CN107409257B - 音频换能器稳定系统和方法 - Google Patents

音频换能器稳定系统和方法 Download PDF

Info

Publication number
CN107409257B
CN107409257B CN201680006755.XA CN201680006755A CN107409257B CN 107409257 B CN107409257 B CN 107409257B CN 201680006755 A CN201680006755 A CN 201680006755A CN 107409257 B CN107409257 B CN 107409257B
Authority
CN
China
Prior art keywords
audio
panel
audio transducers
transducers
distributed mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680006755.XA
Other languages
English (en)
Other versions
CN107409257A (zh
Inventor
蒂莫西·惠特维尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Construction Audio Laboratory LLC
Original Assignee
Construction Audio Laboratory LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Construction Audio Laboratory LLC filed Critical Construction Audio Laboratory LLC
Publication of CN107409257A publication Critical patent/CN107409257A/zh
Application granted granted Critical
Publication of CN107409257B publication Critical patent/CN107409257B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/181Low frequency amplifiers, e.g. audio preamplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/045Plane diaphragms using the distributed mode principle, i.e. whereby the acoustic radiation is emanated from uniformly distributed free bending wave vibration induced in a stiff panel and not from pistonic motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/041Centering
    • H04R9/043Inner suspension or damper, e.g. spider
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/045Mounting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2400/00Loudspeakers
    • H04R2400/07Suspension between moving magnetic core and housing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Power Engineering (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

音频换能器稳定系统和方法包括:响应于接收自三个或更多个音频换能器的多个力输入,提供传输音频声波的声音生成面板;提供用于耦合到声音生成面板的安装框架,安装框架具有用于接收音频换能器的三个或更多个预定位置;将三个或更多个音频换能器放置在预定位置中,预定位置优化为当音频换能器使用输入驱动信号驱动时减少多个力矩;将放置在安装框架上的预定位置中的音频换能器中的每个上的耦合器环连接到声音生成面板的外表面;以及使用来自音频放大器的输入驱动信号驱动音频换能器中的每个。

Description

音频换能器稳定系统和方法
技术领域
本公开总体上涉及音频系统的领域,具体地但非排他地涉及用于稳定分布式扬声器中所使用的换能器的系统和方法。
背景技术
传统的扬声器长期以来一直依靠使用锥形的空气驱动的机械元件。在这种扬声器中,通过使用采用了电磁驱动装置的移动线圈,每个锥形元件在一端上以类似于活塞的方式(即“活塞式”)被机械地驱动。这种驱动装置包括固定磁体组件,该固定磁体组件以确保将电磁能强烈平移到移动线圈和锥形组件中的方式安装到扬声器的框架或机架上,以实现强大且响应性的驱动动作。通常,轻型片材材料已被用于常规扬声器的锥体以及使工作频率范围内的弯曲最小化的刚性复合夹层结构。在传统的扬声器中,这些类型的设计通常实现优异的结果,特别是在不同类型和尺寸的锥形元件和相关联的驱动单元与扬声器壳体中的适当的电子电路一同用于不同频率范围的情况下。然而,这样的设计具有显着的缺点。首先,它们的质量和体积往往是很大的物理限制。第二,由一个或多个锥形元件产生的声音通常被限制在轴向起点,而这种轴向起点不可避免地具有高的方向性,特别是在较高的频率下。
响应于传统扬声器的这些限制,开发了一种基本上新形式的扬声器,正如国际专利申请WO 97/09842 A2中详细描述的,其内容通过引用整体并入本文,其依赖于平坦的声学元件和/或具有较少深度和较少方向性的隔膜。这些类型的扬声器已经被称为“分布式扬声器”,因为它们依赖于利用这些扬声器中使用的面板的机械谐振。除了能够产生依靠机械谐振的声音之外,因为它们使用能够承受弯曲波的材料及它们由这些弯曲波的作用产生声音的能力,所以这种分布式扬声器是新颖的。这些材料形成为面板的形状并已被显示出通过宽的方向性提供宽频率覆盖和鲁棒的声音分布和响度能力,其独立于面板尺寸并且显着扩散输出,从而产生高交感神经边界相互作用。在分布式扬声器中使用的传感器的驱动力、其面板的结构以及相关的边界条件使得面板能够以显著的活塞和显着的模态振动来辐射声能。通常,在最低的操作频率下,面板的振动在特性上可能是显着的活塞式的,从而随着频率的增加逐渐变得更加模态。
虽然分布式扬声器相对较新,但某些关键设计原则已经开发出来,并已被该领域的设计者采用。虽然对这些设计原理有着现有的理解,但仍然存在重大的设计问题,特别是对于大功率分布式扬声器。在较高的操作功率下,根据这些现有设计原理设计的这种扬声器中所使用的换能器经常在较低的活塞频率下遭受持续的摇摆运动。因为在活塞操作期间处于高功率,音频换能器的摇摆运动可能对每个换能器中提供的音圈造成物理损坏,所以这是一个问题。通常,分布式扬声器利用用于增加的模态分布和功率处理的多个换能器。因为每个谐振模式有助于分别与谐振模式的“反节点”和“节点”对应的振动有效子区域和振动无效区域之间的面板上的弯曲波振动作的特定分量,所以这些谐振模式是重要的。因此,当分布式扬声器在高功率应用中使用,同时在不会影响其整个工作频率范围内的性能优势的情况系在活塞频率范围内操作时,存在用于解决由换能器的物理摇摆运动导致的问题的显着且快速增长的需求。
附图说明
参考以下附图对非限制性和非穷尽性实施例进行描述,其中,除非另有说明,否则在各种视图中相同的附图标记表示相同部件。
图1A是实施例中分布式扬声器的正视图。
图1B是实施例中分布式扬声器的后视图。
图1C是实施例中分布式扬声器的后视图。
图1D是实施例中用于构造分布式扬声器的面板的一部分的俯视图。
图1E是实施例中在分布式扬声器中所使用的面板的剖视图。
图2A是实施例中在分布式扬声器中所使用的音频换能器线圈耦合环的俯视图。
图2B是实施例中在分布式扬声器中所使用的线圈耦合环的侧视图。
图3A是实施例中在分布式扬声器中所使用的线圈组件的立体图。
图3B是实施例中安装在分布式扬声器中所使用的线圈架上的音圈的剖视图。
图3C是实施例中在分布式扬声器中所使用的线圈组件的侧视图。
图4是实施例中在分布式扬声器中所使用的音频换能器的立体图。
图5A是实施例中在分布式扬声器中所使用的音频换能器的剖视图。
图5B实施例中在分布式扬声器中所使用的音频换能器的剖视图。
图5C是实施例中在分布式扬声器中所使用的音频换能器的轴对称视图。
图5D是实施例中在分布式扬声器中所使用的音频换能器的气隙中的线圈组件的局部剖视图。
图5E是实施例中在分布式扬声器中所使用的音频换能器的剖视图。
图5F是实施例中在分布式扬声器中所使用的音频换能器的剖面立体图。
图5G是实施例中在分布式扬声器中所使用的音频换能器的剖面立体图。
图5H是实施例中在示出磁通分布模式的分布式扬声器中所使用的音频换能器的剖视图。
图6A是示出实施例中线圈架相对于音频换能器驱动频率的位移量的图表。
图6B是实施例中在分布式扬声器中所使用的音频换能器的气隙中的线圈组件的轴对称视图。
图6C是实施例中安装在用于分布式扬声器的音频换能器的线圈架上的位移的音圈的轴对称视图。
图6D是实施例中在分布式扬声器中所使用的音频换能器中的线圈组件非轴向位移几何形状的视图。
图7A是示出实施例中分布式扬声器中的对称放置的音频换能器的视图。
图7B是实施例中作用在分布式扬声器中的面板上的力矩的视图。
图7C是示出实施例中在分布式扬声器中所使用的不对称放置的音频换能器和相对距离的视图。
图7D是示出个实施例中在分布式扬声器中的非对称放置的音频换能器的视图。
图8A是实施例中用于分布式扬声器的面板上的谐振振动模式的速度节点的视图。
图8B是实施例中用于分布式扬声器的面板的谐振振动模式的节点线的视图。
图8C是实施例中在距分布式扬声器的面板一定距离处各个谐振模式和声压级相对于声频的视图。
图8D是实施例中在距分布式扬声器的面板一定距离处各个谐振模式和声压级相对于声频的视图。
图9A是示出音频换能器中的线圈组件相对于在分布式扬声器的实施例中所使用的振动频率的轴向冲程的图表。
图9B是示出实施例中在分布式扬声器中所使用的音频换能器的比较性非轴向线圈组件位移的图表。
图10是实施例中在分布式扬声器中所使用的安装框架的等距视图。
具体实施方式
在下面的描述中,将描述音频换能器和分布式扬声器的实施例的各个方面,并且将阐述具体的配置。给出了许多具体细节以提供对这些实施例的理解。本文公开的方面可以在没有一个或多个具体细节的情况下实施,或者与其他方法、部件或系统一起实施。在其他情况下,结构或功能未被详细地显示或描述以避免模糊相关的发明方面。
贯穿本说明书对“一个实施例”或“实施例”的参考意味着结合实施例描述的特定特征、结构或特性包括在至少一个实施例中。因此,贯穿本说明书在各个地方中的短语“在一个实施例中”或“在实施例中”的出现不一定都指代相同的实施例。此外,在一个或多个实施例中,特定特征、结构或特征可以以任何适当的方式组合。
图1A示出了在分布式扬声器上使用的面板的正视图。在图示的面板100中,平坦的矩形面板示出为包括位于面板100的外表面102a上的四个橡胶安装块104a、104b、104c、104d。面板100包括两个表层材料层和芯层,其中,表层材料层中的每个具有内表面和外表面。在该图中示出了面板100的第一表层材料层的外表面102a。面板100可针对在各种应用中使用的分布式扬声器的不同形状设计成各种尺寸。在某些情况下,分布式扬声器用于在家庭中方便的家庭应用(例如,用于与各种“智能”应用的仪器使用的车载扬声器、个人家庭音频扬声器等),而在其它情况下,它们用于将声波传输到大空间区域(例如,大厅、运动场、体育场馆等)。
在一个实施例中,面板100是A5尺寸(A5是由国际标准组织在1975年开发的纸张尺寸,其等于具有5.83英寸的宽度和8.27英寸的长度的纸张),并且因此被配置为放置在汽车中或在空间受限的其它限定位置中。在可选实施例中,面板100可以大大地用于更高功率的应用中,例如用于扩声系统中的应用中。“扩声系统”是由麦克风、信号处理器、放大器和扬声器的组合构成的,而它们使现场或预录音更响亮,并且可以将声音分发给更多或更远的观众(例如,在体育场馆中举办的摇滚演唱会的参与者等)。在用于扩声系统的分布式扬声器的优选实施例中,面板100具有577毫米的长度、400毫米的宽度和3.8毫米的厚度。通常,分布式扬声器通常必须是轻巧且坚硬的,并且因此它们通常由复合材料制成以实现这种施工目标。面板的刚度与其厚度以功率因数成正比。特别地,对于分布式扬声器中的复合面板,刚度随着厚度以1.5的功率因数增加。因此,对于分布式扬声器的复合面板100的厚度加倍,其刚度将增加2.83倍。在可选实施例中,单片面板可以用在分布式扬声器中,并且在这些面板中,它们的刚度随着厚度的立方体功率增加。
图1B是实施例中用于分布式扬声器的面板100的后视图。在该图示的实施例中,面板100的后视图包括第二表层材料层的外表面102b,而其上定位有四个不同的换能器耦合环。如本领域技术人员已知的,分布式扬声器可以由一个或多个音频换能器构成以实现期望的设计目标。在本实施例中,优选的是使用四个电动换能器构成的扬声器。换能器耦合环106、108、110、112提供在表层材料层的外表面102b上(用粘合剂附着在面板的表面上),以用于接收用于驱动面板100的四个不同的换能器的线圈架以生成期望的声输出。该外表面102b还包括四个附加的橡胶安装块104e、104f、104g、104h,除了为面板提供悬挂的安装之外,它们具有适当的高度以建立与安装框架的紧密配合以将换能器密封到分布式扬声器中的适当位置中。
图1C是实施例中示出具有附加支撑元件的面板100的外表面102b的分布式扬声器的后视图。在该实施例中,四个泡沫条提供在面板100的第二表层材料层的外表面102b上,由此它们能够可插入地连接到安装框架上的匹配凹槽中。泡沫条114a、114b、114c、114d由开孔或闭孔泡沫材料组成,其通常与膨胀橡胶(例如
Figure BDA0001356936770000061
)一起使用,其有助于用边界条件产生具有优化的光和适当刚度的分布式扬声器。该实施例中的外表面102b还包括用于在四个不同的音频换能器中的每个上接收线圈架的四个换能器耦合环106、108、110、112。
图1D示出了实施例中用于构成分布式扬声器的面板100的芯层的一部分的俯视图。在所示部分中,三个六边形单元116、118、120示出为表示面板100的核心结构,其中芯层由这种单元的集成网络构成,从而产生在施工工艺期间将表层融合到其上的蜂窝结构。蜂窝芯结构中所使用的每个单元的直径可以根据要产生的面板100的尺寸和扬声器的期望应用而变化得很大。在优选实施例中,每个六边形单元的相对角之间的距离为3.5毫米。包括芯层的蜂窝结构的厚度在0.1毫米至10毫米的范围内。在优选实施例中,芯层的蜂窝结构的最大厚度为大约7毫米。如本领域技术人员所知,六边形单元的直径和芯层的厚度不必限于该范围来实现最小化对分布式扬声器的物理损坏的目的,同时用于其中存在着这些扬声器的内部结构和部件产生热应力和机械应力的重大风险的高功率应用中。
图1E是实施例中示出表层材料层和芯层的分布式扬声器的面板100的剖视图。在所示实施例中,面板100包括第一表层材料层122、第二表层材料层128和芯层。第一表层材料层122具有用热固性粘合剂稀松布结合到芯层的内表面124和外表面102a(如图1A中所示)。芯层由蜂窝结构或膨胀泡沫构成,两者都主要是空气并且有助于保持面板或隔膜的总体质量较低。用于芯层的蜂窝结构是掺杂纸、
Figure BDA0001356936770000071
和铝。芯层的蜂窝结构典型地具有1毫米至10毫米范围内的厚度,这通常表示每个蜂窝单元的高度。在该剖视图中,所示实施例中的每个蜂窝单元的壁被示为竖直支柱130a、130b、130c、130d。将芯层放置到包括内表面126和外表面102b(先前在图1B中示出)的第二表层材料层128上。在所示实施例中,芯层的蜂窝结构用热固性粘合剂稀松布结合到第二表层材料层128的内表面126。第一表层材料层122和第二表层材料层128可以由一组轻质材料中的任一种材料构成。在典型的实施例中,这些材料包括掺杂的纸、碳、玻璃纤维或具有塑料层压板的、甚至是掺杂的纸。塑料层压板用于在第一表层材料层122的外表面102a上提供有吸引力的表面光洁度(例如,拉丝铝效果)。在优选实施例中,第一表层材料层和第二表层材料层中的每个具有在0.1毫米至0.25毫米范围内的厚度。
图2A是实施例中用于音频换能器的线圈耦合环的俯视图。耦合环200包括上表面202和用于将耦合环结合到音频换能器上的音圈架上的多个下表面。在所示实施例中,五个延伸部204a、204b、204c、204d、204e提供在耦合环200的下表面上。如本领域技术人员将认识到的那样,在音频换能器上使用的耦合环可以具有更多或更少数量的、来自耦合环的下表面的延伸部,而不限制或以其它方式影响该结构的性能目标。这些延伸部可以使用常规粘合剂或其它粘合物质结合到音频换能器中的音圈架。在优选实施例中,每个耦合环200由铝制成。在可选实施例中,耦合环可由聚碳酸酯或ABS塑料材料制成。在所示实施例中,耦合环200的直径在30毫米至32毫米的范围内。
图2B是线圈耦合环200的侧视图。在该视图中,耦合环200的下表面206被暴露,并且五个延伸部204a、204b、204c、204d、204e被更清楚地示出。这些延伸部204a、204b、204c、204d、204e可以单独地产生并结合到下表面206,或者更一般地,形成为一个对象的耦合环200的一部分。这些延伸部的外表面将使用常规的粘合剂或其它合适的粘合剂结合到音圈架。
图3A是实施例中在分布式扬声器中所使用的用于音频换能器的线圈组件的立体图。线圈组件215包括线圈架208、耦合环200及其暴露的上表面202以及由缠绕在线圈架208的下部的铜导体绕组构成的音圈210。耦合环200使用常规粘合剂结合到线圈架208的上端。多个小孔提供在用于空气通风的线圈架208上,并且用于防止音频换能器中的压力积聚。空气通风有助于从换能器散热并释放压力,以防止在高功率操作期间发生硬化。线圈架208的下部的音圈210包括位于线圈架208的内表面和外表面上的多个铜导体绕组。这些内部线圈和外部线圈可以并联或串联地电连接在一起。在该实施例中,它们被串联连接。响应于来自放大器的音频信号,在存在从用于在目标操作频率范围上驱动面板100的局部环形磁体产生的时不变磁场的情况下,电流流动在铜绕组中,以生成并在具有广泛方向性的期望的覆盖区域上传送声波。在本实施例中,音圈210的铜绕组以线圈架的外表面上的单层和线圈架208的内表面上的单独的单层的方式铺设在线圈架208上。在可选实施例中,两层或更多层铜导体绕组可以在内表面和/或外表面上使用,以实现用于产生感应电流相同或更高的电磁耦合,正如本领域技术人员已知的。
图3B是实施例中安装在分布式扬声器中所使用的线圈架上的音圈的剖视图。在该图中,线圈架208从侧视图示出,并且表现为其上固定有铜导体绕组210的两个平行的竖直表面。线圈架208结合到耦合环200上的一系列延伸部。剖视图示出了耦合环200的两个部分,每个部分表示耦合环200上的已附接有线圈架208不同的延伸部。耦合环200附接到面板100的内表面102b(如图1B中所示),并且提供增强的粘合面积,否则,仅仅用线圈架208将是无法实现的。
图3C是实施例中在分布式扬声器中所使用的线圈组件300的剖视图。线圈组件300包括音圈,音圈具有位于线圈架302的外表面上的第一多个铜导体绕组210和位于线圈架302的内表面上的第二多个铜导体绕组211。在外表面上,第一多个铜导体绕组210使用足以结合并保持至少单层绕组的第一胶层308结合到线圈架302。在内表面上,第二多个铜导体绕组211使用施加在线圈架302的内表面上的第二胶层304结合到线圈架302。该图提供了图3A中所示的线圈架的下部的放大视图,并且提供为更好地示出音圈的铜导电绕组如何耦合到线圈架302。在铜导体绕组上所使用的匝数将根据所需的设计目标而变化。在本实施例中,外部铜导体绕组使用三十三(33)匝的绕组而具有0.14毫米的量规。外表面210上的第一多个绕组的高度为5.52毫米,其内径为32.2毫米,并且其外径为32.62毫米。同样地,内部铜导体绕组使用三十三(33)匝而具有0.14毫米的量规。内表面211上的第二多个绕组的高度为5.52毫米。然而,第二多个绕组211的内径为31.66毫米,并且其外径为32.0毫米。线圈架302由玻璃纤维构成,并且具有20.25毫米的高度、32.0毫米的内经以及32.2毫米的外径。
图4是实施例中在分布式扬声器中所使用的音频换能器的立体图。在该集成视图中,耦合环200被示出为附接到线圈架208,而线圈架208被放置在音频换能器400的本体中。在本实施例中,优选类型的音频换能器400是电动换能器。在电动换能器中,时变电流流过悬挂在时不变磁场中的导电线圈,其中,时不变磁场在音圈上和与其连接的部件上产生电动势。该电动势又导致连接的部件振动(例如,面板100)并且辐射声音。在所示的音频换能器400中,两个引出线406、408被提供为连接到线圈架208和电气安装座407。电气安装座407包括两个电气端子402、404,其中音频放大器(未示出)电耦合到音频换能器400,音频换能器400传输用于分布式扬声器的操作的时变驱动电流。在优选实施例中,音频放大器向分布式扬声器的每个面板提供高达200瓦特的电输入功率,其中每个面板可以包括多达四个不同的音频换能器。电功率在四个换能器之间分布且平均共享,以使得每个换能器根据从音频放大器传送到换能器的电功率的量来接收高达50瓦特。
图5A是分布式扬声器中所使用的音频换能器的剖视图。如图所示,线圈耦合器200被示出为附接到其上存在有多个通气孔的线圈架208。线圈架208的下部包括由第一多个铜导体绕组210和第二多个铜导体绕组211构成的音圈。音频传感器还包括一个蜘蛛悬挂元件510,在本实施例中,该蜘蛛悬挂元件510由波形式的混合棉编织掺杂布构成。蜘蛛悬挂元件510使用胶水或替代性的常规粘合剂连接到线圈架208,并且当向其施加力以驱动面板100时,其支撑线圈架208。在操作中,蜘蛛悬挂元件510施加与线圈架208从其平衡位置的位移成正比的恢复力,并且还提供与用于防止面板100以不期望的方式摆动的运动速度成正比的阻尼力。蜘蛛支撑环512提供在提供限制支撑的蜘蛛悬挂元件510的周围。在一个实施例中,该蜘蛛支撑环512由塑料构成,尽管其它类似的材料可用于提供由蜘蛛悬挂元件510所需的限制支撑。在蜘蛛悬挂元件510下方是包括钢的前板,其中,该钢围绕包括第一多个铜导体绕组210的线圈架208的一部分缠绕。音圈的铜导体绕组210、211被放置在形成在铜屏蔽件525之间的气隙中,铜屏蔽525围绕极片520的外表面和前板514缠绕,并在极片520和环磁铁516上且连续在铜屏蔽件5252之间。环磁体516位于前板514下方,并且环磁体516和极片520都位于背板518的顶部,而背板518也由用于完成磁路的钢构成,并且当放置在分布式安装扬声器中的安装框架上时作为用于音频换能器的基础座。在背板518的中心中的是可以用螺纹敲击的孔,以使换能器能够经由螺钉牢固地附接到安装框架。螺纹孔的直径通常可以为4毫米至6毫米。
图5B是更好地示出了图5A中所示的音频换能器的一些操作部件的剖视图。在该图中,面板100被示出为附接到耦合环200。耦合环接收并保持在线圈架208的其上放置有多个铜导体绕组210、211的适当位置中。在该实施例中,极片520、前板514和环磁体516限定用于音频换能器的圆形气隙。在该图示的实施例中,极片520包括铜屏蔽件525,铜屏蔽525被粘合地安装到极片520的外表面并且围绕极片520的外表面。随着时变驱动电流被施加到线圈架208,由铜导体绕组210、211构成的音圈将产生时变磁场。在这方面,驱动电流流过的音圈将从电路的角度来看是展现出低通滤波器响应特性的电感器。铜屏蔽件被施加到极片520作为介质,其可以容易地支持将形成将具有与来自音圈的时变磁场相反的电效应的“电流屏蔽件”的感应出的涡流,由此音圈的电感特性将被减少。在减少音圈的电感时,包括这种换能器的面板将能够在更宽的信号频带上工作。为了在本实施例中使用而定义的音频换能器不需要限于使用圆形气隙,并且实现类似性能目标的替代性设计可以由本领域普通技术人员容易地设计和实现。然而,音频换能器的改进的机械稳定性最优选地使用圆形气隙来实现。背板518完成磁路,并且是供环磁体516和极片520放置在其上的座。相对于图5A对蜘蛛支撑环512和蜘蛛悬挂元件510进行描述。
图5C是实施例中的音频换能器的右半部分的轴对称视图。在本实施例中,极片520的右半部被示出为与放置在极片520的外表面上的铜屏蔽件525一同位于背板518的右半部的顶部。前板514的右半部和环磁铁516的最右部被示出为放置在背板518的顶部。由这种结构产生的气隙示出在这种结构的上部之间、在极片520与前板514之间、以及在极片520和环形磁体516之间的下部之间。线圈架上的多个铜导体绕组将被插入该气隙中。
图5D是实施例中在分布式扬声器中所使用的音频换能器的气隙中的线圈组件的局部剖视图。在该实施例中,气隙的上部建立在铜屏蔽件525和前板514之间。气隙的下部建立在环磁体516与极片520之间。具有多个铜导体绕组的线圈架208在空气间隙中插入在铜屏蔽件525与前板514之间,并且这种气隙具有多个限定的空间尺寸。气隙的空间尺寸是重要的,并且在优选实施例中由三个不同的区域构成。第一区域A1是铜屏蔽件525的外壁与内部音圈211的内径之间的距离,并且该区域提供安全余量以解决线圈组件300在音频换能器的高功率操作期间的潜在摇摆运动。在高功率操作期间,由放大器驱动的音频换能器通常会经历这种高功率操作的显着的热应力和机械应力。在这种高功率操作期间,音圈可能经历显着的轴向位移,并且通常伴随这些轴向位移的是非轴向位移,其可以表现为摇摆运动。这种摇摆运动可以将线圈架和附接的音圈的定位移动或移位到气隙中。音圈和磁场之间的正确对准对换能器的有效和安全运行至关重要。此外,由于在低频操作期间在高功率下产生较强的轴向偏移,因此对换能器施加显着的机械应力,从而使物理损坏的风险更加复杂。当线圈组件300通过驱动信号轴向向前和向后移动时,其可以在线圈架208在Z方向(即垂直于振动板表面的方向)上驱动面板时在X方向或Y方向上经历非轴向物理位移或偏移。如这里所使用的,术语“X方向”是指在面板100的平面中的水平方向上的位移。术语“Y方向”是指在面板100的平面中的垂直方向上的位移。这种位移的风险在扩音系统(即为将声音传送到需要高电力输入功率的大区域而产生的系统)的高功率操作期间特别严重。第二区域A2在端到端的基础上(即从内表面上的绕组的外边缘到外表面的绕组的外边缘)限定线圈架208的厚度和音圈的经附接的铜导体绕组210、211。第三区域A3限定提供适当的安全余量的、音圈的外表面(不包括线圈架208的外表面上的单层铜导体绕组的直径)与前板514的侧壁之间的距离。在一个优选实施例中,从100Wrms输入提供有0.48毫米的线圈和前者的厚度(即,区域A2的厚度)的详细设计研究中确定了,区域A1和区域A3中的每个的适当的距离分别为0.41毫米和0.46mm。对于外部间隙(区域A3)作出稍微更大的余量以允许音圈在高输入功率下的热膨胀。对于这种换能器设计领域的技术人员来说,已知的良好做法是允许在外部间隙中额外的0.05mm来解决这种热膨胀,并且在该实施例中使用这种尺寸。
图5E是在分布式扬声器的实施例中所使用的音频换能器的第二剖视图。在本实施例中,示出了换能器的全剖视图,并且包括极片520,前板514、环磁体516、铜屏蔽件525和基板518。前板514与铜屏蔽件525之间以及环磁体516与铜屏蔽件525之间的气隙示出为换能器的上部上的窄气隙,并且在环磁体516与520之间为较宽气隙。在组装换能器期间,仔细地控制部件的构造高度,以在与由环磁体516生成的磁流场的方向垂直的方向上确保平衡静止的音圈201、211的铜导体绕组垂直地居中在气隙的上部上。图5F中示出了这种结构的立体图,并且图5G中示出了作为全圆形区域的气隙的展开图。在所示实施例中,音频换能器的优选尺寸如下:
Figure BDA0001356936770000131
图5H是在分布式扬声器中所使用的音频换能器的实施例中存在的静态磁场的剖视图。如图所示,线圈架208被放置在前板514与铜屏蔽件525之间的气隙中,以使得安装在线圈架208上的多个铜导线绕组布置在这两个结构元件之间。环磁体516产生流过限定在前板514与极片520之间的环形气隙的磁场(静态磁场铜从空气看起来是模糊的)。环磁体516为永磁体,其通过前板、极片和背板形成用于产生横跨气隙产生静磁场的磁路。电信号(即,时变电压)施加在换能器的端子处,并且时变电流流过围绕与气隙中的磁场交互的前者208(即,音圈)缠绕的多个铜导体绕组,以使得时变电动势经由前者208和耦合器(未示出)施加到将以期望的音频振动面板100(未示出)的音圈。环磁体可以由各种材料组成,尽管几种已对于分布式模式扬声器中的应用显示出有利的特性。在本实施例中,由NdFeB(钕铁硼钕)构成的环磁体是用于这种类型的应用的环磁体516中的最优选类型的磁性材料。这种类型的磁体被称为“新磁体(neo magnet)”,并且这种类型的磁体的优选等级是N42-H或N40-H。-H将这种类型的磁体识别为高温性能磁体(即可以提供高达120摄氏度的永磁性能的磁体)。更通常地,在所示实施例中使用的可接受的磁体存储从N30到N50的能量密度等级并且可接受的温度等级包括-H、-SH(即,高达150摄氏度的永磁性能)和-UH(即,高达180摄氏度的永磁性能)。在本实施例中也可以有效地使用具有基本磁存储能量密度等级(即,N30、N40或N50)、而没有温度等级的磁体。可选地,铁氧体磁体可被适用,尽管其能量密度将小得多,并且磁体的尺寸将需要大得多。钕型磁体提供任何磁体类型的最高能量密度,并且通常在空间是主要约束的情况下使用,例如在分布式扬声器中所使用的类型的电动音频换能器中。在所示的实施例中,磁场流过形成在前板514与极片520之间的气隙中的音圈,并且根据可被控制且用于在从20赫兹到30千赫兹之间的频率范围内振动分布式扬声器的面板100的、被称为洛伦兹力的众所周知的原理与时变电流交互,其包括从100赫兹开始到从6千赫兹到20千赫兹的变化的高范围的优选操作范围。在这种电动机结构的优选实施例中,力因子(通常也称为BL)为9.5特斯拉米(或牛顿/安培)。
图6A是示出在分布式扬声器的实施例中的线圈组件相对于频率的位移的图表。在这种图600中,第一区域602提供为其中产生最大位移的操作频率发生在分布式扬声器中的音频换能器中。阴影区域表示当分布式扬声器的面板以主要为活塞方式振动时,在较低频率操作期间发生最高位移的区域。第二区域604表示较高频率操作的区域,并且相应地表示在音频换能器中线圈架的物理位移显着更小的区域。高频操作与低频操作之间的区别是重要的,因为扬声器,特别是分布式扬声器在高功率、低频操作期间容易受到音圈的显着偏轴位移。这在许多扬声器中可能是一个问题,但是当需要高功率音频传输时,用于扩声的扬声器中是一个特别重要的问题。
图6B是实施例中在分布式扬声器中所使用的音频换能器的气隙中的线圈组件的轴对称视图。在所示的实施例中,气隙示出在前板514与铜屏蔽件525之间,其包括具有位于内表面211和外表面210上的铜导体绕组的线圈架208。前板514被放置在环磁体516上,并且环磁体516、铜屏蔽525和极片520都位于背板518的顶部。这种所示的结构布置足以强大的电动机效率,因为音圈垂直于从环磁体516发出的现存磁场。在操作中,因为这样的扬声器由强制显着的轴向位移的高功率驱动信号驱动,特别是当它们用于扩声系统时,产生非轴向物理位移的风险。如果线圈组件300与铜屏蔽件525或前板514中的任一个或两者接触,则线圈组件300的这种非轴向位移(如图6C所示)可能对内部和/或外部铜绕组造成物理损坏。在图6C中所示的位移的线圈组件的不对称视图中可以看出,增加气隙的宽度(铜屏蔽件与前板之间的间隔)将减少形成由非轴向(摇摆)运动引起的气隙的金属件与线圈组件300之间潜在的损坏接触的可能性。然而,这种气隙的宽度强烈地影响气隙中静态磁场的强度,使得较大的间隙增加磁路所经历的有效阻抗,从而降低在电路中流动的磁场的强度。相反,较小的气隙减小了磁路所经历的有效阻抗,从而增加了在电路中流动的磁场的强度。通过减小线圈组件300的非轴向(摇动)运动的幅度,气隙的宽度可以被最小化,并且将导致流过音圈的铜导体绕组的磁场的强度中的增加,从而提高换能器的效率。
图6D是实施例中线圈组件的简化视图。线圈组件包括线圈架208和音圈210。该图中所示的线圈架208提供有音圈210,音圈210包括位于线圈架208的外表面上的多个铜导体绕组。第二多个铜导体绕组存在于未在该图中示出的线圈架208的内表面上。在该简化视图中,线圈架208的垂直距离被示出为21毫米,并且宽度被示为32毫米。当执行显着的高功率操作时,可能发生音圈的显着的非轴向物理位移(即,具有在X方向和/或Y方向上的分量的位移)。第二图示出了在换能器操作期间发生非轴向物理位移时可能发生的情况。在两个图中,未示出轴向位移。随着面板中的一组换能器被驱动,特别是在低频主要是活塞状态下,一系列力矩产生为如果换能器未被放置在面板上的最佳位置,则会产生面板旋转。如果力矩没有偏移,则导致的面板旋转将导致音圈发生非轴向位移,这可能导致损坏并最终导致音圈失效。如此处所示,存在着示出为“X-偏移”的X轴方向上的位移和示出为如Z-偏移位移的垂直方向上相应的偏移。通过测量围绕线圈架208的上部的周边的Z-偏移位移的最大值和最小值,其中线圈架208附接到耦合环200并且通过使用先前知道的线圈架208的直径和高度来确定X-偏移位移。
图7A示出了在一个实施例中在分布式扬声器的面板的内表面上的对称放置的换能器。四个音频换能器的位置示出为对称布置布局,用于在期望的工作频率范围内驱动面板100。尽管这里描述的实施例是指包括四个音频换能器的配置,但是本公开同样适用于在具有少至三个音频换能器或多于四个换能器的系统中产生的力的最小化和减少。在所示实施例中,面板700包括第一位置702处的第一音频换能器、第二位置704处的第二音频换能器、第三位置706处的第三音频换能器和第四位置708处的第四音频换能器。在确定换能器放置时,应用了分布式扬声器设计的几个规则。规则中的一个为选择用于确保辐射面板的均匀分布的模态激励的驱动激励器(即换能器)放置。
图7B是在实施例中具有施加的驱动力的面板的概念图。在该概念图中,面板100及其中心点(由虚线标记)是假想放置的换能器的两个位置。将两个换能器中的每个的该二维图中的中心点的距离表示为X1和X2。在每个换能器的位置处施加到面板上的驱动力由标记为F1和F2的箭头描绘。相对于面板的中心点,每个换能器生成力矩,其将随着驱动功率的增加而倾向于引起其线圈架的不期望的非轴向位移。位移是在高功率操作期间作用在面板上的组合机械力的副产物,特别是在低频操作期间。作用在面板上的力矩可以通过以下关系来分析描述:力矩=力X距离。在实践中,每个换能器产生力矩,其是作用在特定距离处的力。在相同施加的力的对称放置布置中由每个换能器产生的力矩应该总计为零,并因此没有明显的效果。虽然换能器的对称放置对于在主要活塞振动范围内的低频操作期间驱动分布式扬声器通常是最佳的,但是如果必须从面板产生最佳分布的多个谐振模式,通常不优选对称放置。通过使用图中所示的图形分析,力矩的分析和对在宽频谱上产生谐振辐射模式的需求的理解揭示出,换能器的不对称放置可以产生期望的模态分布结果,同时仍然实现与换能器以对称方式对准的面板相同的低频操作。
图7C示出了实施例中分布式扬声器的面板100上的换能器的非对称布局。换能器在X方向和Y方向上以与其中心不同的距离放置在面板100的内表面上。面板的中心是原点,对于原点的左侧的所有水平距离和原点下方的所有垂直距离均以负数表示。第一换能器712相对于面板的中心处于水平距离X1和垂直距离Y1。第二换能器714相对于面板的中心处于水平距离X2和垂直距离Y2。第三换能器716被放置在距离面板中心的水平距离X3和垂直距离Y3。第四换能器718相对于面板的中心处于水平距离X4和垂直距离Y4。以下数字为负数:X1、Y4、X4和Y3,并且其余数字为正数。力分析视角的最终结果仍然是产生一个零力矩系统,现在这是高效分布式扬声器设计的附加标准。在这方面,分布式扬声器设计要满足的主要设计要求如下:
Figure BDA0001356936770000171
图7D是实施例中用于具有不对称布置模式的换能器的分布式扬声器的面板100的视图。该非对称模式更加符合上面所示的设计规则,并且更好地解决了对于考虑由四个换能器722、724、726、728中的每个产生的相对力矩的需求。除了被放置在非对称布置模式中之外,换能器位置现在紧密地聚集。
在其设计中,分布式扬声器的面板具有来自一个或多个换能器的激励被应用的有限的程度。这些激励从每个换能器产生径向向外行进的弯曲波(也称为弯折波)。对于所产生的每个入射波,反射波从面板的有限范围的侧面的入射波的反射产生。面板和换能器位置的几何形状在这个封闭的环境中共同产生驻波模式。入射波和反射波之间的建构性干涉和相消干涉导致驻波模式,驻波模式产生称为“反节点”的高平面外振动的位置和称为“节点”的无平面外振动的位置。节点可以被定义为允许绕其旋转的线,但是没有平面外的振动被允许。在二维系统中,节点共同形成“节点线”,它们是无平面外振动的线。实质上,这些是面板中的高阻抗线,其中来自轴向换能器激励的能量输入不是有利的。在图8A中所示的波形802中,其示出了用于分布式扬声器的面板的谐振振动模式的速度节点,两个节点已经指示为802a和802b,其表示在相消干涉的波上没有平面外振动的点。更多数量的波长在波形804中示出,其中示出了更多的建构性干涉点(即,反节点)和相消干涉点(即,节点)。所示的节点804a、804b、804c、804d在破坏性干涉的点处被创建。在二维环境中,这些节点将是“节点线”或存在着无平面外振动的位置。
图8B是实施例中在分布式扬声器中所使用的面板的谐振振动模式的速度节点线的视图。在所示实施例中,第一十个速度节点线示出为覆盖大约2.5个八度的频率带宽。在该频率范围上,激励器不直接位于任何速度节点线上,这是先前讨论的高效分布式扬声器设计的要求之一。然而,即使紧密聚集并远离速度节点线,音频换能器在分布式扬声器的面板上的最佳放置也不足以实现稳定的系统,其可以显着减少由于音频换能器的高功率操作而引起的机械应力而产生的物理受损。存在要求着在面板的主要活塞操作期间产生的力矩被最小化的附加要求。这是通过在X方向和Y方向上选择换能器位置来满足的要求,而其位置坐标统一地平均到面板的中心处的原点。这种要求总结为以下设计约束:
Figure BDA0001356936770000181
而且,更一般来说,这些约束可以用一般的形式表达如下:
Figure BDA0001356936770000182
其中Fn表示来自换能器n(其中四个换能器实施例中的n为1到4)的施加力,并且Xn是广义坐标。
图8C是示出实施例中分布式扬声器的两个特性的复合图。所示的第一特征是距分布式扬声器的面板表面一定距离处的声压级。第二个特征是分布式扬声器面板中的模态分布与频率的关系。声压级响应曲线822示出为其指示当用高度对称构造并且使用音频换能器的高度对称的放置驱动时,分布式扬声器的面板距表面一定距离处的声压级。在该配置中,谐振模式被聚集在一起,并且不均匀地分布在分布式扬声器的面板的目标频率带宽上。这六个谐振模式832、834、828、830、824、826被观察为三个不同的集群(832、834)、(828、830)、(824、826)。SPL响应曲线822代表在分布式扬声器的面板距离高的结构和换能器位置对称的情况下的声压级响应。重要的是区分通常在“远场”中测量声压级,其为从面板的至少三倍于面板最长尺寸到无穷远的点开始的距离,其中对于面板的投影的声音可以被更准确地测量。在所示的示例中,谐振模式的聚类通常被认为不是“平滑”的,并且扬声器将对人耳有效地似乎有令人不愉快的探测频率响应。
图8D示出了使用音频换能器的不对称几何形状和放置构造的分布式扬声器的谐振模式和声压级。在这种放置配置中,面板模式现在在工作频率范围内更均匀地分布,因此,SPL响应842似乎是“平滑的”,并且人类接收者将被认为是更舒适的探测频率响应。如该图所示,SPL响应似乎更均匀地分布,并且由更均匀分布的辐射谐振模式844、846、848、850、851、852产生。注意,在图8C和图8D中,在目标带宽上的总模式数是相同的(在这个例子中为六个),但是这些模式在图8D中的分布被更均匀地间隔开。
图9A是示出音频换能器中的线圈组件相对于在分布式扬声器的实施例中所使用的振动频率的轴向冲程的图表。如该图中所示,分布式扬声器中的音频换能器可以在宽频率范围上工作,该频率范围通常被分为主要是活塞振动范围和主要模态振动范围。主要的活塞振动范围对应于在该示例中低于200赫兹的较低频率操作。模态振动范围属于大于200赫兹的操作频率,该范围通常被认为是“中至高频”操作范围。轴向冲程是线圈架在与分布式扬声器上使用的面板平面垂直的方向上的物理位移的度量。在纵轴上以米为单位测量轴向冲程(即,0.0004为0.4毫米等)。该图上示出的曲线902示出了基于对于输入驱动信号功率使用1瓦特,线圈架的轴向冲程如何在工作频率范围内变化。在运行频率的一些级别上,将会有一些程度的冲程;然而,对于较高频率的操作,线圈组件经历显着小于较低频率范围的轴向冲程的较低的幅度。在较低的频率范围内,线圈组件的轴向冲程较高(即,物理运动)。
图9B是示出实施例中线圈组件相对于音频换能器的操作频率的最大非轴向位移的图表。在该示例中使用的输入功率为100瓦特,而这代表通常用于扬声器扩声系统的高功率操作。根据现有技术的教导,用常规设计构建的扬声器具有如第一曲线905所示的显著高的非轴向位移。第二曲线907示出了利用本文所述的稳定结构和方法设计的面板中的音频换能器的非轴向位移。这个优点是显着的,并且通过实现具有由每个换能器产生的力矩的显着减小或净消除的设计来实现。这种减小或净消除通过将每个换能器放置在相对于面板中心的X方向和Y方向上的适当位置坐标处的不对称图案中来实现,以使得作用在每个换能器上的力矩被共同偏移。通过这种方式,面板仍然可以在低频活塞振动范围内被驱动,并且实现对于对称换能器布局的性能,同时保持对跨越目标带宽的均匀和平滑分布的期望的不对称性。在该曲线图中特别值得注意的是在低于大约300赫兹的非轴向位移中第一曲线905与第二曲线907之间的实质差异。在这一点下面,与分布式模式扬声器中所使用的传统现有技术设计的换能器相比,与设计优化的换能器相比,在非轴向位移中的幅度将比其大50%。这种差异是巨大的,并且用于产生具有较窄气隙的更有效的换能器,其进而产生放置在用于分布式扬声器的面板中所使用的换能器中的前板与极片之间的音圈(即,铜导体绕组)上的更有效的磁耦合。
图10是实施例中在分布式扬声器中所使用的安装框架的等距视图。安装框架1000包括围绕在该实施例中保持四个不同的音频换能器的中心板1004组装的一系列支撑结构。该中心板中所示的空间位置对应于分布式扬声器的面板的内表面上的换能器的不对称放置。在所示实施例中,中心板1004包括四个不同的空间区域1006、1008、1010、1012,每个区域旨在接收四个不同的换能器之一。这种整个结构保持在支撑框架1002内,然后在将四个音频换能器放置在安装框架上的相应位置并粘附到面板的内表面之后固定到面板。
虽然这里已经示出并描述了具体实施例,但是本领域普通技术人员将会理解,在不脱离本发明的范围的情况下,各种替代的和/或等效的实现可以代替所示且所描述的具体实施例。本申请旨在涵盖本文讨论的实施例的任何这样的修改或变化。

Claims (19)

1.音频换能器稳定方法,所述方法包括以下步骤:
响应于接收自三个或更多个音频换能器的多个力输入,提供传输音频声波的声音生成面板;
提供用于耦合到所述声音生成面板的安装框架,所述安装框架具有用于接收音频换能器的三个或更多个预定位置;
将所述三个或更多个音频换能器放置在所述预定位置中以当使用输入驱动信号驱动所述音频换能器时消除由所述多个力输入生成的多个力矩,从而在目标操作频率范围上减少所述三个或更多个音频换能器中的每一个的线圈架的非轴向位移,同时维持足够的模态密度以确保来自所述声音生成面板的频率响应是平滑的;
将放置在所述安装框架上的所述预定位置中的所述音频换能器中的每个上的耦合器环连接到所述声音生成面板的外表面;以及
使用来自音频放大器的所述输入驱动信号驱动所述音频换能器中的每个,
其中,将所述音频换能器放置在所述预定位置中的步骤包括:相对于所述声音生成面板的中心点将所述音频换能器放置在不对称放置布置中。
2.根据权利要求1所述的方法,其中,通过将所述音频换能器放置在所述不对称放置布置中,将所述多个力矩之和减小到大约零。
3.根据权利要求1所述的方法,其中,所述输入驱动信号具有至少100Wrms的输入电功率。
4.根据权利要求1所述的方法,其中,所述三个或更多个音频换能器中的每个包括极片、前板和线圈架,所述线圈架具有连接在其上的音圈,所述极片和所述前板限定供所述音圈被放置的圆形气隙。
5.根据权利要求1所述的方法,其中,所述声音生成面板产生在20赫兹至30千赫兹的频率范围内的声波。
6.根据权利要求1所述的方法,其中,所述声音生成面板的宽度为577毫米,高度为400毫米,并且厚度为3.8毫米。
7.根据权利要求1所述的方法,其中,所述声音生成面板被提供作为扩声系统的一部分。
8.用于分布式扬声器的机械稳定的系统,所述系统包括:
声音生成面板,用于具有第一表层和第二表层的分布式扬声器,所述第一表层和第二表层各自具有用于传输音频声波的外表面;
至少三个音频换能器,耦合到所述第二表层的外表面,所述音频换能器生成用于传输来自所述第一表层和所述第二表层的每个外表面的音频声波的多个力输入;
音频放大器,电耦合到所述音频换能器中的每个,所述音频放大器可操作为使用输入驱动信号来驱动所述音频换能器中的每个;以及
安装框架,耦合到所述声音生成面板,所述安装框架具有至少三个预定位置,所述至少三个预定位置用于接收所述至少三个音频换能器以当使用所述输入驱动信号驱动所述音频换能器时消除由所述多个力输入生成的多个力矩,从而在目标操作频率范围上减少所述三个或更多个音频换能器中的每一个的线圈架的非轴向位移,同时维持足够的模态密度以确保来自所述声音生成面板的频率响应是平滑的,
其中,所述预定位置包括相对于所述声音生成面板的中心点的不对称放置布置。
9.根据权利要求8所述的系统,其中,所述声音生成面板的宽度为577毫米,所述声音生成面板的高度为400毫米,并且所述声音生成面板的厚度为3.8毫米。
10.根据权利要求8所述的系统,其中,所述第一表层和所述第二表层中的每个的厚度为0.1毫米至0.25毫米。
11.根据权利要求8所述的系统,其中,所述声音生成面板还包括:芯层,所述芯层的厚度为0.1毫米至10毫米。
12.根据权利要求8所述的系统,其中,所述第一表层和所述第二表层各自包括选自由掺杂纸、碳和玻璃纤维组成的组中的材料。
13.根据权利要求8所述的系统,其中,所述至少三个音频换能器中的每个包括:
音圈组件,所述音圈组件包括线圈架和音圈,所述音圈粘合地安装在所述线圈架上;
蜘蛛悬挂元件,所述蜘蛛悬挂元件粘合地安装在所述线圈架上;
前板,所述前板安装在环磁体上;以及
极片,所述极片和所述环磁体安装在背板上,所述音圈组件定位在形成于所述极片与所述前板之间的圆形气隙中并且与粘合地安装的蜘蛛悬挂元件一同保持在圆形气隙中的适当位置中。
14.根据权利要求13所述的系统,其中,所述环磁体由钕铁硼构成,并且所述环磁体的磁体类型为N42-H和N40-H中的至少一种。
15.根据权利要求13所述的系统,其中,所述环磁体由具有N30至N50的储能密度等级和-H、-SH和-UH中的至少一个温度等级的钕铁硼构成。
16.根据权利要求13所述的系统,其中,所述环磁体由具有N30至N50的储能密度等级的钕铁硼构成。
17.根据权利要求8所述的系统,其中,所述音频声波具有在20赫兹到30千赫兹范围内的传输频率。
18.根据权利要求8所述的系统,其中,所述输入驱动信号具有至少100Wrms的输入电功率。
19.根据权利要求8所述的系统,其中,当所述多个力矩之和为大约零时,实现从所述不对称放置布置中的所述音频换能器的所述多个力输入生成的减少的多个力矩。
CN201680006755.XA 2015-01-23 2016-01-08 音频换能器稳定系统和方法 Active CN107409257B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/604,580 US9660596B2 (en) 2015-01-23 2015-01-23 Audio transducer stabilization system and method
US14/604,580 2015-01-23
PCT/US2016/012701 WO2016118341A1 (en) 2015-01-23 2016-01-08 Audio transducer stabilization system and method

Publications (2)

Publication Number Publication Date
CN107409257A CN107409257A (zh) 2017-11-28
CN107409257B true CN107409257B (zh) 2020-01-24

Family

ID=56417587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680006755.XA Active CN107409257B (zh) 2015-01-23 2016-01-08 音频换能器稳定系统和方法

Country Status (9)

Country Link
US (1) US9660596B2 (zh)
EP (1) EP3248390B1 (zh)
JP (1) JP2018506909A (zh)
KR (1) KR102486686B1 (zh)
CN (1) CN107409257B (zh)
CA (1) CA2973386C (zh)
HK (1) HK1245551A1 (zh)
PH (1) PH12017501305A1 (zh)
WO (1) WO2016118341A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10133314B2 (en) 2014-05-26 2018-11-20 Apple Inc. Portable computing system
US10228721B2 (en) 2014-05-26 2019-03-12 Apple Inc. Portable computing system
CN207586791U (zh) 2014-09-30 2018-07-06 苹果公司 便携式计算系统
US9955570B2 (en) 2015-01-09 2018-04-24 Apple Inc. Features of a flexible connector in a portable computing device
US10162390B2 (en) * 2015-01-16 2018-12-25 Apple Inc. Hybrid acoustic EMI foam for use in a personal computer
US10555085B2 (en) * 2017-06-16 2020-02-04 Apple Inc. High aspect ratio moving coil transducer
US11678122B2 (en) 2017-10-23 2023-06-13 Hugh Brogan Speaker
CN108495243A (zh) * 2018-04-17 2018-09-04 青岛海信电器股份有限公司 一种扬声器和终端设备
US10674270B2 (en) 2018-10-24 2020-06-02 Google Llc Magnetic distributed mode actuators and distributed mode loudspeakers having the same
EP3668112A3 (en) 2018-12-10 2020-07-29 Ask Industries Societa' per Azioni Acoustic panel assembly with suspension system
JP7281666B2 (ja) * 2019-03-26 2023-05-26 パナソニックIpマネジメント株式会社 スピーカ装置
CN110113696B (zh) * 2019-04-23 2020-10-09 歌尔股份有限公司 振动发声装置以及电子产品
GB2586959B (en) * 2019-08-08 2021-10-13 Amina Tech Limited Distributed mode loudspeaker
RU2743892C1 (ru) * 2020-06-16 2021-03-01 Сотис АГ Плоский громкоговоритель
CN111862818B (zh) 2020-07-31 2022-11-25 京东方科技集团股份有限公司 显示模组、显示装置及制备方法
WO2023108466A1 (en) * 2021-12-15 2023-06-22 Sonos, Inc. Suspension elements for playback devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1287766A (zh) * 1998-01-20 2001-03-14 新型转换器有限公司 具有板元件的主动式声音装置
JP2002027588A (ja) * 2000-07-07 2002-01-25 Cyas:Kk パネル型スピーカシステム
WO2006078247A1 (en) * 2005-01-21 2006-07-27 Brookstone Purchasing, Inc. Speaker having a transparent panel
CN100551133C (zh) * 2001-03-23 2009-10-14 新型转换器有限公司 弯曲波声音辐射器

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3509290A (en) * 1966-05-03 1970-04-28 Nippon Musical Instruments Mfg Flat-plate type loudspeaker with frame mounted drivers
JPS4826533B1 (zh) * 1968-10-15 1973-08-11
JPS57138299A (en) * 1981-02-19 1982-08-26 Matsushita Electric Ind Co Ltd Electrodynamic speaker
JPS59112799A (ja) * 1982-12-18 1984-06-29 Matsushita Electric Ind Co Ltd スピ−カ
UA51671C2 (uk) * 1995-09-02 2002-12-16 Нью Транзд'Юсез Лімітед Акустичний пристрій
US6278787B1 (en) * 1996-09-03 2001-08-21 New Transducers Limited Loudspeakers
US6522760B2 (en) * 1996-09-03 2003-02-18 New Transducers Limited Active acoustic devices
PL334440A1 (en) * 1997-01-09 2000-02-28 New Transducers Ltd Loudspeaker
GB9818719D0 (en) * 1998-08-28 1998-10-21 New Transducers Ltd Vubration exciter
GB0007025D0 (en) * 2000-03-23 2000-05-10 New Transducers Ltd Loudspeakers
EP1170977A1 (en) * 2000-07-04 2002-01-09 Tai-Yan Kam Laminated composite panel-form loudspeaker
US7120263B2 (en) * 2001-03-23 2006-10-10 New Transducers Limited Bending wave acoustic radiator
US7447322B2 (en) * 2004-01-13 2008-11-04 Brookstone Purchasing, Inc. Speaker having a transparent panel
KR100633064B1 (ko) * 2004-10-28 2006-10-11 삼성전자주식회사 평판 음향 출력장치 및 영상/음향 출력장치
GB0601076D0 (en) * 2006-01-19 2006-03-01 New Transducers Ltd Acoustic device and method of making acoustic device
US8031901B2 (en) 2006-09-14 2011-10-04 Bohlender Graebener Corporation Planar speaker driver
JP4877964B2 (ja) * 2006-10-27 2012-02-15 フォスター電機株式会社 平面振動板スピーカ
JP2008219202A (ja) * 2007-02-28 2008-09-18 National Institute Of Information & Communication Technology 音響振動再生装置
US9148716B2 (en) 2012-01-12 2015-09-29 Aac Acoustic Technologies (Shenzhen) Co., Ltd. Vibration speaker
JP5363625B1 (ja) * 2012-07-17 2013-12-11 義和 江口 スピーカーユニット
US8897469B2 (en) * 2013-03-12 2014-11-25 Abatech Electronics Co., Ltd. Slim speaker structure having vibration effect
US9648424B2 (en) * 2013-05-08 2017-05-09 Goertek Inc. Tablet woofer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1287766A (zh) * 1998-01-20 2001-03-14 新型转换器有限公司 具有板元件的主动式声音装置
JP2002027588A (ja) * 2000-07-07 2002-01-25 Cyas:Kk パネル型スピーカシステム
CN100551133C (zh) * 2001-03-23 2009-10-14 新型转换器有限公司 弯曲波声音辐射器
WO2006078247A1 (en) * 2005-01-21 2006-07-27 Brookstone Purchasing, Inc. Speaker having a transparent panel

Also Published As

Publication number Publication date
WO2016118341A1 (en) 2016-07-28
US20160219353A1 (en) 2016-07-28
CN107409257A (zh) 2017-11-28
JP2018506909A (ja) 2018-03-08
CA2973386C (en) 2020-10-13
EP3248390A4 (en) 2018-09-05
KR20170106436A (ko) 2017-09-20
PH12017501305A1 (en) 2018-02-05
EP3248390A1 (en) 2017-11-29
EP3248390B1 (en) 2022-08-10
HK1245551A1 (zh) 2018-08-24
KR102486686B1 (ko) 2023-01-09
US9660596B2 (en) 2017-05-23
CA2973386A1 (en) 2016-07-28

Similar Documents

Publication Publication Date Title
CN107409257B (zh) 音频换能器稳定系统和方法
EP1472903B1 (en) Transducer motor/generator assembly
US8249291B2 (en) Extended multiple gap motors for electromagnetic transducers
JP6061105B2 (ja) 薄厚および高道程範囲を備えた電気機械−電気音響変換器ならびに関連する製造方法
US8014555B2 (en) Self-cooling electromagnetic transducer
CN110881160A (zh) 一种发声装置
US20150373458A1 (en) Moving coil drive unit and audio drivers incorporating the same
US20130301866A1 (en) Acoustic Device
US7333620B2 (en) Acoustic transducer with mechanical balancing
US7450729B2 (en) Low-profile transducer
JP2002507873A (ja) デュアルコイルデュアルギャップスピーカ駆動装置の短絡リング
JP5326180B2 (ja) スピーカー
KR20080095962A (ko) 왜율 방지 성능을 구비한 동 위상 저음 반전 방식의 출력구조를 갖는 전기음향변환 유닛
EP1178701A2 (en) Loudspeaker
Watkinson Transducer drive mechanisms
WO2023088072A1 (zh) 一种振膜及音响设备
JP4443075B2 (ja) スピーカの磁気回路
CN115243167A (zh) 一种扬声器
US20090016562A1 (en) Loudspeaker
JP2003169393A (ja) スピーカ
KR100745664B1 (ko) 스피커
CN102271301A (zh) 一种扬声器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant