算设备1770通过该形式的总线进行连接,从而实际上实现了完全分布式的系统。
计算设备1710可包括各种计算机可读介质。计算机可读介质可以是可由计算设备访问的任意可用介质(暂态或非暂态)。在一个方面,计算机可读介质可包括计算机非暂态存储介质(或计算机可读非暂态存储介质)和通信介质。示例计算机可读非暂态存储介质可以是可由计算设备1710访问的任意可用介质,并且可以包括例如易失性和非易失性介质以及可移除和/或不可移除介质二者。在一个方面,存储器1730可包括易失性存储器(例如,随机存取存储器(RAM))和/或非易失性存储器(例如,只读存储器(ROM))形式的计算机可读介质。
存储器1730可包括功能指令存储装置1734和功能信息存储装置1738。功能指令存储装置1734可包括计算机可访问指令,其响应于(由一个或多个)处理器1714中的至少一个处理器)执行,可以实现本公开的功能中的一个或多个功能。计算机可访问指令可以体现或可以包括被示出为(一个或多个)CSD配置组件1736的一个或多个软件组件。在一种情况下,(一个或多个)CSD配置组件1736中的至少一个组件的执行可以实现本文公开的技术中的一个或多个技术。例如,这类执行可以使得执行至少一个组件的处理器执行所公开的示例方法。应理解的是,在一个方面,执行(一个或多个)CSD配置组件1736中的至少一个CSD配置组件的(一个或多个)处理器1714中的处理器可以访问来自功能信息存储装置1738中的一个或多个存储器元件1740的信息,或者可以将信息保持在存储装置1738中的一个或多个存储器元件1740上(统称为CSD配置信息1740),以便根据(一个或多个)CSD配置组件1736所编程或以其它方式配置的功能来操作。这类信息可包括代码指令、信息结构、或类似项中的至少一项。一个或多个接口1750中的至少一个接口(例如,(一个或多个)应用编程接口)可以允许或促进功能指令存储装置1734内的两个或更多个组件之间的信息传送。由至少一个接口传送的信息可产生自实现本公开的方法中的一个或多个操作。在一些实施例中,功能指令存储装置1734和功能信息存储装置1738中的一项或多项可以体现在可移除/不可移除、和/或易失性/非易失性计算机存储介质中,或可以包括这些介质。
(一个或多个)CSD配置组件1736中的至少一个CSD配置组件1736的至少部分或CSD配置信息1740可以编程或以其它方式配置处理器1714中的一个或多个处理器来至少根据本文描述的功能进行操作。(一个或多个)处理器1714中的一个或多个处理器可以执行这些组件中的至少一个组件,并且可以利用存储装置1738中的信息的至少部分,以便提供根据本文描述的一个或多个方面的循环移位分集。更具体地,但非排他性地,(一个或多个)组件1736中的一个或多个组件的执行可以允许在计算设备1710处发送和/或接收信息,其中,信息的至少部分包括具有如结合图2、图3、图5、图6和/或图10所描述的前导码的一个或多个分组。因此,应理解的是,在一些实施例中,(一个或多个)处理器1714、(一个或多个)CSD配置组件1736、以及CSD配置信息1740的组合可以形成用于提供用于根据本公开的一个或多个方面的无线系统的循环移位分集的特定功能的装置。
应理解的是,在一些情况下,(一个或多个)功能指令存储装置1734可以体现或可以包括具有计算机可访问指令的计算机可读非暂态存储介质,该计算机可访问指令响应于执行,使得至少一个处理器(例如,(一个或多个)处理器1714中的一个或多个处理器)执行本文公开的各种处理的操作,包括结合图19中的示例方法1900所描述的示例操作或块以及图20中示出的示例方法。
此外,存储器1730可包括允许或促进计算设备1710的操作和/或管理(例如,升级、软件安装、任意其它配置等)的计算机可访问指令和信息(例如,数据和/或元数据)。因此,如图所示,存储器1730可以包括存储器元件1742(标记为(一个或多个)OS指令1742),其包含体现或包括一个或多个OS(例如,Windows操作系统、Unix、Linux、Symbian、Android、Chromium、以及基本上适于移动计算设备或共享计算设备的任意OS)的一个或多个程序模块。在一个方面,计算设备1710的操作和/或架构复杂性可以指示适当的OS。存储器1730还包括系统信息存储装置1746,其具有允许或促进计算设备1710的操作和/或管理的数据和/或元数据。(一个或多个)OS指令1742和系统信息存储装置1746的元件可以由(一个或多个)处理器1714中的至少一个处理器来访问或操作。
应认识到的是,尽管功能指令存储装置1734和其它可执行程序组件(例如,(一个或多个)操作系统指令1742)在本文被示出为离散的块,但这类软件组件在不同时间可以驻留在计算设备1710的不同存储器组件中,并且可以由(一个或多个)处理器1714中的至少一个处理器来执行。在一些情况下,(一个或多个)CSD配置组件1736的实现可被保持在某种形式的计算机可读介质上,或可以跨某种形式的计算机可读介质来传输。
计算设备1710和/或(一个或多个)计算设备1770中的一个计算设备可包括电源(未示出),其可以为这些设备中的组件或功能元件供电。电源可以是可再充电电源,例如,可再充电电池,并且它可包括一个或多个变压器以实现适于计算设备1710和/或(一个或多个)计算设备1770中的一个计算设备、以及其中的组件、功能元件、以及相关电路的操作的功率等级。在一些情况下,电源可被附接到传统电网以再充电并且确保这些设备可以操作。在一个方面,电源可包括I/O接口(例如,(一个或多个)网络适配器1718中的一个网络适配器)以可操作地连接到传统电网。在另一方面,电源可包括诸如太阳能电池板之类的能量转换组件,以便为计算设备1710和/或(一个或多个)计算设备1770中的一个计算设备提供另外的或替代的电力资源或自主性。
计算设备1710可以通过利用到一个或多个远程计算设备1770的连接来在联网环境中操作。作为说明,远程计算设备可以是个人计算机、便携式计算机、服务器、路由器、网络计算机、对等设备或其它公共网络节点等。如本文所述,计算设备1710和一个或多个远程计算设备1770中的计算设备之间的连接(物理的和/或逻辑的)可以经由一个或多个流量和信令管道1760,其可包括形成PAN、LAN、WAN、WPAN、WLAN和/或WWAN的(一个或多个)有线链路和/或(一个或多个)无线链路以及若干网络元件(例如,路由器或交换机、集中器、服务器等)。这类联网环境在住宅、办公室、企业级计算机网络、内联网、局域网、以及广域网中是传统的并且常见的。
应理解的是,计算设备1710的部分可以体现或可以构成装置。例如,(一个或多个)处理器1714中的至少一个处理器;存储器1730的至少部分,包括(一个或多个)CSD配置组件1736的部分和CSD配置信息1740的部分;以及总线1732的至少部分,可以体现或可以构成可根据本公开的一个或多个方面进行操作的装置。
图18示出了根据本公开的一个或多个实施例的通信设备1810的另一示例实施例1800。通信设备1810可以实现或可以包括例如通信设备110a、110b、110c、或110d中的一个;基站114a、114b或114c中的一个或多个;和/或实现或以其它方式利用本文所描述的循环移位分集特征的任何其它计算设备(例如,通信设备910)。在一些实施例中,通信设备1810可以是可被配置为与一个或多个其它HEW设备和/或其它类型的通信设备(例如,传统通信设备)通信的HEW兼容设备。HEW设备和传统设备也可以被分别称为HEW台站(HEW STA)和传统STA。在一种实现方式中,通信设备1810可以作为接入点(例如AP 114a、114b或114c)来操作。如图所示,通信设备1810还可以包括物理层(PHY)电路1820和介质访问控制层(MAC)电路1830。在一个方面,PHY电路1820和MAC电路1830可以是HEW兼容层并且还可以符合一个或多个传统IEEE 802.11标准。在一个方面,MAC电路1830还可以被布置为配置物理层融合协议(PLCP)协议数据单元(PPDU)并被布置为发送和接收PPDU。除此之外或在其它实施例中,通信设备1810还可以包括被配置为执行本文所描述的各种操作的其它硬件处理电路1840(例如,一个或多个处理器)和一个或多个存储器设备1850。
在一些实施例中,MAC电路1830可以被布置为在争用时段期间争用无线介质以接收在HEW控制时段期间对介质的控制,并对HEW PPDU进行配置。除此之外或在其它实施例中,PHY电路1820可以被布置为发送HEW PPDU。PHY电路1820可以包括用于调制/解调、上变频/下变频、滤波、放大等的电路。因此,通信设备1810可以包括收发器,用于发送和接收诸如HEW PPDU之类的数据。在一些实施例中,硬件处理电路1840可以包括一个或多个处理器。硬件处理电路1840可以被配置为基于存储在存储器设备(例如,RAM或ROM)中的指令或基于专用电路来执行功能。在一些实施例中,硬件处理电路1840可以被配置为执行本文所描述的功能中的一个或多个,例如,分配带宽或接收带宽的分配。
在一些实施例中,一个或多个天线可以耦接到或被包括在PHY电路1820中。(一个或多个)天线可以发送和接收无线信号,包括对HEW分组或其它类型的无线电分组的传输。如本文所述,一个或多个天线可以包括一个或多个定向或全向天线,包括偶极天线、单极天线、贴片天线、环形天线、微带天线或适合于RF信号的传输的其它类型的天线。在使用MIMO通信的情况下,天线可以在物理上被分离以平衡空间分集和可能产生的不同信道特性。
存储器1850可以保留或以其它方式存储用于将其它电路配置为执行用于配置和发送HEW分组或其它类型的无线电分组的操作的信息,以及用于执行本文所描述的各种操作的信息,这些操作例如包括:根据本公开的一个或多个实施例确定CSD值、配置这样的值、以及形成包括CSD值的UL(或DL)传输。
通信设备1810可以被配置为在多载波通信信道上使用OFDM通信信号进行通信。更具体地,在一些实施例中,通信设备1810可以被配置为根据一个或多个特定无线电技术协议进行通信,例如包括IEEE 802.11、IEEE 802.11n、IEEE 802.11ac、IEEE 802.11ax、DensiFi、和/或针对WLAN提出的规范的IEEE标准家族。在这样的实施例之一中,通信设备1810可以利用或以其它方式依赖持续时间四倍于IEEE 802.11n和/或IEEE 802.11ac的符号持续时间的符号。应理解的是,本公开不限于此方面,并且在一些实施例中,通信设备1810还可以根据其它协议和/或标准来发送和/或接收无线通信。
通信设备1810可以在便携式无线通信设备中实现,或者可以构成便携式无线通信设备,例如,个人数字助理(PDA)、具有无线通信能力的膝上型计算机或便携式计算机、网络平板电脑、无线电话、智能手机、无线耳机、寻呼机、即时消息收发设备、数码相机、接入点、电视机、医疗设备(例如,心率监视器、血压监视器等)、接入点、基站、用于诸如IEEE802.11或IEEE 802.16之类的无线标准的发送/接收设备、或可以无线地接收和/或发送信息的其它类型的通信设备。类似于计算设备1710,通信设备1810可以包括例如下述各项中的一个或多个:键盘、显示器、非易失性存储器端口、多个天线、图形处理器、应用处理器、扬声器、以及其它移动设备元件。显示器可以是包括触摸屏的LCD屏幕。
应理解的是,虽然通信设备1810被示为具有若干单独的功能元件,但这些功能元件中的一个或多个可以被组合,并且可以通过经软件配置的元件的组合来实现,例如,包括数字信号处理器(DSP)和/或其它硬件元件的处理元件。例如,一些元件可以包括一个或多个微处理器、DSP、现场可编程门阵列(FPGA)、专用集成电路(ASIC)、射频集成电路(RFIC)、以及用于执行至少本文所描述的功能的各种硬件和逻辑电路的组合。在一些实施例中,功能元件可以指操作一个或多个处理器或以其它方式在一个或多个处理器上运行的一个或多个进程。还应理解的是,通信设备1810的一部分可以体现或可以构成装置。例如,处理电路1840和存储器1850可以体现或可以构成可以根据本公开的一个或多个方面工作的装置。该装置还可包括可以允许在处理电路1840和存储器1850之间交换信息的功能元件(例如,如本文所描述的总线架构和/或(一个或多个)API)。
鉴于本文所描述的方面,可以根据本公开实现用于具有来自多个通信设备的同时公共内容的无线通信(例如,UL传输)中的循环移位分集的各种技术,其中多个通信设备可以根据不同通信协议工作。参考例如图19-20中的流程图可以更好地理解这种技术的示例。出于简化说明的目的,本文公开的示例方法被呈现和描述为一系列框(例如,每个框例如表示方法中的动作或操作)。然而,应理解和领会的是,所公开的方法不受框和相关联的动作或操作的顺序的限制,因为一些框可以以与本文所示和所描述的那些框不同的顺序发生和/或与其同时发生。例如,根据本公开的各种方法(或过程或技术)可以可选地被表示为一系列相互关联的状态或事件(例如,在状态图中)。此外,可能不需要全部示出的框和相关联的(一个或多个)动作来实现根据本公开的一个或多个方面的方法。此外,所公开的方法或过程中的两个或更多个可以与彼此相组合地实现,以实现本文所描述的一个或多个特征或优势。
应理解的是,本公开的技术可以被保留在制品或计算机可读介质上,以允许或辅助将这样的方法传送和传输到计算设备(例如,台式计算机;诸如平板电脑或智能电话之类的移动计算机;游戏机,移动电话;刀片式计算机;可编程逻辑控制器等)以供计算设备的处理器执行以及由此的实现,或以供在其中的或耦接到其的存储器存储。在一个方面,可以使用一个或多个处理器(例如,实现(例如,执行)所公开的技术中的一个或多个处理器)来执行留存在存储器或任何计算机或机器可读介质中的代码指令,从而实现一个或多个方法。代码指令可以提供计算机可执行或机器可执行框架来实现本文所描述的技术。
图19呈现了根据本公开的一个或多个实施例的用于无线通信的示例方法1900的流程图。根据本公开的一些方面的通信设备(例如,台站设备或接入点设备)可以全部或部分地实现(例如,执行)示例方法1900。例如,通信设备910、计算设备1110或通信设备1810可以实现主题示例方法的一个或多个框。应理解的是,在一个方面,当实现主题示例方法时,通信设备可以作为发射机设备(或发射机)工作。
虽然参考通信设备进行的说明,但应理解的是,主题示例方法1900也可以由根据本公开的一个或多个方面的其它类型的装置实现。例如,这种装置中的一个可以包括至少一个在其上编码有编程指令的存储器设备和至少一个处理器,其中该至少一个处理器在功能上耦接到该至少一个存储器并被配置为执行编程指令,其中响应于编程指令的执行,该至少一个处理器可以执行主题示例方法1900的一个或多个框。
在框1910处,在通信设备(例如,设备110a)或其组件处接收指示,其中该指示指引通信设备与至少一个第二通信设备(例如,设备110b和/或设备110c)同时发送信号。如本文所述,在一个示例中,信号可以是传统前导码。在另一示例中,信号可以是CTS帧。
在框1920处,可以确定CSD值以形成信号。在一些实施例中,在框1910处接收指示的通信设备可以确定CSD值。如本文所述,可以针对通信设备的特定天线确定CSD值。在一些实施例中,为了确定CSD值,通信设备可以从接入点(例如AP 114a)接收CSD值,并且可以配置CSD值以生成包括CSD值的信号。在一个方面,针对可以接收CSD值的每个通信设备,AP(例如,AP 114a)可以确定或以其它方式提供全局CSD值。通信设备可以处理(例如,修改)所接收的CSD值以实现更优化的或更令人满意的值。在其它实施例中,通信设备可以从在通信设备内配置的表或其它类型的信息结构中选择或以其它方式确定值。在其它实施例中,通信设备可以在预定的范围(例如,从约0ns至约-200ns)内确定选择随机值,并且可以将这样的值分配给CSD值。
在框1930处,通信设备可以生成信号。在框1940处,通信设备可以传输或以其它方式发送信号。在一个方面,通信设备可以以多用户模式同时与至少一个第二通信设备发送信号。
图20示出了根据本公开的一个或多个实施例的用于估计信道的示例方法2000的流程图。示例方法2000根据本文所描述的一些方面利用CSD兼容的LTF设计。根据本公开的一些方面的通信设备(例如,台站设备或接入点设备)可以全部或部分地实现(例如,执行)示例方法2000。例如,通信设备910、计算设备1110或通信设备1210可以实现示例方法2000的一个或多个框。注意,在一些情况下,通信设备可以在实现示例方法2000时作为接收机设备工作。
虽然参考诸如AP设备之类的通信设备进行的说明,但示例方法2000也可以由根据本公开的一个或多个方面的其它类型的装置(包括各种类型的处理电路和/或存储设备)实现。例如,这种装置中的一个可以包括至少一个在其上编码有编程指令的存储器设备和至少一个处理器,其中该至少一个处理器在功能上耦接到该至少一个存储器并被配置为执行编程指令,其中响应于编程指令的执行,该至少一个处理器可以执行示例方法2000的一个或多个框。
在框2010处,诸如AP设备之类的另一通信设备可以至少基于从通信设备接收的信息(例如,信令)来确定与该通信设备相关联的信道响应。确定信道响应可以包括检测或以其它方式标识包括一个或多个长训练字段(LTF)符号的LTF序列。在框2020处,另一通信设备(例如,AP设备)可以至少部分地基于该信道响应来确定与该通信设备相关联的载波频率偏移(CFO)。在框2030处,另一通信设备可以至少部分地基于CFO来确定该通信设备与另一通信设备之间的相位差。在框2040处,另一通信设备(例如,AP设备)可以至少部分地基于施加在LTF序列的一部分上的相移来修改信道响应。在一个示例中,修改信道响应可以包括将相移添加到LTF序列的该部分,其中相移可以等于所确定的相位差。实现框2040可以得到经修改的信道响应,并且在框2050处,另一通信设备可以发送经修改的信道响应。
根据本公开的示例实施例,可以存在一种用于无线电信的装置。该装置可以包括具有编程指令的至少一个存储器设备;以及至少一个处理器,其在功能上耦接到该至少一个存储器设备并被配置为执行编程指令,其中响应于编程指令的执行,该至少一个处理器还可以被配置为至少进行下述操作:接收表明与至少一个第二通信设备同时发送信号的指示;以及确定循环移位分集(CSD)值以形成信号。
实现方式可以包括以下特征中的一个或多个。该装置的CSD值可以在约0ns至约200ns的范围内。该装置可以将该至少一个处理器配置为生成和发送信号。该装置还可以将该至少一个处理器配置为接收指示CSD值的调度信息以对CSD进行配置从而形成信号,以及从该至少一个存储器设备中的存储器设备内的预定信息结构中选择CSD值。
根据本公开的示例实施例,可以存在一种用于无线通信的方法。该方法可以执行包括下述内容的操作:由包括至少一个处理器和至少一个存储器设备的通信设备接收与至少一个第二通信设备同时发送信号的指示;以及由该通信设备确定循环移位分集(CSD)值以形成信号。
实现方式可以包括以下特征中的一个或多个。该方法还可以包括生成和发送信号。该方法还可以执行包括下述内容的操作:接收指示CSD值的调度信息,配置CSD以形成信号,以及从存储器设备内的预定信息结构中选择CSD值。确定CSD还可以包括将CSD值分配给通信设备的天线。
根据本公开的示例实施例,可以存在至少一个计算机可读非暂态存储介质。该至少一个计算机可读非暂态存储介质可以具有在其上编码的指令,该指令响应于执行,使得至少一个处理器执行包括下述内容的操作:接收表明与至少一个第二通信设备同时发送信号的指示;以及确定循环移位分集(CSD)值以形成信号。
实现方式可以包括以下特征中的一个或多个。至少一个计算机可读非暂态存储介质的CSD值可以在约0ns至约200ns的范围内。存储介质可以执行包括生成和发送信号的操作。存储介质还可以执行包括下述内容的操作:接收指示CSD值的调度信息,配置CSD以形成信号,以及从至少一个存储器设备中的存储器设备内的预定信息结构中选择CSD值。
根据本公开的示例实施例,可以存在一种用于无线通信的装置。该装置可以执行包括下述内容的装置:用于接收表明与至少一个第二通信设备同时发送信号的指示的装置;以及用于确定循环移位分集(CSD)值以形成信号的装置。
实现方式可以包括以下特征中的一个或多个。该装置的CSD值可以在约0ns至约200ns的范围内。该装置可以执行包括用于生成的装置和用于发送信号的装置的操作。存储介质还可以执行包括下述内容的操作中的至少一个:用于接收指示CSD值的调度信息的装置,用于配置CSD以形成信号的装置,以及用于从存储器设备内的预定信息结构中选择CSD值的装置。
根据本公开的示例实施例,可以存在一种非暂态计算机可读介质。该非暂态计算机可读介质包括存储在其上的指令,该指令在由接入点的一个或多个处理器执行时,使得设备执行下述操作:标识从无线通信台站接收并与无线通信台站相关联的信道响应,其中该信道响应包括包含一个或多个长训练字段(LTF)符号的LTF序列;至少部分地基于信道响应来计算无线通信台站的载波频率偏移(CFO);至少部分地基于计算出的CFO来确定接入点和无线通信之间的相位差;至少部分地基于所确定的相位差将第一方向的第一相移添加到LTF序列的至少一部分,由此得到经修改的信道响应;以及使得向无线通信台站发送经修改的信道响应。
实现方式可以包括以下特征中的一个或多个。对于非暂态计算机可读介质,将第一方向的的第一相移添加到LTF序列的至少一部分可以包括以下各项中的至少一项:将第二方向的第二相移添加到该LTF序列的至少一部分,其中第二相移等于第一相移,并且其中第二方向与第一方向相反;以及将第一相移分配给无线通信台站。介质可以通过使用接入点的迫零最小均方误差(MMSE)接收器中的至少一个来计算无线通信台站的CFO。确定的相位差可以在确定后被存储在查找表中,并且稍后从查找表中调用。介质可以通过上行链路多用户多输入多输出(UL MU-MIMO)无线通信网络向无线通信台站发送信道响应。发送经修改的信道响应的介质可以包括在接入点和无线通信台站之间建立安全无线连接。
根据本公开的示例实施例,可以存在一种方法。该方法可以包括:标识从无线通信台站接收的并与无线通信台站相关联的信道响应,其中,信道响应包括包含一个或多个长训练字段(LTF)符号的LTF序列;至少部分地基于信道响应来计算无线通信台站的载波频率偏移(CFO);至少部分地基于计算出的CFO来确定接入点和无线通信之间的相位差;至少部分地基于所确定的相位差将第一方向的第一相移添加到LTF序列的至少一部分,由此得到经修改的信道响应;以及使得向无线通信台站发送经修改的信道响应。
实现方式可以包括以下特征中的一个或多个。对于该方法,将第一方向的第一相移添加到LTF序列的至少一部分可以包括以下各项中的至少一项:将第二方向的第二相移添加到LTF序列的至少一部分,其中第二相移等于第一相移,并且其中第二方向与第一方向相反;以及将第一相移分配给无线通信台站。该方法可以通过使用接入点的迫零最小均方误差(MMSE)接收器中的至少一个来计算无线通信台站的CFO。所确定的相位差可以在确定后被存储在查找表中,并且稍后从查找表中调用。该方法可以通过上行链路多用户多输入多输出(UL MU-MIMO)无线通信网络向无线通信台站发送信道响应。发送经修改的信道响应的方法可以包括在接入点和无线通信台站之间建立安全无线连接。
根据本公开的示例实施例,可以存在一种装置。该装置可以包括:用于标识从无线通信台站接收的并与无线通信台站相关联的信道响应的装置,其中,信道响应包括包含一个或多个长训练字段(LTF)符号的LTF序列;用于至少部分地基于信道响应来计算无线通信台站的载波频率偏移(CFO)的装置;用于至少部分地基于计算出的CFO来确定接入点和无线通信之间的相位差的装置;用于至少部分地基于所确定的相位差将第一方向的第一相移添加到LTF序列的至少一部分由此得到经修改的信道响应的装置;以及用于使得向无线通信台站发送经修改的信道响应的装置。
实现方式可以包括以下特征中的一个或多个。对于该装置,用于将第一方向的第一相移添加到LTF序列的至少一部分的装置可以包括以下各项中的至少一项:将第二方向的第二相移添加到LTF序列的至少一部分,其中第二相移等于第一相移,并且其中第二方向与第一方向相反;以及将第一相移分配给无线通信台站。该装置可以通过使用接入点的迫零最小均方误差(MMSE)接收器中的至少一个来计算无线通信台站的CFO。所确定的相位差可以在确定后被存储在查找表中,并且稍后从查找表中调用。该装置可以通过上行链路多用户多输入多输出(UL MU-MIMO)无线通信网络向无线通信台站发送信道响应。该装置的用于发送经修改的信道响应的装置可以包括在接入点和无线通信台站之间建立安全无线连接。
根据本公开的示例实施例,可以存在一种系统。该系统可以包括存储器和被配置为执行存储在存储器中的一个或多个指令的处理器,其中该一个或多个指令使得处理器进行下述操作:标识从无线通信台站接收的并与无线通信台站相关联的信道响应,其中,信道响应包括包含一个或多个长训练字段(LTF)符号的长训练字段(LTF)序列;至少部分地基于信道响应来计算无线通信台站的载波频率偏移(CFO);至少部分地基于计算出的CFO来确定接入点和无线通信之间的相位差;至少部分地基于所确定的相位差将第一方向的第一相移添加到LTF序列的至少一部分,由此得到经修改的信道响应;以及使得向无线通信台站发送经修改的信道响应。
本公开的各种实施例可以采取全部或部分硬件实施例、全部或部分软件实施例、或软件和硬件的组合(例如,固件实施例)的形式。此外,如本文所描述的,本公开的各种实施例(例如,方法和系统)可以采取计算机程序产品的形式,该计算机程序产品包括具有计算机可访问指令(例如,计算机可读和/或计算机可执行指令)的计算机可读非暂态存储介质,例如,在这种存储介质中编码或以其它方式体现的计算机软件。这些指令可以由一个或多个处理器读取或以其它方式访问和执行,以执行或允许本文所描述的操作的执行。指令可以以任何适当的形式被提供,例如,源代码、编译代码、解释代码、可执行代码、静态代码、动态代码、汇编代码、前述的组合等。可以使用任何合适的计算机可读非暂态存储介质来形成计算机程序产品。例如,计算机可读介质可以包括用于以可由与其功能上耦接的一个或多个计算机或(一个或多个)处理器可读或以其它方式访问的形式存储信息的任何有形非暂态介质。非暂态存储介质可以包括只读存储器(ROM);随机存取存储器(RAM);磁盘存储介质;光存储介质;闪存,等等。
本文参考方法、系统、装置和计算机程序产品的框图和流程图描述了操作环境和技术(程序、方法、过程等)的实施例。可以理解的是,框图和流程图图示的每个框以及框图和流程图图示的框的组合可以分别通过计算机可访问指令来实现。在一些实现方式中,计算机可访问指令可以被加载到或以其它方式并入到通用计算机、专用计算机、或其它可编程信息处理装置中以产生特定机器,从而使得在一个或多个流程图框中指定的操作或功能可以响应于在计算机或处理装置处的执行而被实现。
除非另有明确说明,否则本文所阐述的任何协议、程序、过程或方法不能被解释为要求其动作或步骤以特定顺序被执行。因此,在过程或方法权利要求并未实际记载其行为或步骤要遵循的顺序,或者在主题公开的权利要求或说明书中未具体记载步骤要限于某特定顺序的情况下,其在任何方面都不旨在要推断出顺序。这适用于任何可能的用于解释的非明确基础,包括:与步骤或操作流程的布置相关的逻辑问题;源于语法组织或标点符号的普通词意;在说明书或附图中描述的实施例的数目或类型等。
本申请中所使用的术语“组件”、“环境”、“系统”、“架构”、“接口”、“单元”、“引擎”、“平台”、“模块”等旨在指与计算机相关的实体或与具有一个或多个特定功能的操作装置相关的实体。这样的实体可以是硬件、硬件和软件的组合、软件、或执行中的软件。作为示例,组件可以是但不限于在处理器上运行的进程、处理器、对象、软件的可执行部分、执行线程、程序、和/或计算设备。例如,在计算设备上执行的软件应用和计算设备都可以是组件。一个或多个组件可以驻留在进程和/或执行线程内。组件可以定位于一个计算设备上或分布在两个或更多个计算设备之间。如本文所述,组件可以从在其上存储有各种数据结构的各种计算机可读的非暂态介质中执行。组件可以根据例如具有一个或多个数据分组的信号(例如,模拟或数字)经由本地和/或远程进程来进行通信,该一个或多个数据分组例如是来自在本地系统、分布式系统中与另一组件进行交互和/或经由信号跨诸如广域网络之类的网络与其它系统进行交互的一个组件的数据。作为另一示例,组件可以是具有由电气电路或电子电路操作的机械部分提供的特定功能的装置,其由处理器执行的软件应用或固件应用控制,其中该处理器可以在该装置内部或外部,并可以执行软件或固件应用中的至少一部分。作为另一示例,组件可以是通过没有机械部分的电子组件提供特定功能的装置,电子组件可以包括其中的处理器,用于执行至少部分地给予电子组件功能的软件或固件。接口可以包括输入/输出(I/O)组件以及相关联的处理器、应用、和/或其它编程组件。术语“组件”、“环境”、“系统”、“架构”、“接口”、“单元”、“引擎”、“平台”、“模块”可以互换使用,并且可以被统称为功能元件。
在本说明书和附图中,提到了“处理器”。本文所使用的处理器可以指:包括单核处理器的任何计算处理单元或设备;具有软件多线程执行能力的单处理器;多核处理器;具有软件多线程执行能力的多核处理器;具有硬件多线程技术的多核处理器;并行平台;以及具有分布式共享存储器的并行平台。此外,处理器可以指集成电路(IC)、专用集成电路(ASIC)、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、可编程逻辑控制器(PLC)、复杂可编程逻辑器件(CPLD)、离散门或晶体管逻辑、离散硬件组件、或被设计用于执行本文所描述的功能的其任何组合。处理器可以被实现为计算处理单元的组合。在一些实施例中,处理器可以使用纳米级架构(例如但不限于基于分子和量子点的晶体管、开关和门),从而优化空间使用或增强用户设备的性能。
此外,在本说明书和附图中,诸如“存储”、“存储设备”、“数据存储”、“数据存储设备”、“存储器”、“存储库”之类的术语以及基本上与本公开的组件的操作和功能相关的任何其它信息存储组件指的是“存储器组件”,即在“存储器”中实现的实体或形成存储器的组件。可以理解的是,本文所描述的存储器组件或存储器体现或包括可由计算设备读取或以其它方式访问的非暂态计算机存储介质。可以以用于存储诸如计算机可读指令、信息结构、程序模块、或其它信息对象之类的信息的任何方法或技术来实现这种介质。存储器组件或存储器可以是易失性存储器或非易失性存储器,或者可以包括易失性存储器和非易失性存储器两者。此外,存储器组件或存储器可以是可移动的或不可移动的,和/或在计算设备或组件内部的或外部的。各种类型的非暂态存储介质的示例可以包括硬盘驱动器、zip驱动器、CD-ROM、数字通用盘(DVD)或其它光存储设备、磁带盒、磁带、磁盘存储设备或其它磁存储设备、闪存卡或其它类型的存储卡、盒式磁带、或适合于保留所需信息并可由计算设备访问的任何其它非暂态介质。
作为说明,非易失性存储器可以包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除ROM(EEPROM)或闪存。易失性存储器可以包括充当外部高速缓冲存储器的随机存取存储器(RAM)。作为说明而非限制,RAM具有许多形式,例如同步RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双倍数据速率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路DRAM(SLDRAM)、以及直接总线式(direct Rambus)RAM(DRRAM)。所公开的本文描述的操作环境的存储器组件或存储器旨在包括这些存储器和/或任何其它合适类型的存储器中的一个或多个。
除非另有具体说明,否则诸如“可、可以”(对应英文can,could,might,may)等之类的条件语言或在所使用的情境中以其它方式被理解的条件语言通常旨在表达下述内容:一些实现方式可以包括一些特征、元件和/或操作,而其它实现方式不包括这些特征、元件和/或操作。因此,这种条件语言通常不旨在意指下述内容:一个或多个实现方式无论如何都需要这些特征、元件和/或操作,或者一个或多个实现方式必然包括用于在有或没有用户输入或提示的情况下决定这些特征、元件和/或操作是否被包括在任何特定实现方式中或者在其中被执行的逻辑。
在本说明书和附图中已经描述的内容包括可以为具有同时从多个通信设备传送的公共内容的无线通信(例如,UL传输)提供循环移位分集的系统、设备、技术和计算机程序产品的示例,其中该多个通信设可以根据不同的通信协议(例如,新协议和传统协议)工作。当然,不可能出于描述本公开的各种特征的目的而描述每一种可想到的元件和/或方法的组合,但可以认识到的是,所公开的特征的许多其它组合和排列是可能的。因此,显而易见的是,在不背离本公开的范围或精神的情况下,可以对其进行各种修改。附加地或可选地,通过考虑本说明书和附图,以及本文所呈现的本公开的实践,本公开的其它实施例可以是显而易见的。在说明书和附图中提出的示例在所有方面都被认为是说明性的而非限制性的。尽管本文采用了特定术语,但它们仅在通用和描述性意义上使用,而非出于限制目的。

Claims (20)

1.一种用于给无线传输确定循环移位的装置,所述装置包括存储设备和处理电路,所述存储设备和所述处理电路被配置来:
识别从接入点接收的帧,其中,所述帧包括高效率HE帧的循环移位的标识;
基于所述标识来确定所述循环移位;以及
引起在使用所述循环移位的空间流中发送所述HE帧。
2.如权利要求1所述的装置,其中,所述循环移位应用于所述HE帧的训练字段。
3.如权利要求1所述的装置,其中,所述循环移位的标识是第一循环移位的第一标识,所述空间流是第一空间流,从所述接入点接收的帧还包括用于第二空间流的第二循环移位的第二标识。
4.如权利要求3所述的装置,其中,引起发送所述HE帧包括:所述存储设备和所述处理电路还被配置来引起使用第一天线发送所述HE帧,其中,所述存储设备和所述处理电路还被配置来引起使用第二天线和所述第二循环移位发送第二HE帧。
5.如权利要求1所述的装置,其中,所述循环移位应用于频率,其中,引起发送所述HE帧包括:所述存储设备和所述处理电路还被配置来引起使用所述频率发送所述HE帧。
6.如权利要求1所述的装置,其中,从所述接入点接收的帧还包括指示了调度信息的触发帧,其中,引起发送所述HE帧包括:所述存储设备和所述处理电路还被配置来引起根据所述调度信息发送所述HE帧。
7.如权利要求1所述的装置,还包括收发器,所述收发器被配置来发送和接收无线信号。
8.如权利要求7所述的装置,还包括耦合到所述收发器的一个或多个天线。
9.一种无线通信设备,包括:
收发器,用于发送和接收无线信号;以及
处理电路,用于执行包括以下内容的操作:
确定第一循环移位和第二循环移位,其中,所述第一循环移位应用于第一上行链路传输,所述第二循环移位应用于第二上行链路传输;
生成高效率HE帧,所述HE帧包括所述第一循环移位的第一指示以及第二循环移位的第二指示;
引起发送所述HE帧;以及
识别根据所述第一循环移位而接收的所述第一上行链路传输。
10.如权利要求9所述的无线通信设备,其中,所述第一循环移位应用于所述第一上行链路传输的训练字段。
11.如权利要求9所述的无线通信设备,其中,识别所述第一上行链路传输包括识别在第一空间流中接收的第一上行链路传输,所述操作还包括识别在第二空间流中根据所述第二循环移位接收的所述第二上行链路传输。
12.如权利要求11所述的无线通信设备,其中,识别所述第一上行链路传输包括识别从第一台站设备接收的第一上行链路传输,识别所述第二上行链路传输包括识别从第二台站设备接收的第二上行链路传输。
13.如权利要求11所述的无线通信设备,其中,识别所述第一上行链路传输包括识别从台站设备的第一天线接收的第一上行链路传输,识别所述第二上行链路传输包括识别从所述台站设备的第二天线接收的第二上行链路传输。
14.如权利要求9所述的无线通信设备,其中,生成所述HE帧包括:生成包括传输调度的第三指示的所述HE帧。
15.一种用于给无线传输确定循环移位的方法,所述方法包括:
由台站设备的一个或多个处理器识别从接入点接收的帧,其中,所述帧包括高效率HE帧的循环移位的标识;
由所述一个或多个处理器基于所述标识来确定所述循环移位;以及
引起由所述一个或多个处理器在使用所述循环移位的空间流中发送所述HE帧。
16.如权利要求15所述的方法,其中,所述循环移位应用于所述HE帧的训练字段。
17.如权利要求15所述的方法,其中,所述循环移位的标识是第一循环移位的第一标识,所述空间流是第一空间流,从所述接入点接收的帧还包括用于第二空间流的第二循环移位的第二标识。
18.如权利要求17所述的方法,其中,引起发送所述HE帧包括引起使用第一天线发送所述HE帧,其中,所述方法还包括:引起使用第二天线和所述第二循环移位发送第二HE帧。
19.如权利要求15所述的方法,其中,所述循环移位应用于频率,其中,引起发送所述HE帧包括:引起使用所述频率发送所述HE帧。
20.如权利要求15所述的方法,其中,从所述接入点接收的帧还包括指示了调度信息的触发帧,其中,引起发送所述HE帧包括:引起根据所述调度信息发送所述HE帧。
CN201680012185.5A 2015-02-27 2016-02-23 无线通信中的循环移位分集 Active CN107409372B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201562126290P 2015-02-27 2015-02-27
US62/126,290 2015-02-27
US201562137611P 2015-03-24 2015-03-24
US62/137,611 2015-03-24
US14/757,824 US20160255645A1 (en) 2015-02-27 2015-12-26 Cyclic shift diversity in wireless communications
US14/757,824 2015-12-26
PCT/US2016/019117 WO2016137984A1 (en) 2015-02-27 2016-02-23 Cyclic shift diversity in wireless communications

Publications (2)

Publication Number Publication Date
CN107409372A CN107409372A (zh) 2017-11-28
CN107409372B true CN107409372B (zh) 2020-12-04

Family

ID=56789760

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680012185.5A Active CN107409372B (zh) 2015-02-27 2016-02-23 无线通信中的循环移位分集

Country Status (4)

Country Link
US (3) US20160255645A1 (zh)
EP (1) EP3262767A4 (zh)
CN (1) CN107409372B (zh)
WO (1) WO2016137984A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9866290B2 (en) * 2015-02-17 2018-01-09 Newracom, Inc. Apparatus and methods for multi-user simultaneous transmission
WO2017023137A1 (ko) 2015-08-06 2017-02-09 엘지전자 주식회사 무선랜 시스템에서 기설정된 이진 시퀀스를 사용하여 트레이닝 신호를 생성하는 방법 및 장치
US10320590B2 (en) 2015-08-06 2019-06-11 Lg Electronics Inc. Method and apparatus for generating STF signal using binary sequence in wireless LAN system
WO2017070673A1 (en) * 2015-10-23 2017-04-27 Marvell World Trade Ltd. A structure for low-power-low-rate data transmission
US9918195B2 (en) * 2015-11-09 2018-03-13 Qualcomm Incorporated Signaling usage of cyclic shift diversity in transmitting wireless devices
US10342046B2 (en) * 2016-12-28 2019-07-02 Intel Corporation Sending request message based on received annoucements
US10772159B2 (en) * 2016-12-29 2020-09-08 Intel Corporation Channel estimation for coordinated access point transmissions in wireless networks
US10750395B2 (en) 2017-03-11 2020-08-18 Qualcomm Incorporated Identifying nulling wireless nodes for distributed MIMO communication in a wireless node cluster
US10820333B2 (en) * 2017-03-11 2020-10-27 Qualcomm Incorporated Distributed MIMO communication scheduling in an access point cluster
US10820332B2 (en) 2017-03-11 2020-10-27 Qualcomm Incorporated Sounding scheduling for distributed MIMO communication in an access point cluster
US10805940B2 (en) 2017-03-11 2020-10-13 Qualcomm Incorporated Triggering distributed MIMO communication in a wireless node cluster
US11777651B2 (en) 2018-10-26 2023-10-03 Lg Electronics Inc. Method and apparatus for transmitting a physical protocol data unit by applying cyclic shift delay for each transmission chain in a wireless local area network system
US11616615B2 (en) * 2019-01-07 2023-03-28 Intel Corporation Adaptation of secure sounding signal to bandwidth variation
CN111817764B (zh) * 2019-04-11 2024-01-09 华为技术有限公司 一种筛选循环位移延迟序列的方法以及相关装置
US11546196B2 (en) 2020-05-01 2023-01-03 Qualcomm Incorporated Secure long training field (LTF)
CN114679746A (zh) * 2020-12-24 2022-06-28 华为技术有限公司 基于循环移位分集序列的通信方法、装置及系统
US11818698B2 (en) * 2021-05-17 2023-11-14 Qualcomm Incorporated Distributed resource unit transmission
US20230069075A1 (en) * 2021-08-13 2023-03-02 Qualcomm Incorporated Distributed transmission of short training fields
US12010613B2 (en) 2021-09-20 2024-06-11 Microsoft Technology Licensing, Llc Accessory device communication utilizing multiple personalities
US20230091057A1 (en) * 2021-09-21 2023-03-23 Microsoft Technology Licensing, Llc Accessory device communication utilizing host-synchronized transmission
US11968732B2 (en) 2021-10-15 2024-04-23 Microsoft Technology Licensing, Llc Mixed standard accessory device communication utilizing host-coordinated transmission
CN114095099B (zh) * 2021-11-26 2023-12-22 深圳市联平半导体有限公司 信号的生成方法、生成装置及生成设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252422A (zh) * 2008-03-20 2008-08-27 中兴通讯股份有限公司 物理混合重传指示信道的分配方法
CN102377468A (zh) * 2010-06-09 2012-03-14 美国博通公司 用于操作无线通信设备的方法和装置
CN102598530A (zh) * 2009-09-16 2012-07-18 Lg电子株式会社 在多天线系统中发射基准信号的方法和设备
CN103179667A (zh) * 2011-12-23 2013-06-26 中兴通讯股份有限公司 循环移位序列跳变处理、循环移位序列值获取方法及装置
CN103178942A (zh) * 2011-12-21 2013-06-26 华为技术有限公司 信令传输方法、基站和用户设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005884A (en) * 1995-11-06 1999-12-21 Ems Technologies, Inc. Distributed architecture for a wireless data communications system
AU2003271665A1 (en) * 2003-09-30 2005-05-11 Docomo Communications Laboratories Europe Gmbh Apparatus and method for cyclic delay diversity
US7742390B2 (en) * 2005-08-23 2010-06-22 Agere Systems Inc. Method and apparatus for improved long preamble formats in a multiple antenna communication system
EP2790331B1 (en) * 2005-08-24 2019-01-09 Wi-Fi One, LLC MIMO-OFDM transmission device and MIMO-OFDM transmission method
JP5044165B2 (ja) * 2006-08-14 2012-10-10 株式会社東芝 マルチアンテナ無線通信システムにおける送信機、受信機及び方法
US8165249B2 (en) * 2006-08-30 2012-04-24 Seah Networks Co., Ltd. Apparatus and method for estimating and compensating time offset and/or carrier frequency offset in MIMO system based OFDM/OFDMA
KR100939738B1 (ko) * 2006-12-21 2010-01-29 삼성전자주식회사 다중안테나 무선통신 시스템에서 순환 지연 다이버시티장치 및 방법
US8644397B2 (en) * 2008-09-23 2014-02-04 Qualcomm Incorporated Efficient multiplexing of reference signal and data in a wireless communication system
EP2462461A1 (en) * 2009-08-05 2012-06-13 Andrew LLC System and method for hybrid location in an lte network
US8619676B2 (en) * 2010-06-09 2013-12-31 Broadcom Corporation Legacy cyclic shift delay (CSD) for orthogonal frequency division multiplexing (OFDM) signaling within multiple user, multiple access, and/or MIMO wireless communications
JP5901077B2 (ja) * 2011-01-06 2016-04-06 マーベル ワールド トレード リミテッド Wlanマルチ無線デバイスのための巡回シフト遅延
JP5918667B2 (ja) * 2012-09-18 2016-05-18 ルネサスエレクトロニクス株式会社 受信装置及び通信装置並びに通信システム
WO2014069867A1 (ko) * 2012-10-29 2014-05-08 엘지전자 주식회사 무선랜 시스템에서 고속 링크 동기화 방법 및 장치
US9439161B2 (en) * 2013-07-17 2016-09-06 Qualcomm Incorporated Physical layer design for uplink (UL) multiuser multiple-input, multiple-output (MU-MIMO) in wireless local area network (WLAN) systems
US9585095B2 (en) * 2013-11-11 2017-02-28 Qualcomm Incorporated Methods and devices for enhanced power save protocol
US10075226B2 (en) * 2014-10-03 2018-09-11 Qualcomm Incorporated Per stream and per antenna cyclic shift delay in uplink multi-user MIMO
WO2016089059A1 (ko) * 2014-12-05 2016-06-09 엘지전자(주) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
JP6753858B2 (ja) * 2015-02-04 2020-09-09 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける多重ユーザ送受信のための方法及びこのための装置
US9866290B2 (en) * 2015-02-17 2018-01-09 Newracom, Inc. Apparatus and methods for multi-user simultaneous transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252422A (zh) * 2008-03-20 2008-08-27 中兴通讯股份有限公司 物理混合重传指示信道的分配方法
CN102598530A (zh) * 2009-09-16 2012-07-18 Lg电子株式会社 在多天线系统中发射基准信号的方法和设备
CN102377468A (zh) * 2010-06-09 2012-03-14 美国博通公司 用于操作无线通信设备的方法和装置
CN103178942A (zh) * 2011-12-21 2013-06-26 华为技术有限公司 信令传输方法、基站和用户设备
CN103179667A (zh) * 2011-12-23 2013-06-26 中兴通讯股份有限公司 循环移位序列跳变处理、循环移位序列值获取方法及装置

Also Published As

Publication number Publication date
US20160255645A1 (en) 2016-09-01
US20180263033A1 (en) 2018-09-13
US20160255620A1 (en) 2016-09-01
EP3262767A1 (en) 2018-01-03
CN107409372A (zh) 2017-11-28
EP3262767A4 (en) 2018-10-31
WO2016137984A1 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
CN107409372B (zh) 无线通信中的循环移位分集
US10361834B2 (en) Subcarrier allocations for operation in mixed bandwidth environments
US11751063B2 (en) Generalized distributed multi-user (MU) transmissions
TWI593304B (zh) 用於在電信環境內窄頻通訊之關聯請求
US9654308B2 (en) Systems and methods for carrier frequency offset estimation for long training fields
US10382144B2 (en) Systems, methods, and devices for interference mitigation in wireless networks
US10034304B2 (en) Fairness in clear channel assessment under long sensing time
US20160227532A1 (en) Systems, methods, and devices for signal classification in wireless networks
US10123329B2 (en) Long training field in uplink multi-user multiple-input multiple-output communications
US20180191546A1 (en) Channel estimation for coordinated access point transmissions in wireless networks
US20170250847A1 (en) Parallel transmission of high efficiency signal field
US9826513B2 (en) Uplink requests for communication resources
US20170070911A1 (en) Adaptive mid-packet detection in wireless communications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210705

Address after: California, USA

Patentee after: INTEL Corp.

Address before: California, USA

Patentee before: INTEL IP Corp.