CN107405321A - 短链脂肪酸在癌症预防中的应用 - Google Patents

短链脂肪酸在癌症预防中的应用 Download PDF

Info

Publication number
CN107405321A
CN107405321A CN201680017250.3A CN201680017250A CN107405321A CN 107405321 A CN107405321 A CN 107405321A CN 201680017250 A CN201680017250 A CN 201680017250A CN 107405321 A CN107405321 A CN 107405321A
Authority
CN
China
Prior art keywords
composition
acid
cancer
mouse
hbx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680017250.3A
Other languages
English (en)
Inventor
H·M·G·P·V·雷斯
M·A·斐特尔森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Temple University of Commonwealth System of Higher Education
Original Assignee
Temple University of Commonwealth System of Higher Education
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Temple University of Commonwealth System of Higher Education filed Critical Temple University of Commonwealth System of Higher Education
Priority to CN202210967776.5A priority Critical patent/CN115350171A/zh
Publication of CN107405321A publication Critical patent/CN107405321A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/194Carboxylic acids, e.g. valproic acid having two or more carboxyl groups, e.g. succinic, maleic or phthalic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/742Spore-forming bacteria, e.g. Bacillus coagulans, Bacillus subtilis, clostridium or Lactobacillus sporogenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/745Bifidobacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/747Lactobacilli, e.g. L. acidophilus or L. brevis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0095Drinks; Beverages; Syrups; Compositions for reconstitution thereof, e.g. powders or tablets to be dispersed in a glass of water; Veterinary drenches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Zoology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

本发明涉及用于预防或延缓肝细胞癌发病的组合物。本发明的组合物可以包含短链脂肪酸。本发明的组合物还可以包含益生菌。本发明的组合物包括用于通过治疗或预防肝脏炎症、肝病和癌前期病变来预防或延缓肝细胞癌发病的组合物。

Description

短链脂肪酸在癌症预防中的应用
相关申请的交叉引用
本申请要求2015年1月23日提交的编号为62/106,778的美国临时申请的优先权,其全部内容通过引用并入本文。
背景技术
肝细胞癌(HCC)是世界第五大流行癌症和癌症死亡的第二大原因(Ding J等,Cancer Lett,2014;346(1):17-23)。早期HCC通常无症状,可以采用治疗方法,并且在发现晚期疾病的时候,几乎没有治疗方案可用。未经治疗的HCC的5年存活率小于3%,即使应用多激酶抑制剂索拉非尼,预期寿命仅平均延长了3个月(Peck-Radosavljevic M,LiverCancer,2014;3(2):125-31)。使用索拉非尼加细胞毒性药物的联合治疗将寿命延长至诊断后将近一年。
HCC最常发生在持续性炎症(肝炎)的背景下,并且通常与慢性乙型和丙型肝炎病毒感染相关(Flores等,Clin Med Insights Oncol,2014;8:71-6)。对于乙型肝炎病毒(HBV),慢性肝病(CLD)到HCC发病机理的中心作用在相关的土拨鼠肝炎病毒(WHV)模型中较为显著(Menne S等,World J Gastroenterol,2007;13(1):104-24)。在这种情况下,慢性WHV感染和CLD导致了近100%的HCC发生率,而只有百分之几的急性解决感染的土拨鼠发展为这种肿瘤(Menne S等,World J Gastroenterol,2007;13(1):104-24)。同样,进行性慢性肝病(肝炎,纤维化,然后肝硬化)的病毒携带者处于患有HCC的高风险之中,而无症状携带者风险低得多(Beasley等,Lancet,1981;2(8256):1129-33)。HBV和相关的哺乳动物肝炎病毒(包括WHV)对称为X抗原的小多肽进行编码,其对HCC的发病机理起重要作用(FeitelsonMA等,Amer J Pathol,1997;150:1141-1157)。HBV编码的X抗原或HBx是通过持续激活细胞质中的信号通路并结合调节细胞核中基因转录的复合物来改变宿主基因表达模式的反式调节蛋白(trans-regulatory protein)(Tian Y等,Mol Cell Biol,2013;33(15):2810-6;Feitelson MA等,Amer J Pathol,1997;150:1141-1157)。HBx基因的整合发生在大多数染色体中,并且这种整合事件随着每一次肝炎和再生而积累,导致HBx在细胞内的积累增加(Xu C等,Cancer Lett,2014;345(2):216-22;Wang W等,Hepatology,1998;14:29-37;WangW等,Cancer Res,1991;51:4971-4977)。面对目的在于破坏和杀死病毒感染的细胞的细胞介导的免疫应答,,HBx促进细胞存活和生长。因此,HBx与CLD之间存在密切联系(Jin YM等,J Viral Hepat,2001;8(5):322-30)。在这种情况下,HBx似乎被针对病毒感染的肝细胞的免疫应答产生的自由基(Wang JH等,Biochem Biophys Res Commun,2003;310(1):32-9)激活,表明如果免疫介导HCC的发病机理可能受到调节,疾病也可能发生。
已知不同菌株的益生菌可以轻度地促进或抑制肠内的免疫应答。事实上,选定的益生菌菌株将复合碳水化合物代谢成短链脂肪酸(SCFAs),其容易通过肠壁吸收并激活调节性T细胞。最近的研究表明,SCFAs改善了小鼠结肠炎模型中的炎症(Smith PM等,Science,2013;341(6145):569-73)。这可能是由于SCFAs特别是丁酸盐可能通过抑制组蛋白脱乙酰基酶活性(HDACi)来改变靶细胞中基因表达的模式(Tan J等,Adv Immunol,2014;121:91-119)。HBx已被证明可以激活HDAC活性(Yoo等,Oncogene,2008;27:3405-13),表明将这些细菌产生的选定的益生菌或SCFAs施用于发展HCC的HBx转基因小鼠可以提供简单和新颖的方式以部分阻断HBx促进肿瘤发展的能力。
本领域需要有效的治疗以预防或延缓肝脏炎症进展为肝细胞癌。本发明解决了这一需要。
发明内容
本发明提供一种预防或延缓受试者肝细胞癌发病的方法。在一个实施例中,该方法包括向受试者施用包含至少一种短链脂肪酸的治疗有效量的组合物。
在一个实施例中,短链脂肪酸选自:甲酸,乙酸,丙酸,异丁酸,丁酸,异戊酸,戊酸,异己酸,己酸,乳酸,琥珀酸和丙酮酸。
在一个实施例中,组合物还包含药学上可接受的赋形剂。
在一个实施例中,组合物与另一治疗剂组合施用。
在一个实施例中,组合物经口施用。
在一个实施例中,组合物与食物或饮料一起施用。
本发明还提供一种预防或延缓受试者肝细胞癌发病的方法。在一个实施例中,该方法包括向受试者施用包含至少一种益生菌的治疗有效量的组合物。
在一个实施例中,益生菌选自:植物乳杆菌、嗜酸乳杆菌、副干酪乳杆菌、肠系膜明串珠菌、保加利亚乳杆菌、乳酸乳杆菌(Lactobacillus sasei)、唾液乳杆菌、戊糖片球菌、嗜热链球菌、枯草芽孢杆菌、凝结芽孢杆菌、屎肠球菌、两歧双歧杆菌、乳酸双歧杆菌、长双歧杆菌和婴儿双歧杆菌。
在一个实施例中,组合物还包含药学上可接受的赋形剂。
在一个实施例中,赋形剂包含至少一种益生元。
在一个实施例中,组合物与另一治疗剂组合施用。
在一个实施例中,组合物经口施用。
在一个实施例中,组合物与食物或饮料一起施用。
本发明还提供了用于预防或延缓受试者肝细胞癌发病的试剂盒。在一个实施例中,试剂盒含有包含至少一种短链脂肪酸的组合物。
本发明还提供了用于预防或延缓受试者肝细胞癌发病的试剂盒。在一个实施例中,试剂盒含有包含至少一种益生菌的组合物。
附图说明
当结合附图阅读时,将更好地理解以下对本发明的优选实施例的详细描述。为了说明本发明的目的,在附图中示出了目前优选的实施例。然而,应当理解,本发明不限于附图中所示实施例的精确的布置及手段。
图1A-1C描述了显示在指定年龄用Synbiotic 2000TM(Δ)或PBS(■)治疗的小鼠的丙氨酸氨基转移酶(ALT)值的图。
图2A-2C描述了比较不同肝脏病变发生频率的图。图2A显示的是3个月大的小鼠在6个月进行评估时脂肪变性和发育异常的证据,图2B显示的是6个月大的小鼠在9个月进行评估时发育异常的结节和早期HCC的证据,图2C显示的是9个月大的小鼠在12个月龄进行评估时大的HCC结节的证据。灰色条块是在指定年龄开始饲喂Synbiotic 2000TM3个月的试验小鼠。白色条块是饲喂PBS的对照小鼠。使用正好在X基因上游的HBx增强子/启动子区制备HBx转基因小鼠。这种增强子/启动子在成熟肝细胞中变得活跃,使得HBx在出生时不可检测,但随着年龄积累在肝细胞内(Yu DY等,J Hepatol,1999;31:123-132)。从免疫学的角度来看,HBx被认为是外来的,其在4-5个月龄时触发炎症反应(肝炎)和脂肪变性(脂肪肝)。6-7个月龄进展为发育异常(癌前期病变),9-10个月龄进展为发育异常的结节和微观HCC,最终10-12个月龄进展为大型HCC。
图3A-3D描述了用PBS(图3A和图3C)或Synbiotic 2000TM(图3B和图3D)治疗后的6个月大(图3A)和9个月大(图3C)小鼠肝脏中的HBx染色。请注意,在两种情况下,使用Synbiotic 2000TM治疗后,HBx的小叶分布会产生较分散的分布,这表明HBx水平可能随着治疗而降低。
图4描述了有限微阵列分析图,其显示了在所指示的年龄给予Synbiotic 2000TM的HBx转基因小鼠与并行给予安慰剂的HBx转基因小鼠相比较二者体中所选择的致癌作用标志物(第1-20列)和免疫介质(第21-27列)的表达。差异表达值用GAPDH标准化。其它对照包括一个用于基因组DNA污染(MGDC),另一个用于RNA质量(RTC),以及另一个用于一般PCR性能(PPC)。
图5A-5D描述了在12个月龄时获得的4只SCFA饲喂的小鼠的肝脏。在图5A中,估算在肝小叶的表面上可观察到的肿瘤的数量和大小。这些肿瘤的实例显示在用PBS(图5A和5B)或SCFAs(图5C)治疗的小鼠的肝脏上,所述治疗从小鼠9个月龄开始并进行3个月。箭头指向肿瘤结节。结果代表来自每组的小鼠。图5D是来自两组小鼠的肿瘤特征的总结。
图6A-6E描述了H&E染色的肝切片和显示SCFA饲喂的小鼠中的肿瘤特征的条形图。从9个月龄开始,用SCFAs或PBS治疗HBx小鼠3个月。图6A显示SCFA治疗的小鼠(x40)中的小肿瘤的实例。图6B显示SCFA治疗的小鼠(x40)中的中等大小的肿瘤结节的实例。图6C显示了来自PBS治疗的小鼠的大肿瘤的实例。图6D显示来自PBS治疗的小鼠(x100)的HCC结节的较高放大倍数。肿瘤(T)肝脏位于左侧,非肿瘤(NT)肝脏位于右侧。箭头指向肿瘤结节。图6E显示用SCFAs(+)或PBS(-)治疗9个月大的小鼠3个月的结果。切割福尔马林固定的组织并用H&E染色。S=小肿瘤(<0.5厘米直径);M=中等大小的肿瘤(0.5-1.0厘米直径);L=大肿瘤(>1厘米)。
图7描述了显示从3-6个月起用Synbiotic 2000TM治疗的HBx小鼠的肝脏病理学的表。
图8描述了显示从6-9个月起用Synbiotic 2000TM治疗的HBx小鼠的肝脏病理学的表。
图9描述了显示从9-12个月起用Synbiotic 2000TM治疗的HBx小鼠的肝脏病理学的表。
图10描述了显示Synbiotic 2000TM治疗的小鼠和对照小鼠的肝内HBx染色结果的表。
具体实施方式
本发明部分基于如下发现:短链脂肪酸作为肝癌化学预防治疗方法是有效的。本文中的结果表明,向肝脏中具有炎症、肝炎和癌前期病变的受试者施用短链脂肪酸可有效预防或延缓肝病转化为肝细胞癌的进程。
定义
应当理解,本发明的附图和描述已经简化,以示出与清楚理解本发明相关的元素,同时为了清楚起见,排除在典型的显微镜装置中发现的许多其它元素。本领域普通技术人员可以认识到,实现本发明的过程期望和/或需要其它元素和/或步骤。然而,因为这些元素和步骤在本领域中是众所周知的,并且因为它们对更好地理解本发明并无帮助,所以本文不提供对这些元素和步骤的讨论。本文的公开内容涉及对本领域技术人员已知的这些元素和方法的所有这样的变化和修改。
除非另有定义,本文使用的所有技术和科学术语具有与本发明所属领域的普通技术人员所通常理解的相同的含义。尽管与本文所述类似或等同的任何方法和材料可用于本发明的实践或测试,还是描述优选的方法和材料。
如本文所使用的,以下每个术语具有在本节中与其相关的含义。
本文中使用的冠词“a”和“an”是指物品的语法对象中的一个或多于一个(即至少一个)。作为示例,“元素”是指一个元素或多于一个元素。
当涉及诸如数量、时距等可测量值时,本文所用的“关于”意在包括来自指定值的±20%、±10%、±5%、±1%和±0.1%的变化,因为这样的变化是适当的。
当在上下文中的生物体、组织、细胞或其组分中使用时,术语“异常”是指在至少一种可观察或可检测的特征(例如年龄、治疗、当日时间等)上与各自特征显示“正常”(预期)的生物体、组织、细胞或组分不同的那些生物体、组织、细胞或其组分。对于一种细胞或组织类型而言正常或预期的特征对于不同的细胞或组织类型可能是异常的。
如果疾病或病症的征兆或症状的严重程度、患者经历的这种征兆或症状的频率或者两者得以减轻,疾病或病症就会“缓解”。
本文使用的术语“抗肿瘤效应”是指可以通过肿瘤体积减小、肿瘤细胞数量减少、转移数量减少、预期寿命增加表现出的生物学效应,或者与癌症相关的各种生理症状的改善。通过本发明的组合物首先预防肿瘤发生的能力也可表现出“抗肿瘤效应”。
“疾病”是动物的健康状态,其中动物不能维持体内平衡,并且其中如果疾病没有改善,则动物的健康状况继续恶化。相比之下,动物中的“病症”是健康状态,其中动物能够维持体内平衡,但是动物的健康状况比不存在病症时更不利。未经治疗的疾病不一定会导致动物健康状况的进一步下降。
如本文所使用的,术语“抑制”是指相对于对照值活性或功能被抑制或阻断至少约10%。优选地,与对照值相比,活性被抑制或阻断50%,更优选75%,甚至更优选95%。
术语“肝病”包括肝脏的疾病和状况,其包括肝硬化、酒精性和非酒精性纤维化以及与肥胖、糖尿病和代谢综合征相关的肝病或变化。肝病的其它例子包括:肝炎,脂肪肝,中毒性肝衰竭,肝硬化,糖尿病相关肝病,肝脂肪变性,肝纤维化,肝硬化,慢性肝炎等。
术语“益生生物”包括有益地影响宿主健康的活微生物。对宿主健康的益处包括但不限于改善肠道的微生物平衡。对宿主的其它有益效果包括例如增强免疫系统,刺激吞噬活性,刺激干扰素,减少高血压,降低癌症风险,增加抗微生物活性和免疫调节作用,降低高胆固醇血症和治疗癌症。
本文中使用的术语“治疗”、“处理”等通常意味着获得所需的药理和/或生理作用。该作用在完全或部分预防疾病或其症状方面可以是预防性的,和/或在部分或完全治愈疾病和/或由病引起的不利影响方面可以是治疗性的。本文所用的术语“治疗”涵盖对受试者的疾病的任何治疗,并且包括:(a)预防与可能易患疾病的受试者发生的不期望的免疫应答有关的疾病;(b)抑制疾病,即阻止其发展;或(c)减轻疾病,即导致疾病消退。
术语“有效量”和“药学有效量”是指足够量的试剂以提供所需的生物学结果。该结果可以是减少和或减轻疾病或病症的征兆、症状或原因,或者生物系统的任何其它所需的改变。任何个别情况下的适当有效量可由本领域普通技术人员使用常规实验确定。
“治疗有效量”是指在给定条件和给药方案下提供治疗效果的量。特别地,“治疗有效量”是指有效预防、减轻或改善疾病症状或者延长被治疗对象(其可以是人或非人动物)的存活的量。治疗有效量的确定在本领域技术人员的技术范围内。
如本文所用,术语“药物组合物”是指本发明的至少一种化合物与其它化学成分和实体例如载体、稳定剂、稀释剂、分散剂、悬浮剂、增稠剂和/或赋形剂的混合物。药物组合物便于将化合物施用于生物体。施用化合物的多种技术在本领域中存在,包括但不限于静脉内、口服、气雾剂、肠胃外、眼部、肺部和局部给药。
“药学上可接受的”是指从药理学/毒理学观点出发对患者可接受的以及从有关组成、配方、稳定性、患者接受度和生物利用度的物理/化学观点出发对制药化学家可接受的那些性质和/或物质。“药学上可接受的载体”是指不妨碍活性成分的生物活性的有效性且对所施用的宿主无毒性的介质。
如本文所用,术语“药学上可接受的载体”是指药学上可接受的材料、组合物或载体,例如液体或固体填料、稳定剂、分散剂、悬浮剂、稀释剂、赋形剂、增稠剂、溶剂或胶囊材料,用于将本发明中有用的化合物携带或运送到患者体内或者在患者体内携带或运送该化合物,以便可以执行其预期的功能。通常,从一个器官或身体的一部分到另一个器官或身体的一部分携带或运输这样的构建体。在与制剂的其它成分相容的意义上,包括本发明中有用的化合物每种载体必须是“可接受的”,并且对患者无害。可用作药学上可接受的载体的材料的一些实例包括:糖,例如乳糖、葡萄糖和蔗糖;淀粉,例如玉米淀粉和马铃薯淀粉;纤维素及其衍生物,例如羧甲基纤维素钠、乙基纤维素和乙酸纤维素;粉状黄芪胶;麦芽;明胶;滑石;赋形剂,例如可可脂和栓剂蜡;油,例如花生油、棉籽油、红花油、芝麻油、橄榄油、玉米油和大豆油;二醇,例如丙二醇;多元醇,例如甘油、山梨糖醇、甘露醇和聚乙二醇;酯,例如油酸乙酯和月桂酸乙酯;琼脂;缓冲剂,例如氢氧化镁和氢氧化铝;表面活性剂;海藻酸;无热原水;等渗盐水;林格溶液;乙醇;磷酸盐缓冲溶液;以及药物制剂中使用的其它无毒相容物质。如本文所用,“药学上可接受的载体”还包括与本发明中有用的化合物的活性相容的任何和所有的包衣、抗细菌和抗真菌剂以及吸收延迟剂等,并且是患者生理上可接受的。补充的活性化合物也可以并入组合物中。“药学上可接受的载体”可进一步包括本发明中有用的化合物的药学上可接受的盐。可以包括在本发明实践中使用的药物组合物中的其它另外的成分是本领域已知的,并且例如在雷明顿药物科学(Genaro,Ed.,MackPublishing Co.,1985,Easton,PA)中描述的,其通过引用并入本文。
术语“营养组合物”可以是用于人类消费的食品,例如饮品、饮料、食物棒(bar)、小吃、冰淇淋、乳制品(例如冷冻或耐储藏的乳制品、发酵乳制品)、饮料(例如牛奶饮料)、婴儿配方食品、成长牛奶、糖果产品、巧克力、谷物制品如早餐谷物、酱汁、汤、即食饮料、用于在微波炉或烘箱中加热后消费的冷冻产品、即食产品、快餐或营养配方。
术语“患者”、“受试者”、“个体”等在本文中可互换使用,并且是指体外或原位的任何动物或其细胞,可适用于本文所述的方法。在某些非限制性实施例中,患者、受试者或个体是人。
短语“生物样品”在本文中以其最广泛的含义使用。样品可以是从其中可以检测、提取、分离、表征或测量本发明的生物标志物的任何生物组织或液体。这些样品的实例包括但不限于血液、淋巴、尿、妇科液体、活组织检查、羊水和涂片。本质上为液体的样品在本文中称为“体液”。生物样品可以通过各种技术从患者获得,包括例如通过刮擦或擦拭区域或通过使用针吸出体液。收集各种生物样品的方法是本领域公知的。通常,样品将是“临床样品”,即来自患者的样品。这些样品包括但不限于可以含有或不包含细胞的体液,例如血液(如全血、血清或血浆),尿液,唾液,组织或穿刺活检样品,以及具有已知的诊断、治疗和/或结果史的档案样品。生物样品还包括组织,例如用于组织学目的的冷冻切片。样品还包括通过处理生物样品得到的任何物质。衍生的材料包括但不限于从样品中分离的细胞(或其后代),从样品中提取的蛋白质或核酸分子。生物样品的加工可以涉及过滤、蒸馏、提取、浓缩、干扰成分的灭活、加入试剂等的一种或多种。
如本文所用,术语“容器”包括用于保持药物组合物的任何容器。例如,在一个实施例中,容器是包含药物组合物的包装。在其它实施例中,容器不是包含药物组合物的包装,即容器是包含包装的药物组合物或未包装的药物组合物以及药物组合物的使用说明书的容器,例如盒或小瓶。此外,包装技术是本领域公知的。应当理解,药物组合物的使用说明书可以包含在含有药物组合物的包装上,并且因此说明书与包装的产品形成增加的功能关系。然而,应当理解,说明书可以包含关于化合物执行其预期功能的能力的信息,例如治疗或预防受试者的疾病。
本文中使用的“说明材料”包括出版物、记录、图表或任何其它表达介质,其可用于在用于鉴定或减轻或治疗本文所述的各种疾病或病症的试剂盒中传达本发明的组分的有用性。任选地或替代地,说明材料可以描述识别或减轻受试者的细胞或组织中的疾病或病症的一种或多种方法。试剂盒的说明材料可以例如被固定至含有本发明组合物的容器或与包含本发明组合物的容器一起运输。或者,说明材料可以与容器分开运输,意图是接受者协同地使用说明材料和化合物。
在本公开内容中,可以以范围格式呈现本发明的各个方面。应当理解,以范围格式描述仅仅是为了方便和简洁,并且不应被解释为对本发明的范围的僵化限制。因此,应认为范围的描述具体公开所有可能的子范围以及该范围内的各个数值。例如,从1至6的范围的描述应被认为具体公开了诸如1至3、1至4、1至5、2至4、2至6、3至6等子范围,以及该范围内的个别数字,例如1、2、2.7、3、4、5、5.3、6,以及它们之间的任何全部和部分增量。无论范围的广度如何,都适用。
描述
本发明部分基于这样的发现:产生SCFAs的益生菌的引入或单独引入SCFAs减缓HCC的发病机理。本文提供的结果表明,产生SCFA的益生菌和单独的相应的无益生菌处理的SCFAs抑制HBx转基因小鼠中发育异常结节和HCC的出现。因此,本发明包括使用产生SCFAs的细菌或者单独引入SCFAs的组合物或方法作为用于癌症化学预防的简单方法。本发明是对于肝癌和解剖学上位于大肠远端的其它肿瘤类型的新的应用。
成分
在一个实施例中,本发明提供短链脂肪酸或短链脂肪酸的组合。在一个实施例中,本发明提供益生菌或益生菌的组合。在各种实施例中,本发明包括用于预防或延缓有需要的受试者、细胞、组织或器官的肝细胞癌发病的组合物。本发明的组合物包括用于治疗或预防治疗或预防肝脏炎症、肝病、癌前期病变等的组合物。
短链脂肪酸
在各种实施例中,本发明包括预防或延缓肝细胞癌发病的组合物和方法。在各种实施例中,本发明包括通过治疗或预防治疗或预防肝脏炎症、肝病和癌前期病变来预防或延缓肝细胞癌发病的组合物和方法。在一个实施例中,用于预防或延缓肝细胞癌发病的组合物包含短链脂肪酸或短链脂肪酸的组合。
在一个实施例中,本发明提供了用于施用短链脂肪酸作为预防或延缓肝细胞癌发病的治疗的通用概念。在一个实施例中,本发明的组合物包含短链脂肪酸。在一个实施例中,短链脂肪酸选自包括但不限于甲酸、乙酸、丙酸、异丁酸、丁酸、异戊酸、戊酸、异己酸、己酸、乳酸、琥珀酸、丙酮酸、辛酸和月桂酸。在一个实施例中,短链脂肪酸的组合包括等量的至少10mM、至少20mM、至少30mM、40mM、50mM、60mM、70mM、80mM、90mM、100mM或更多的乙酸钠、丙酸钠和丁酸钠。
短链脂肪酸的生物活性衍生物,例如在碳链上具有取代基如O、S、N、甲基、乙基、卤素和不干扰其生物活性的其它基团,也可用于形成本发明的组合物。
益生菌
在各种实施例中,本发明包括预防或延缓肝细胞癌发病的组合物和方法。在各种实施例中,本发明包括通过治疗或预防治疗或预防肝脏炎症、肝病和癌前期病变来预防或延缓肝细胞癌发病的组合物和方法。在一个实施例中,用于预防或延缓肝细胞癌发病的组合物包含益生菌或益生菌的组合。
在一个实施例中,本发明提供了用于施用益生菌作为预防或延缓肝细胞癌发病的治疗的通用概念。在一个实施例中,本发明的组合物包含益生菌。在一个实施例中,益生菌选自包括但不限于:植物乳杆菌,嗜酸乳杆菌,副干酪乳杆菌,肠系膜明串珠菌,保加利亚乳杆菌,乳酸乳杆菌,唾液乳杆菌,戊糖片球菌,嗜热链球菌,枯草芽孢杆菌,凝结芽孢杆菌,屎肠球菌,两歧双歧杆菌,乳酸双歧杆菌,长双歧杆菌和婴儿双歧杆菌。
本发明的益生菌还可以包括其遗传和/或表型性质与亲本菌株相比改变的益生菌菌株的突变体、变体和遗传修饰的突变体。益生菌菌株的天然存在的变体包括选择性分离的靶向性质的自发改变,同时通过常规的遗传操作技术(例如基因破坏、共轭转移等)来实现亲本菌株性质的有意改变。
益生菌的一般状态是活细胞或冻干细胞(用于生成本文数据)的形式。然而,它还可以扩展到非活细胞,例如含有由益生菌表达的有益因子的灭活的培养物或组合物。这可能包括被热杀死的微生物或通过暴露于改变的pH或受压而被杀死的微生物。用非活细胞,产品制备更简单,细胞可以容易地并入药物中,并且存储要求比活细胞更少受限。
在一个实施例中,使用以下细菌的组合物和剂量来产生本文给出的初步数据:1010植物乳杆菌2362,1010副干酪乳杆菌类干酪paracsei亚种(Lactobacillus paracaseisubsp paracsei)19,1010肠系膜明串珠菌32-77:1e和1010戊糖片球菌5-33:3,上述物质(Synbiotic 2000TM)具有生物活性植物纤维类的混合物,该混合物为2.5克菊粉、2.5克果胶、2.5克β-葡聚糖和2.5克抗性淀粉。组合物和剂量在3个月内每日施用。
治疗方法
在一个实施例中,本发明提供使用益生菌或益生菌的组合治疗、抑制、预防或减少肝细胞癌的方法。在另一实施例中,本发明提供使用短链脂肪酸或短链脂肪酸的组合治疗、抑制、预防或减少肝细胞癌的方法。
本发明提供了预防或抑制肝细胞癌发病的方法。肝脏的炎症,如肝炎,会导致初始病变,其导致肝细胞损伤、再生、并发展成癌前期和肝细胞癌结节。治疗肝脏炎症和其它癌前期病变可以预防或延缓肝细胞癌的发病。用于检测肝病和炎症的方法对本领域技术人员来说将是显而易见的和/或本文所描述的。
根据本发明的减少肝脏炎症的一般方法是提供具有短链脂肪酸的细胞。在一个实施例中,短链脂肪酸可以直接递送。在另一个实施例中,短链脂肪酸可以通过益生菌代谢复合碳水化合物(益生元)来间接递送。
为了实现肝脏炎症的抑制,短链脂肪酸必须被递送到细胞中。用于递送的一种机制是通过上述任何物理或化学透化细胞膜的方法。本发明的用于将短链脂肪酸转移到细胞中的另一个实施例可能涉及粒子轰击。该方法取决于将携带短链脂肪酸的微粒加速到高速度的能力,允许它们刺穿细胞膜并进入细胞而不杀死它们。已经开发了用于加速小颗粒的几种装置。一种这样的装置依赖于高压放电来产生电流,这又提供动力。所使用的微粒由生物惰性物质如钨或金的珠子组成。
在本发明的另一个实施例中,短链脂肪酸可以被包埋在脂质体中。脂质体是以磷脂双层膜和内水性介质为特征的水泡结构。多层脂质体具有通过水性介质分开的多个脂质层。当磷脂悬浮在过量的水溶液中时,它们自发形成。脂质组分在形成闭合结构之前经历自我重排,并将水和溶解的溶质包埋在脂质双层之间。
本发明的组合物和含有所述化合物的药物组合物可以口服给药,因此可以配制成适合于口服给药的形式,即作为固体或液体制剂。合适的固体口服制剂包括片剂、胶囊、丸剂、颗粒剂、小球等。合适的液体口服制剂包括溶液剂、混悬剂、分散液、乳剂、油等。如果配制成胶囊形式,除了活性化合物和惰性载体或稀释剂之外,本发明的组合物还包含硬明胶胶囊。
本发明的组合物和含有所述化合物的药物组合物可以进一步经鼻内施用,即通过吸入,因此可以配制成适于鼻内给药的形式,即作为气雾剂或液体制剂。
本发明的组合物也可以例如配制成栓剂,其含有用于人或兽医学的常规栓剂基质,或作为阴道栓剂,例如含有常规阴道栓剂基质。
本发明的一个方面提供使用本发明的组合物治疗或预防肝脏炎症、肝病和癌前期病变的方法。在一个实施例中,本发明的组合物可用于通过治疗或预防肝脏炎症、肝病和癌前期病变来抑制肝细胞癌的发病。
以下是可以通过所公开的方法和组合物治疗的肝病的非限制性实例:肝纤维化,与肥胖相关的肝病,与代谢综合症相关的肝病,肝硬化,酒精性肝硬化,非酒精性肝硬化,脂肪肝,与糖尿病相关的肝硬化,遗传性肝病,肝脂肪变性或慢性肝炎。这包括与其它病毒(如艾滋病毒)相关的慢性肝病,其中长期抗逆转录病毒治疗中估计有40%的个体发展为慢性肝病。
除了肝细胞癌之外,通过给受试者施用本发明的组合物可以治疗或免疫(即预防性治疗)的癌症可以选自B细胞淋巴瘤、T细胞淋巴瘤、骨髓瘤、白血病、造血肿瘤、胸腺瘤、淋巴瘤、肉瘤、肺癌、非霍奇金淋巴瘤、霍奇金淋巴瘤、子宫癌、腺癌、乳腺癌、胰腺癌、肺癌、肾癌、膀胱癌、前列腺癌、卵巢癌、原发性或转移性黑色素瘤、鳞状细胞癌、基底细胞癌、脑癌、血管肉瘤、血管内皮瘤、头颈癌、甲状腺癌、软组织肉瘤、骨肉瘤、睾丸癌、子宫癌、子宫颈癌、胃肠癌和任何其它现在已知或以后识别的癌症(参见,例如,Rosenberg(1996)Ann.Rev.Med.47:481-491,其全部内容通过引用并入本文)。涵盖在本发明范围内的进一步的免疫原是传染剂免疫原,其可以包括适合于保护受试者免受感染性疾病的任何免疫原,感染性疾病包括但不限于微生物、细菌、原生动物、寄生虫、真菌和病毒性疾病。除了与炎症相关的癌症之外,SCFAs还可用于治疗炎症相关的自身免疫或自体侵袭性疾病(例如类风湿性关节炎)。
在有需要的个体中抑制癌症的方法一些实施例中,将第二药剂给予个体,例如抗肿瘤剂。在一些实施例中,第二药剂包含第二转移抑制剂,例如纤溶酶原拮抗剂或腺苷脱氨酶拮抗剂。在其它实施例中,第二药剂是血管生成抑制剂。
本发明的组合物可用于预防、减轻、最小化、控制和/或减少人和动物中的肿瘤转移。所公开的化合物也可用于减缓原发性肿瘤生长的速率。当给予需要治疗的受试者时,所公开的化合物可用于阻止癌细胞的扩散。因此,可以施用本文公开的化合物作为与一种或多种药物或其它药剂的组合疗法的一部分。当用作组合疗法的一部分时,由所公开的化合物提供的转移减少和原发性肿瘤生长的减缓允许更有效果和更有效率地使用用于治疗患者的任何药物或药物治疗。此外,所公开的化合物的转移控制使受试者更有能力将疾病集中在一个位置。
以下是可以通过所公开的方法和组合物治疗的癌症的非限制性实例:急性淋巴细胞白血病;急性骨髓性白血病;肾上腺皮质癌;肾上腺皮质癌,儿童;阑尾癌;基底细胞癌;胆管癌,肝外;膀胱癌;骨癌;骨肉瘤和恶性纤维组织细胞瘤;脑干胶质瘤,儿童;脑肿瘤,成年;脑肿瘤,脑干胶质瘤,儿童;脑肿瘤,中枢神经系统非典型畸形瘤/横纹肌样肿瘤,儿童;中枢神经系统胚胎肿瘤;小脑星形细胞瘤;脑星形胶质细胞瘤/恶性胶质瘤;颅咽管瘤;室管膜母细胞瘤;室管膜瘤;髓母细胞瘤;髓上皮瘤;中间分化的松果体实质细胞肿瘤;幕上原始神经外胚层肿瘤和成松果体细胞瘤;视觉通路和下丘脑胶质瘤;脑和脊髓肿瘤;乳腺癌;支气管肿瘤;伯基特淋巴瘤;类癌肿瘤;类癌肿瘤,胃肠道;中枢神经系统非典型畸形/横纹肌样肿瘤;中枢神经系统胚胎肿瘤;中枢神经系统淋巴瘤;小脑星形细胞瘤大脑星形细胞瘤/恶性胶质瘤,儿童;宫颈癌;脊索瘤,儿童;慢性淋巴细胞白血病;慢性骨髓性白血病;慢性骨髓增生性疾病;结肠癌;结肠直肠癌;颅咽管瘤;皮肤T细胞淋巴瘤;食道癌;尤文家族肿瘤(EwingFamily of Tumors);性腺外生殖细胞肿瘤;肝外胆管瘤;眼癌,眼内黑色素瘤;眼癌,视网膜母细胞瘤;胆囊癌;胃肠(胃)癌;胃肠类癌肿瘤;胃肠道间质肿瘤(GIST);生殖细胞肿瘤,颅外;生殖细胞肿瘤,性腺外;生殖细胞肿瘤,卵巢;妊娠滋养细胞肿瘤;胶质瘤;胶质瘤,儿童脑干;胶质瘤,儿童脑星形细胞瘤;胶质瘤,儿童视觉通路和下丘脑;毛细胞白血病;头颈癌;肝细胞癌(肝癌);组织细胞增生症,朗格汉斯细胞;霍奇金淋巴瘤;下咽癌;下丘脑和视觉通路胶质瘤;眼内黑色素瘤;胰岛细胞肿瘤;肾脏(肾细胞)癌;朗格汉斯细胞组织细胞增生症;喉癌;白血病,急性淋巴细胞;白血病,急性髓性;白血病,慢性淋巴细胞;白血病,慢性髓性;白血病,毛细胞;唇和口腔癌;肝癌;肺癌,非小细胞;肺癌,小细胞;淋巴瘤,艾滋病相关;淋巴瘤,伯基特;淋巴瘤,皮肤T细胞;淋巴瘤,霍奇金;淋巴瘤,非霍奇金;淋巴瘤,原发性中枢神经系统;巨球蛋白血症,瓦尔登斯特罗姆(Waldenstrom);骨和骨肉瘤恶性纤维组织瘤;髓母细胞瘤;黑色素瘤;黑色素瘤,眼内(眼);默克尔细胞癌;间皮瘤;转移性鳞状颈癌具有隐匿性原发性;口腔癌;多发性内分泌肿瘤综合征,(儿童);多发性骨髓瘤/血浆细胞瘤;蕈样肉芽肿;骨髓增生异常综合征;骨髓增生异常/骨髓增生性疾病;骨髓性白血病,慢性;骨髓性白血病,成人急性;骨髓性白血病,儿童急性;骨髓瘤,多发;骨髓增生性疾病,慢性;鼻腔和鼻旁窦癌;鼻咽癌;神经母细胞瘤;非小细胞肺癌;口癌;口腔癌;口咽癌;骨肉瘤和恶性纤维组织细胞瘤;卵巢癌;卵巢上皮癌;卵巢生殖细胞肿瘤;卵巢低度潜在恶性肿瘤;胰腺癌;胰腺癌,胰岛细胞肿瘤;乳头状瘤病;甲状旁腺癌;阴茎癌;咽癌;嗜铬细胞瘤;中度分化的松果体实质性肿瘤;松果体母细胞瘤和幕上原始神经外胚层肿瘤;垂体肿瘤;血浆体凯尔特人肿瘤(Plasma Celt Neoplasm)/多发性骨髓瘤;胸膜肺母细胞瘤;原发性中枢神经系统淋巴瘤;前列腺癌;直肠癌;肾细胞(肾)癌;肾盂和输尿管,移行细胞癌;涉及染色体15的NUT基因的呼吸道癌;视网膜母细胞瘤;横纹肌肉瘤;唾液腺癌;肉瘤,尤文家族肿瘤;肉瘤,卡波西;肉瘤,软组织;肉瘤,子宫;赛扎里综合征(Sezary Syndrome);皮肤癌(非黑色素瘤);皮肤癌(黑色素瘤);皮肤癌,默克尔(Merkel)细胞;小细胞肺癌;小肠癌;软组织肉瘤;鳞状细胞癌,鳞状颈癌具有隐匿性原发性,转移性;胃(胃肠)癌;幕上原始神经外胚层肿瘤;T细胞淋巴瘤,皮肤;睾丸癌;咽喉癌;胸腺瘤和胸腺癌;甲状腺癌;肾盂输尿管移行性细胞癌;滋养细胞肿瘤,妊娠;尿道癌;子宫癌,子宫内膜;子宫肉瘤;阴道癌;外阴癌;瓦尔登斯特罗姆巨球蛋白血症和肾母细胞瘤。
在一个实施例中,本发明提供了一种治疗癌症的方法,其包括在用本发明的组合物治疗之前、同时或随后,用癌症的补充疗法如手术、化疗、化学治疗剂、放射治疗或激素治疗或其组合治疗受试者。
在另一个实施例中,本发明提供了一种治疗癌症的方法,其包括在用本发明的组合物治疗之前、同时或随后,用癌症的补充疗法如手术、化学治疗、化学治疗剂、放射治疗或激素治疗或其组合治疗受试者。
化学治疗剂包括细胞毒性药剂(例如5-氟尿嘧啶,顺铂,卡铂,甲氨蝶呤,柔红霉素,阿霉素,长春新碱,长春碱,oxorubicin,卡莫司汀(BCNU),洛莫司汀(CCNU),阿糖胞苷USP,环磷酰胺,estramucine phosphate sodium,六甲蜜胺,羟基脲,异环磷酰胺,丙卡巴阱,丝裂霉素,白消安,环磷酰胺,米托蒽醌,卡铂,顺铂,干扰素α-2a重组体,紫杉醇,替尼泊苷和链脲霉素(streptozoci))、细胞毒性烷化剂(例如白消安,苯丁酸氮芥,环磷酰胺,美法仑或乙基磺酸(ethylesulfonic acid))、烷化剂(例如亮氨酸溶肉瘤素(asaley),AZQ,BCNU,白消安,双硫丹(bisulphan),羧基邻苯二甲酸铂(carboxyphthalato platinum),卡铂,CCNU,CHIP,苯丁酸氮芥,氯脲菌素,顺铂,氯乙矾(clomesone),氰基吗啉代阿霉素(cyanomorpholinodoxorubicin),甲基二磺酸乙二醇脂(cyclodisone),环磷酰胺,二脱水半乳糖醇,氟多潘,hepsulfam,羟胺硫蒽酮,异环磷酰胺,美法仑,甲基CCNU,丝裂霉素C,米托唑胺(mitozolamide),氮芥,PCNU,哌嗪,哌嗪二酮,哌泊溴烷,甲基丝裂霉素,螺旋乙内酰脲芥(spirohydantoin mustard),链脲霉素,替罗昔隆,四铂,噻替哌,三乙撑蜜胺,尿嘧啶氮芥和Yoshi-864)、抗有丝分裂的药物(例如别秋水仙碱(allocolchicine),软海绵素M,秋水仙碱,秋水仙碱衍生物,多拉司他汀10,美登素,根霉素,紫杉醇衍生物,紫杉醇,硫代秋水仙碱,三苯甲基半胱氨酸,硫酸长春碱和硫酸长春新碱)、植物生物碱(例如放线菌素D,博来霉素,左旋天冬酰胺酶,伊达比星,硫酸长春碱,硫酸长春新碱,光辉霉素(mitramycin),丝裂霉素,柔红霉素,VP-16-213,VM-26,诺维本和泰索帝)、生物制剂(例如α干扰素,BCG,G-CSF,GM-CSF和白介素-2)、拓扑异构酶I抑制剂(例如喜树碱,喜树碱衍生物和吗啉代阿霉素)、拓扑异构酶II抑制剂(例如米托蒽醌,氨萘非特,m-AMSA,蒽吡唑(anthrapyrazole)衍生物,甲氧基吡唑啉吖啶(pyrazoloacridine),盐酸比生群,柔红霉素,oxanthrazole,美诺立尔,N,N-二苄基道诺霉素,oxanthrazole,红比腙(rubidazone),VM-26和VP-16)和合成物(例如羟基脲,丙卡巴阱,o,p'-DDD,达卡巴嗪,CCNU,BCNU,顺二氨基二氯铂,米托蒽醌,卡铂,左旋咪唑,六甲基蜜胺,全反式维甲酸,格立得和卟吩姆钠)。
抗增殖剂是减少细胞增殖的化合物。抗增殖剂包括烷化剂、抗代谢物、酶、生物反应调节剂、杂剂、激素和拮抗剂、雄激素抑制剂(例如氟他胺和醋酸亮丙瑞林)、抗雌激素(例如枸橼酸他莫昔芬及其类似物,托瑞米芬,屈洛昔芬和雷洛昔芬(roloxifene),具体的抗增殖剂的另外的实例包括但不限于左旋咪唑、硝酸镓、格拉司琼、沙格司亭锶-89氯化物、非格司亭、匹鲁卡品、右丙亚胺和昂丹司琼。
本发明的组合物可以单独施用或与其它抗肿瘤剂组合施用,该抗肿瘤剂包括细胞毒性/抗肿瘤剂和抗血管生成剂。细胞毒性/抗肿瘤剂被定义为攻击和杀死癌细胞的药剂。一些细胞毒性/抗肿瘤剂是烷化剂,其将肿瘤细胞中的遗传物质烷基化,该遗传物质例如顺铂、环磷酰胺、氮芥、三亚甲基硫代磷酰胺、卡莫司汀、白消安、苯丁酸氮芥、belustin、尿嘧啶氮芥、chlomaphazin和达卡巴嗪。其它细胞毒性/抗肿瘤剂是肿瘤细胞的抗代谢物,例如阿糖胞苷、氟尿嘧啶、甲氨蝶呤、巯嘌呤、硫唑嘌呤(azathioprime)和丙卡巴阱。其它细胞毒性/抗肿瘤剂是抗生素,例如多柔比星、博来霉素、更生霉素、柔红霉素、光辉霉素、丝裂霉素、丝裂霉素C和道诺霉素。有许多可商购的这些化合物的脂质体制剂。其它细胞毒性/抗肿瘤剂是有丝分裂抑制剂(长春花生物碱)。这些包括长春新碱、长春碱和依托泊苷。其它细胞毒性/抗肿瘤剂包括紫杉醇及其衍生物、左旋天冬酰胺酶、抗肿瘤抗体、达卡巴嗪、氮胞苷、安吖啶、美法仑、VM-26、异环磷酰胺、米托蒽醌和长春地辛。
抗血管生成剂是本领域技术人员公知的。用于本公开的方法和组合物的合适的抗血管生成剂包括抗血管内皮生长因子(VEGF)抗体,包括人源化和嵌合抗体、抗VEGF适体和反义寡核苷酸。其它已知的血管生成抑制剂包括血管抑制素、内皮抑制素、干扰素、白介素1(包括α和β)白细胞介素12、维甲酸和金属蛋白酶-1和-2(TIMP-1和-2)的抑制剂。还可以使用小分子,包括拓扑异构酶,如雷佐生,具有抗血管生成活性的拓扑异构酶II抑制剂。
可以与所公开的化合物组合使用的其它抗癌剂包括但不限于:阿西维辛;阿柔比星;盐酸阿考达唑;阿克罗宁;阿多来新;阿地白介素;六甲蜜胺;安波霉素;乙酸阿美蒽醌;氨鲁米特;安吖啶;阿那曲唑;安曲霉素;天冬酰胺酶;曲林菌素;阿扎胞苷;阿扎替哌;阿佐霉素;巴马司他;苄替哌;比卡鲁胺;盐酸比生群;二甲磺酸双奈法德;比折来新;硫酸博来霉素;布喹那钠;溴匹立明;白消安;放线菌素;卡普睾酮;卡醋胺;卡贝替姆;卡铂;卡莫司汀;盐酸卡米诺霉素;卡折来新;西地芬戈;苯丁酸氮芥;西罗霉素;顺铂;克拉屈滨;甲磺酸克雷斯托;环磷酰胺;阿糖胞苷;达卡巴嗪;更生霉素;盐酸柔红霉素;地西他滨;右奥马铂;地扎胍宁;甲磺酸地扎胍宁;地吖醌;多西他赛;阿霉素;盐酸阿霉素;屈洛昔芬;枸橼酸屈洛昔芬;丙酸屈他雄酮;安波霉素;依达曲沙;盐酸依氟鸟氨酸;依沙芦星;恩洛铂;恩普氨酯;依匹哌啶;盐酸表柔比星;厄布洛唑;盐酸依索比星;雌氮芥;雌氮芥磷酸钠;依他硝唑;依托泊苷;磷酸依托泊苷;艾托卜宁;盐酸法曲唑;法扎拉滨;芬维A胺;氟尿苷;磷酸氟达拉滨;氟尿嘧啶;氟西他滨(fluorocitabine);磷喹酮;福司曲星钠;吉西他滨;盐酸吉西他滨;羟基脲;盐酸伊达比星;异环磷酰胺;伊莫福新;白介素II(包括重组白细胞介素II或rIL2);干扰素α-2a;干扰素α-2b;干扰素α-n1;干扰素α-n3;干扰素β-I a;干扰素γ-I b;异丙铂;盐酸伊立替康;醋酸兰瑞肽;来曲唑;醋酸亮丙瑞林;盐酸利阿唑;洛美曲索钠;洛莫司汀;盐酸洛索蒽醌;马索罗酚;美登素;盐酸氮芥;醋酸甲地孕酮;醋酸美仑孕酮;美法仑;美诺立尔;巯嘌呤;甲氨蝶呤;甲氨蝶呤钠;氯苯氨啶;美妥替哌;米丁度胺;米托克星(mitocarcin);丝裂红素;米托洁林;米托马星;丝裂霉素;米托司培;米托坦;盐酸米托蒽醌;霉酚酸(mycophenolic acid);诺考达唑;诺加霉素;奥马铂;奥昔舒仑;紫杉醇;培门冬酶;培利霉素;戊氮芥;硫酸培洛霉素;培磷酰胺;哌泊溴烷;哌泊舒凡;盐酸吡罗蒽醌;普卡霉素;普洛美坦;卟吩姆钠;泊非霉素;泼尼氮芥;盐酸丙卡巴阱;嘌呤霉素;盐酸嘌呤霉素;吡唑呋喃菌素;异戊烯腺苷;吡鲁米特;沙芬戈;盐酸沙芬戈;司莫司汀;辛曲秦;磷乙酰天冬氨酸钠(sparfosate sodium);司帕霉素;盐酸螺旋锗(spirogermanium hydrochloride);螺莫司汀;螺铂;链黑菌素;链脲菌素;磺氯苯脲;他利霉素;替可加兰钠;喃氟啶;盐酸替洛蒽醌;替莫泊芬;替尼泊苷;替罗昔隆;睾内酯;硫咪嘌呤;硫鸟嘌呤;噻替哌;噻唑羧胺核苷;替拉扎明;枸橼酸托瑞米芬;醋酸曲托龙;磷酸曲西瑞宾;曲美沙特;葡萄糖醛酸曲美沙特;曲普瑞林;盐酸妥布氯唑;尿嘧啶氮芥;乌瑞替哌;伐普肽;维替泊芬;硫酸长春碱;硫酸长春新碱;长春地辛;硫酸长春地辛;硫酸长春匹定;硫酸长春苷酯;硫酸长春罗新;酒石酸长春瑞滨;硫酸长春罗定;硫酸长春利定;伏罗唑;折尼铂;净司他丁;盐酸佐柔比星。其它抗癌药物包括但不限于:20-epi-1,25二羟维生素D3;5-乙炔基尿嘧啶;阿比特龙;阿柔比星;acylfulvene;腺环戊醇;阿多来新;阿地白介素;ALL-TK拮抗剂;六甲蜜胺;氨莫司汀;amidox;氨磷汀;氨基乙酰丙酸;氨柔比星;安吖啶;阿那格雷;阿那曲唑;穿心莲内酯;血管生成抑制剂;拮抗剂D;拮抗剂G;安雷利克斯(antarelix);抗背部化形态形成蛋白-1(anti-dorsalizing morphogenetic protein);抗雄激素,前列腺肿瘤;抗雌激素;抗瘤酮(antineoplaston);反义寡核苷酸;甘氨酸阿非迪霉素;凋亡基因调控剂;凋亡调节剂;脱嘌呤酸;ara-CDP-DL-PTBA;精氨酸脱氨酶;asulacrine;阿他美坦;阿莫司汀;axinastatin 1;axinastatin 2;axinastatin 3;阿扎司琼;阿扎毒素;azatyrosine;浆果赤霉素III衍生物;balanol;巴马司他;BCR/ABL拮抗剂;benzochlorins;benzoylstaurosporine;β-内酰胺衍生物;β-alethine;betaclamycin B;桦木酸;bFGF抑制剂;比卡鲁胺;比生群;bisaziridinylspermine;双奈法德;bistratene A;比折来新;breflate;溴匹立明;布度钛;丁硫氨酸亚砜亚胺;卡泊三醇;钙感光蛋白C;喜树碱衍生物;金丝雀痘IL-2;卡培他滨;甲酰胺-氨基-三唑;羧胺三唑;CaRest M3;CARN 700;软骨衍生抑制剂;卡折来新;酪蛋白激酶抑制剂(ICOS);粟树精胺;天蚕素B;西曲瑞克;二氢卟吩;氯喹喔啉磺酰胺;西卡前列素;顺卟啉;克拉屈滨;克罗米芬类似物;克霉唑;collismycin A;collismycin B;考布他汀(combretastatin)A4;考布他汀类似物;conagenin;甘蓝海绵素816(crambescidin816);克雷斯托;念珠藻素8;念珠藻素A衍生物;curacin A;cyclopentanthraquinones;cycloplatam;cypemycin;阿糖胞苷烷磷酯;细胞溶解因子;磷酸己烷雌酚(cytostatin);达昔单抗;地西他滨;脱氢膜海鞘素B;德舍瑞林;地塞米松;右旋体右异环磷酰胺(dexifosfamide);右丙亚胺;右维拉帕米;地吖醌;膜海鞘素B;didox;diethylnorspermine;二氢-5-氮杂胞苷;二氢紫杉醇,9-;dioxamycin;二苯基螺莫司汀;多西他赛;二十二醇;多拉司琼;脱氧氟尿苷;屈洛昔芬;屈大麻酚;倍癌霉素SA;依布硒啉;依考莫司汀;依地福新;依决洛单抗;依氟鸟氨酸;榄香烯;乙密替氟;表柔比星;爱普列特;雌莫司汀类似物;雌激素激动剂;雌激素拮抗剂;依他硝唑;磷酸依托泊苷;依西美坦;法倔唑;法扎拉滨;芬维A胺;非格司亭;非那雄胺;夫拉平度;氟卓斯汀;fluasterone;氟达拉滨;fluorodaunorunicin hydrochloride;福酚美克;福美坦;福司曲星;福莫司汀;钆替沙林(gadolinium texaphyrin);硝酸镓;加洛他滨;加尼瑞克;明胶酶抑制剂;吉西他滨;谷胱甘肽抑制剂;1,7-庚二醇-二-氨基磺酸盐(hepsulfam);调节蛋白;六亚甲基二乙酰胺;金丝桃素;伊班膦酸;伊达比星;艾多昔芬;伊决孟酮;伊莫福新;伊洛马司他;imidazoacridones;咪喹莫特;免疫刺激剂多肽;胰岛素样生长因子-1受体抑制剂;干扰素激动剂;干扰素;白介素;碘苄胍;碘阿霉素;甘薯苦醇,4-;伊罗普拉;伊索拉定;isobengazole;isohomohalicondrin B;伊他司琼;jasplakinolide;kahalalide F;三醋酸片螺素-N;兰瑞肽;leinamycin;来格司亭;硫酸香菇多糖;leptolstatin;来曲唑;白血病抑制因子;白细胞α干扰素;亮丙瑞林+雌激素+孕酮;亮丙瑞林;左旋咪唑;利阿唑;线性多胺类似物;亲脂性二糖肽;亲脂性铂化合物;lissoclinamide 7;洛铂;蚯蚓磷脂;洛美曲索;氯尼达明;洛索蒽醌;洛伐他汀;洛索立宾;勒托替康;lutetium texaphyrin;lysofylline;裂解肽(lyticpeptides);美坦辛;制甘糖酶素(mannostatin)A;马马司他;马索罗酚;乳腺丝氨酸蛋白酶抑制剂;基质溶解因子抑制剂;基质金属蛋白酶抑制剂;美诺立尔;美巴龙(merbarone);阿伏瑞林;蛋氨酸酶;胃复安;MIF抑制剂;米非司酮;米替福新;米立司亭;不匹配的双链RNA;米托胍腙;二溴卫矛醇;丝裂霉素类似物;米托萘胺;mitotoxin成纤维细胞生长因子-皂草素(saporin);米托蒽醌;莫法罗汀;莫拉司亭;单克隆抗体,人绒毛膜促性腺激素;单磷酰脂质A+myobacterium细胞壁sk;莫哌达醇;多重耐药基因抑制剂;基于多种肿瘤抑制因子1的治疗;芥末抗癌剂;mycaperoxide B;分歧杆菌细胞壁提取物;myriaporone;N-acetyldinaline;N-取代苯甲酰胺;那法瑞林;nagrestip;纳洛酮+喷他佐辛;napavin;naphterpin;那托司亭;奈达铂;奈莫柔比星;奈立膦酸;中性肽链内切酶;尼鲁米特;nisamycin;一氧化氮调节剂;硝基氧抗氧化剂;nitrullyn;O6-苄基鸟嘌呤;奥曲肽;okicenone;寡核苷酸;奥那司酮;昂丹司琼;昂丹司琼;oracin;口服细胞因子诱导剂;奥马铂;奥沙特隆;奥沙利铂;oxaunomycin;紫杉醇;紫杉醇类似物;紫杉醇衍生物;palauamine;palmitoylrhizoxin;帕米膦酸;人参炔三醇;帕诺米芬;parabactin;帕折普汀;培门冬酶;培得星;戊聚糖多硫酸钠;喷司他丁;pentrozole;全氟溴烷;培磷酰胺;紫苏醇;phenazinomycin;乙酸苯酯;磷酸酶抑制剂;溶血性链球菌制剂;盐酸毛果芸香碱;吡柔比星;吡曲克辛;placetin A;placetin B;纤溶酶原激活物抑制剂;铂络合物;铂化合物;铂-三胺络合物;卟吩姆钠;泊非霉素;强的松;丙基双吖啶酮;前列腺素J2;蛋白酶体抑制剂;基于蛋白A的免疫调节剂;蛋白激酶C抑制剂;蛋白激酶C抑制剂,微藻;蛋白酪氨酸磷酸酶抑制剂;嘌呤核苷磷酸化酶抑制剂;红紫素;甲氧基吡唑啉吖啶;吡哆醛化血红蛋白聚乙二醇缀合物;raf拮抗剂;雷替曲塞;雷莫司琼;ras法呢基蛋白转移酶抑制剂;ras抑制剂;ras-GAP抑制剂;脱甲基化瑞替普汀;铼Re 186依替膦酸钠;根霉素;核酶;RII维甲酸;吡鲁米特;罗希吐碱;罗莫肽;罗喹美克;rubiginone B1;ruboxyl;沙芬戈;saintopin;2-氯-3-肌氨酰胺-1-亚硝基脲(SarCNU);sarcophytol A;沙格司亭;Sdi 1模拟物;司莫司汀;衰老衍生抑制剂1;正义寡核苷酸;信号转导抑制剂;信号转导调节剂;单链抗原结合蛋白;西佐喃(sizofuran);索布佐生;硼卡钠(sodium borocaptate);苯基乙酸钠;solverol;生长调节素结合蛋白;索纳明;膦门冬酸(sparfosic acid);spicamycin D;螺莫司汀;斯耐潘定;spongistatin 1;角鲨胺;干细胞抑制剂;干细胞分裂抑制剂;stipiamide;溶基质素抑制剂;sulfinosine;强效血管活性肠肽拮抗剂;素拉迪塔(suradista);苏拉明;苦马豆素;合成糖胺聚糖;他莫司汀;他莫昔芬甲碘化物;牛磺莫司汀;他扎罗汀;替可加兰钠;替加氟;tellurapyrylium;端粒酶抑制剂;替莫泊芬;替莫唑胺;替尼泊苷;四氯十氧(tetrachlorodecaoxide);tetrazomine;菌体胚素(thaliblastine);噻可拉林;促血小板生成素;促血小板生成素模拟物;胸腺法新;促胸腺生成素受体激动剂;胸腺曲南;促甲状腺激素;tin ethyl etiopurpurin;替拉扎明;二氯二茂钛;topsentin;托瑞米芬;全能干细胞因子;翻译抑制剂;维甲酸;triacetyluridine;曲西立滨;曲美沙特;曲普瑞林;托烷司琼;妥罗雄脲;酪氨酸激酶抑制剂;酪氨酸磷酸化抑制剂;UBC抑制剂;乌苯美司;泌尿生殖窦来源的生长抑制因子;尿激酶受体拮抗剂;伐普肽;变曲霉素(variolin)B;载体系统,红细胞基因治疗;维拉雷琐;藜芦胺;维尔丁;维替泊芬;长春瑞滨;vinxaltine;vitaxin;伏氯唑;扎诺特隆;折尼铂;亚苄维(zilascorb)和净司他丁斯酯。在一个实施例中,抗癌药物是5-氟尿嘧啶、紫杉醇或甲酰四氢叶酸。
药物组合物
本发明包括包含一种或多种本发明组合物的药物组合物。本文所述的药物组合物的制剂可以通过药理学领域已知或以后开发的任何方法制备。通常,这种制备方法包括使活性成分与载体或者一种或多种其它助剂结合的步骤,然后,如果必要或需要,将产品成型或包装成所需的单剂量或多剂量单位。
根据预期的用途和应用,所述组合物可以包含另外的药剂、药物、载体、缓冲剂、佐剂、分散剂、稀释剂等。
适合的药物载体、赋形剂和/或稀释剂的实例是本领域熟知的,包括但不限于胶、淀粉(例如玉米淀粉,预胶化淀粉)、糖(例如乳糖,甘露糖醇,蔗糖,葡萄糖)、纤维素材料(例如微晶纤维素)、丙烯酸酯(例如聚丙烯酸甲酯)、碳酸钙、氧化镁、滑石粉或其混合物。
用于液体制剂的药学上可接受的载体是水性或非水性溶液、混悬剂、乳液或油。非水溶剂的实例是丙二醇、聚乙二醇和可注射的有机酯如油酸乙酯。油的实例是动物、植物或合成来源的那些,例如花生油、大豆油、橄榄油、葵花籽油、姜黄油、鱼肝油、另一种海洋油或者来自牛奶或鸡蛋的脂质。
水性载体包括水,醇/水溶液,乳液或混悬剂,包括盐水和缓冲介质,例如磷酸缓冲盐溶液,水,乳液,例如油/水乳液,各种类型的润湿剂,无菌溶液等,包含这种载体的组合物可以通过公知的常规方法进行配制。合适的载体可以包含当与本发明的生物活性化合物组合时保留生物活性的任何材料。用于肠胃外给药的制剂可以包括无菌水性或非水性溶液、混悬剂和乳液。非水溶剂的实例是丙二醇、聚乙二醇、植物油如橄榄油和可注射的有机酯如油酸乙酯。水性载体包括水,醇/水溶液,乳液或混悬剂,包括盐水和缓冲介质。肠胃外输送载体可包括氯化钠溶液、林格氏葡萄糖、葡萄糖和氯化钠、林格氏乳酸盐或不挥发油。静脉内输送载体可包括液体和营养补充剂、电解质补充剂(例如基于林格氏葡萄糖的那些)等。还可以存在防腐剂和其它添加剂,包括例如抗菌剂、抗氧化剂、螯合剂和惰性气体等,此外,本发明的药物组合物可以包含蛋白质载体,例如,血清白蛋白或免疫球蛋白,优选来源于人。
本文提供的药物组合物也可以作为控释组合物施用,即其中活性成分在给药后一段时间内释放的组合物。控释或缓释组合物包括在亲脂性贮库(例如脂肪酸,蜡,油)中的制剂。在另一个实施例中,组合物是速释组合物,即其中所有活性成分在给药后立即释放的组合物。
此外,根据本发明的药物组合物和本文中各种实施例中所述的药物组合物或包含所述化合物的组合物可以与食品、功能食品、饮料、药用食品混合施用。
虽然本文提供的药物组合物的描述主要针对适合于对人类进行伦理施用的药物组合物,但是本领域技术人员将理解,这些组合物通常适合于施用于各种动物。为了使组合物适合于各种动物的施用,对适于给予人的药物组合物的做出改变是很好理解的,普通技术的兽医药理学家可以仅用普通的(如果有的话)实验来设计和进行这种改变。预期的本发明的药物组合物所施用的受试者包括但不限于人类和其它灵长类动物,包括商业上相关的哺乳动物如非人灵长类动物、牛、猪、马、羊、猫和狗的哺乳动物。
可用于本发明方法的药物组合物可以在适合于眼部、口服、直肠、阴道、肠胃外、局部、肺部、鼻内、口腔、肿瘤内、硬脑膜外、脑内、脑室内或另外的给药途径的制剂中制备、包装或销售。其它预期的制剂包括投射的纳米颗粒(projected nanoparticles)、脂质体制剂、含有活性成分的再密封红细胞和基于免疫学的制剂。
本发明药物组合物可以作为单一单位剂量或多个单一单位剂量批量制备、包装或销售。如本文所用,“单位剂量”是包含预定量的活性成分的药物组合物的离散量。活性成分的量通常等于将施用于受试者的活性成分的剂量或这种剂量的合适部分,例如这种剂量的一半或三分之一。
本发明的药物组合物中活性成分、药学上可接受的载体和任何其它成分的相对量将根据所治疗的受试者的身份、大小和状况而变化,并且这还取决于组合物将被施用的途径。举例来说,组合物可以包含0.1%至100%(w/w)的活性成分。
除了活性成分之外,本发明药物组合物还可以包含一种或多种另外的药物活性剂。
可以使用常规技术制备本发明的药物组合物的控释或缓释制剂。
本发明的组合物还可以包含益生元组分。“益生元”包括由宠物肠道菌群发酵的物质或化合物,从而以致病菌为代价促进宠物胃肠道中乳酸菌的生长或发育。这种发酵的结果可以是释放脂肪酸,特别是结肠中的短链脂肪酸。该释放可以具有降低结肠中pH值的作用。合适的益生元的非限制性实例包括寡糖,例如菊粉及其通常称为低聚果糖、低聚半乳糖、低聚木糖或淀粉的低聚糖衍生物(例如果胶,β-葡聚糖和抗性淀粉)的水解产物。益生元可以以任何合适的形式提供。例如,益生元可以以含有纤维的植物材料的形式提供。合适的植物材料包括芦笋、洋蓟、洋葱、小麦或菊苣或这些植物材料的残留物。或者,可以以菊粉提取物提供益生元纤维,例如菊苣提取物是合适的。合适的菊粉提取物可以得自具有商标“Raftilose”的比利时Tirlemont 3300的Orafti SA。例如,菊粉可以以细白色粉末的Raftiline(g)ST的形式提供,其含有约90至约94重量%的菊粉、多至约4重量%的葡萄糖和果糖以及约4至9重量%的蔗糖。或者,纤维可以是低聚果糖的形式,例如得自具有商标“Raftilose”的比利时Tirlemont 3300的Orafti SA。例如,菊粉可以以Raftilose(g)P95的形式提供。另外,可以通过水解菊粉、通过酶法或者通过使用微生物来获得低聚果糖。
药物组合物还包括营养组合物,例如用于口服的口服营养组合物和任选的用于肠内吸收的营养组合物,其中营养组合物包括本发明的化合物。
如果将营养组合物配制成口服施用,则组合物可以是液体口服营养补充剂(例如,不完全进食)或完全进食。以这种方式,营养组合物可以以任何已知的形式施用,包括例如片剂、胶囊、液体、咀嚼片、软凝胶、袋剂、散剂、糖浆剂、液体混悬剂、乳剂和方便剂型的溶液。
营养配方包括任何营养完整或补充制剂(例如营养补充剂)。如本文所用,“营养完全”优选是含有足量类型和水平的大量营养物(蛋白质,脂肪和碳水化合物)和微量营养物足以成为其所正在施用的受试者的唯一营养来源的营养品。患者可以从完整的营养组合物中获得其营养需求的100%。根据一个实施例,营养配方是提供补充营养的补充制剂。“补充配方”可以不是营养完整的,但优选含有支持性的特定营养物质,例如结合体育锻炼,进一步具有本发明的有益效果,和/或满足受试者的特定或额外需要。
营养配方可以是通常适用的营养配方,例如适应特定年龄的受试者,例如儿童配方,但它也可以是老年患者、重症监护病人的配方或者例如患有特定疾病的患者的特别适用的配方。任何营养配方可以是可重构的,即以基本干燥的例如粉末形式或即饮的例如液体配方形式存在。
本发明的试剂盒
本发明还包括一种试剂盒,其包含本发明的方法中有用的化合物和描述例如本文别处所述的施用短链脂肪酸的方法或本文别处所述的施用益生菌的方法的说明材料。适于肠胃外施用的药物组合物的制剂包括与药学上可接受的载体如无菌水或无菌等渗盐水组合的活性成分。这样的制剂可以以适合于推注给药或连续施用的形式进行制备、包装或销售。可注射制剂可以以单位剂型制备、包装或销售,例如在安瓿或含有防腐剂的多剂量容器中。用于肠胃外施用的制剂包括但不限于混悬剂、溶液、油性或水性载体中的乳剂、糊剂和可植入的缓释或可生物降解制剂。这样的制剂还可以包含一种或多种另外的成分,包括但不限于悬浮剂、稳定剂或分散剂。在用于肠胃外施用的制剂的一个实施例中,活性成分以干燥(即粉末或颗粒)形式提供,用于在重构化合物的肠胃外施用之前用合适的载体(例如无菌无热原水)重构。
药物组合物可以以无菌注射的水性或油性混悬剂或溶液的形式制备、包装或销售。该混悬剂或溶液可以根据已知技术配制,除了活性成分之外,还可以包含另外的成分,例如本文所述的分散剂、润湿剂或悬浮剂。这种无菌注射制剂可以使用无毒的肠胃外可接受的稀释剂或溶剂例如水或1,3-丁二醇来制备。其它可接受的稀释剂和溶剂包括但不限于林格氏溶液、等渗氯化钠溶液和不挥发油如合成的单甘油酯或二甘油酯。其它有用的非胃肠道给药的制剂包括包含微晶形式的、在脂质体制剂中或作为可生物降解的聚合物体系的组分的活性成分的那些。用于缓释或植入的组合物可以包含药学上可接受的聚合物或疏水性材料,例如乳液、离子交换树脂、微溶性聚合物或微溶性盐。
实验性实例
通过参考以下实验实例进一步详细描述本发明。这些实例仅是为了说明的目的而提供的,除非另有说明,否则不是限制性的。因此,本发明绝不应被解释为限于以下实施例,而应理解为包括由于本文提供的教导而变得显而易见的任何和所有变化。
没有进一步描述,相信本领域普通技术人员可以使用前述描述和以下说明性实例来制备和利用本发明的化合物并实施所要求保护的方法。因此,以下工作实例具体指出了本发明的优选实施例,并且不被解释为以任何方式限制本公开的其余部分。
实例1:共生细菌在乙型肝炎x转基因小鼠中提供对乙型肝炎病毒介导的肝细胞癌 的化学预防
乙型肝炎病毒(HBV)的慢性感染与慢性肝病(CLD)的进展和肝细胞癌(HCC)的出现有关。HCC是世界上普遍存在的癌症,几乎没有治疗方法。鉴于HCC在感染后几十年发展,并且最常见于慢性炎症背景下,实验设计用于测试已知抑制炎症的选定益生菌可以作为一种简单且廉价的手段来预防或延缓HCC的出现的假说。为了测试这一点,用益生菌(Synbiotic2000TM)的混合物处理发展了在HCC中达到顶点的进行性肝脏损伤的乙型肝炎x(HBx)转基因小鼠。结果显示与对照转基因小鼠相比,发育异常和HCC结节的数量和大小显著减少。与对照小鼠相比,选定的免疫和癌症相关标志物的微阵列分析显示用Synbiotic2000TM治疗的小鼠的肝脏中的表达大幅降低。由于所使用的细菌将复合碳水化合物代谢为已知在其它系统中具有抗炎特性的短链脂肪酸(SCFAs),在平行实验中给HBx转基因小鼠饲喂由Synbiotic2000TM(乙酸盐,丙酸盐,丁酸盐)制成的SCFAs的组合,其中并不存在细菌。结果再次显示发育异常和HCC结节的数量和大小大幅减少。这些结果表明,Synbiotic 2000TM或其以SCFAs的形式的代谢副产物减弱HCC的发病机理,并且可以作为癌症化学预防方法使用,不仅可用于HCC,还可用于经常在慢性炎症背景下发展的其它癌症。
现在描述这些实验中使用的材料和方法。
材料和方法
小鼠
为了研究HCC的发病机理并评估新的治疗方法,已经建立了HBx转基因小鼠模型(Yu DY等,J Hepatol,1999;31:123-132)。在出生时,这些HBx转基因小鼠在肝脏中几乎没有或没有HBx表达,且没有病理改变。到3-4个月龄,它们发展为与肝炎/脂肪变性相关的可检测的HBx。到6-7个月龄,肝内HBx的存在、频率和分布高得多,这与发育异常结节和微观HCC的出现有关。到9-10个月龄,广泛的HBx染色与宏观HCC结节的出现有关。鉴于这一系列事件类似于人类的慢性感染,该动物模型被用于当前的工作。
为了测试Synbiotic 2000TM或其SCFA代谢产物将延迟或预防HBV相关HCC的发病机理的假说,使用了HBx转基因小鼠(Arzumanyan A等,Cancer Res,2012;72(22):5912-5920)。在C57Bl6背景上使用HBx基因及其增强子/启动子复合物制备转基因小鼠,使得HBx仅在分化的肝细胞中表达。这导致HBx表达的年龄依赖性增加,其与肝脏中病变的进展相关。这些小鼠由Dr.Dr.Dae-Yeul Yu(Korea Research Institute of Bioscience andBiotechnology,Taejon,韩国)提供,并与CBA小鼠交配。然后,由兄妹交配产生一群C57Bl6/CBA小鼠。与原来的C57Bl6小鼠品系相比,后者具有进行性病变发生率更高的动物。
益生菌和短链脂肪酸(SCFAs)
Synbiotic 2000TM由Medipharm(Des Moines,Iowa)提供。它每包含有四种乳酸生产杆菌(1010植物乳杆菌2362,1010副干酪乳杆菌干酪paracasei亚种19,1010肠系膜明串珠菌32-77:1e和1010戊糖片球菌5-33:3)的混合物和四种生物活性植物纤维类型(2.5克菊粉;2.5克果胶;2.5克β-葡聚糖和2.5克抗性淀粉)。以0.05克/剂量(2.5克/30毫升水,0.6毫升剂量/小鼠)每日管饲,施用3个月。
由乙酸钠、丙酸钠和丁酸钠组成的短链脂肪酸通过Fisher Scientific(Fairlawn,NJ)购自Acros Organics(Geel,比利时)。它们通过管饲法施用,以每日0.2毫升含有150mM的SCFAs(50mM的每个SCFA),持续30天。
实验方案
通过尾部剪断分析和实时定量PCR扩增测试HBx转基因小鼠的HBx基因的存在。如前所述(Arzumanyan A等,Cancer Res,2012;72(22):5912-5920),通过从福尔马林固定的石蜡包埋的肝组织切割得到的切片的免疫组织化学染色来评估HBx蛋白。对于这项工作,每日用新鲜重构的Synbiotic 2000TM饲喂3、6和9个月的10只HBx转基因小鼠的组,饲养三个月。对照组包括使用PBS代替Synbiotic 2000TM管饲的年龄和性别匹配的HBx转基因小鼠。使用Synbiotic 2000TM或PBS管饲年龄和性别匹配的HBx阴性同窝出生组。定期对所有小鼠进行眼眶后取血测定丙氨酸氨基转移酶(ALT/GPT 50,Sigma Chemical Co.,St.Louis,MO),经过3个月的治疗后进行安乐死。在每次出血之前称重小鼠,并在安乐死后测定肝脏重量。计算每个肝脏表面可见的肿瘤结节。然后,将来自每个叶的肝脏样品进行包埋,并用H&E染色切片。通过由两个人独立使用光学显微镜按编码检查来自每个肝脏的载玻片,并记录各种病变。来自所有小鼠的剩余肝组织在液氮中快速冷冻并存储在-80℃。这项工作的所有动物实验方案均由天普(Temple)大学研究所动物照管和使用委员会批准。
RNA分离和cDNA合成
使用带有高压蒸汽处理的非一次性探针(TissueRuptor,Qiagen)的手持转子-定子均质器将所有小鼠的冷冻肝脏组织样品在细胞溶解缓冲液(RTL)中均质。然后按照制造商协议,使用RNeasy Mini Kit(Qiagen)提取每个样品的总RNA。使用无RNA酶的DNA酶试剂盒(Qiagen)除去污染的DNA。在Nanodrop紫外-可见分光光度计(Thermo Scientific)中,在260和280纳米处读取每个样品1微升的吸光度来确定RNA浓度。从30毫克的初始组织样品获得最终体积的50微升洗脱缓冲液的典型产率为50至1800纳克/微升(ng/μl)。然后,将样品等分至最终浓度为50ηg/μl,并存储在-80℃。
逆转录使用来自这些样品中的每一个的500ηg的总RNA,并且根据所提供的制造商的说明书使用RT2First Strand Kit(Qiagen)实现。样品随后储存在-20℃,直到在qPCR阵列中使用。
qPCR阵列测定
定制的RT2分析仪PCR阵列(SA Biosciences,Qiagen,Izasa),在微孔中格式化,包含一组针对本研究的具体研究兴趣的基因。使用RT2 SYBR Green Rox qPCR Mastermix(Qiagen)进行cDNA的扩增。每个逆转录样品以1:3稀释,并将51微升稀释后的样品加入到550微升的mastermix中。从该反应混合物中将每种混合物10微升装入每个孔中。
统计分析
使用卡方检验来评估与对照小鼠相比治疗组中不同肝脏病变之间的关系。p<0.05时具有显著性。使用Student’s t检验来评估治疗组和对照小鼠之间肿瘤大小的差异。P<0.05具有显著性。
现在对实验结果进行描述。
Synbiotic 2000TM对慢性肝病和HCC的作用
鉴于HCC的发病机理是免疫介导的(Feitelson MA等,Cancer Lett,2009;286(1):69-79),并且Synbiotic 2000TM中的益生菌具有抗炎性质,实验设计为测试用Synbiotic2000TM喂养HBx转基因小鼠可以延迟或阻断CLD发展及其进展为HCC的假说。因此,每组10只小鼠从3、6和9个月开始管饲3个月。小鼠在治疗开始之前就进行了眼眶后取血,且每月一次直到动物安乐死。然后取出肝脏,并将来自每个叶的样品进行福尔马林固定和石蜡包埋,而剩余的肝脏样品快速冷冻。
鉴于HBx转基因小鼠发生肝炎,测试了连续的血清样品的ALT酶活性。用PBS治疗的大多数HBx小鼠的平均ALT值显著高于同期用Synbiotic 2000TM治疗的年龄和性别匹配的HBx小鼠的平均ALT值(图1)。在3-6个月龄的小鼠中,平均ALT值无差异(图1A),但在6-9个月龄的小鼠中,7.5-9个月的平均差异有显著不同(t=14.18,P<0.001)(图1B),与9-12个月龄(t=6.78,P<0.001)治疗的小鼠的平均差异类似(图1C)。这些研究结果表明,随着年龄的增长,肝病越来越严重和进展,与对照组相比,Synbiotic 2000TM治疗小鼠的平均ALT值差异越大。然而应该强调的是,虽然Synbiotic 2000TM与PBS治疗的小鼠的平均ALT值在许多情况下有统计学差异,但ALT升高是轻微的,许多差异在小于60单位的值之间。
然后在从3、6或9个月龄开始治疗3个月的HBx小鼠中评估Synbiotic 2000TM对慢性肝病进展和HCC进展的影响。在6个月龄时被安乐死的3个月大开始治疗的小鼠中,10只PBS治疗的小鼠中有5只(50%)患有门静脉周肝炎,而在10只Synbiotic 2000TM治疗的小鼠中有4只(图7)被观察到这种情况。虽然趋势是与PBS治疗的小鼠相比,Symbiotic治疗的小鼠具有更少且通常更温和的损伤,但是这些差异在统计学上并不显著(图2A)。相比之下,在6个月大的小鼠中,所有10个PBS对照组在第9个月龄进行肝脏评估时发现普遍发育异常的证据,而在Synbiotic 2000TM治疗的小鼠中,只有40%有发育异常的证据。在Synbiotic2000TM治疗组中,与对照小鼠相比,发育异常细胞和结节通常较少。重要的是,用Synbiotic2000TM治疗的一半小鼠具有组织学上正常的肝脏(图2B,图8)。当与9个月大的小鼠进行平行实验时,90%的PBS治疗的小鼠具有HCC结节,而只有40%的Synbiotic 2000TM治疗的小鼠具有HCC(图2C)。这些小鼠中的许多具有多种损伤类型(例如,肝炎,发育异常和/或HCC),并且伴有发育异常细胞的多发结节和多结节性HCC的表征(图9)。正如预期的那样,并行治疗的HBx阴性小鼠在肝脏中没有显示出显著的病变(数据未显示)。因此,Symbiotic细菌的治疗似乎在不同月龄的小鼠之间的肝脏病变中产生定性和定量的变化。
为了确定上述Synbiotic 2000TM的观察是否与毒性相关,在实验结束时对所有小鼠进行称重。肝脏也被称重。在所有的小鼠组中,使用Synbiotic 2000TM治疗的小鼠与用安慰剂治疗的小鼠之间的身体或肝脏重量之间没有统计学差异。例如,在喂养三个月的九个月龄的组中,安慰剂治疗的小鼠的平均体重为45.3克,而Synbiotic 2000TM治疗的小鼠的平均体重为49.2克(t=0.879;P>0.3)。平均肝重分别为2.62和2.68克(t=0.102;P>0.9)。在较年幼的小鼠中观察到类似的结果(数据未显示)。这些结果表明,在3个月的时间内,Synbiotic 2000TM治疗无明显毒性。
本实验室和其它实验室的前期工作显示肝内HBx表达与慢性肝病严重程度之间存在直接相关性(Jin YM等,JViral Hepat,2001;8(5):322-30;Feitelson MA等,J Hepatol,1993;17(Suppl.3):S24-S34;Wang W等,Hepatology,1998;14:29-37;Wang W等,CancerRes,1991;51:4971-4977)。为了测试这是否发生在这里,并且与Synbiotic 2000TM治疗负相关,通过免疫组织化学染色评估来自每组治疗和对照小鼠的肝切片的HBx表达。在3个月大的小鼠中,细胞质HBx在分散的肝细胞或肝细胞组中为弱到中等(+1和+2)(图10)。较为大龄的动物肝脏的肝内HBx的存在,频率和分布有所增加(图10)。当用Synbiotic 2000TM治疗HBx小鼠时,与对照小鼠相比,HBx染色降低(图10,图3)。
与致瘤性和免疫相关的选择的标志物的部分表达谱
鉴于HCC在慢性炎症的背景下出现,并且HBx促进该肿瘤类型的发展,进行有限的PCR阵列分析以确定Synbiotic 2000TM是否影响所选肿瘤相关信号传导通路和/或有助于HCC的发病机制的细胞因子的表达。当3月龄的小鼠用Synbiotic 2000TM治疗3个月时,所选择的基因的表达谱与PBS治疗的动物相比,肿瘤发生相关的标志物上调1.5-3倍(图4A)。当对6个月大的小鼠使用Synbiotic 2000TM治疗3个月时,与对照小鼠相比,大多数肿瘤相关标志物的表达既没有上调也没有下调(图4B)。一个显著的例外是EGFR,其刺激生长,并被Synbiotic2000TM下调超过8倍。相比之下,当对9个月大的小鼠给予Synbiotic 2000TM 3个月时,与安慰剂治疗的动物相比,与肿瘤发生相关的大多数标志物在测试中被大幅下调(图4C)。这些标记包括Gli1和2,它们是hedgehog通路中的信号分子、若干Notch受体、TGFβ-1和2和TGFβR1(通常负调节细胞生长)、Tcf3(对β-连环蛋白信号传导是重要的)、Akt1(其通常在致癌过程中被组成型激活)以及MMP-9和-10(促进转移)(图4C)。关于在6个月时安乐死的3个月龄的小鼠中的免疫介导标志物,与安慰剂治疗相比,大多数免疫标志物在检测中的升高和抑制均不超过2倍(图4A)。在9个月时安乐死的6个月龄小鼠获得了类似的结果(图4B)。然而,在12个月时安乐死的9个月龄的小鼠中,与对照小鼠相比,所有与免疫反应相关的标志物都被抑制(图4C),表明对HBx和/或HBx的免疫应答性质发生转变引起伴随疾病进展的肝脏变化。当对来自年龄和性别匹配的转基因阴性同窝出生动物的肝脏进行这种分析时,这些标志物的水平没有统计学显著差异,表明它们的差异与HBx对肝脏的增加的影响有关,而不是由于年龄相关的变化(数据未显示)。
用短链脂肪酸(SCFAs)治疗
Synbiotic 2000TM中的乳酸生产细菌和可代谢成SCFAs的丰富益生元营养来源一起被供应。已知SCFAs是抗炎的,并且由于HCC在具有炎性成分的慢性肝病的背景下产生,因此设计实验以确定SCFAs是否与Synbiotic 2000TM一样对HCC的发病机理具有相同的影响。由于在发展为HCC的9-12个月大的小鼠中观察到了Synbiotic 2000TM的最大影响,9个月大的小鼠通过管饲喂养SFCAs 3个月,然后检查肝脏中病变的存在,频率和分布。当肝脏从SCFA治疗的12个月龄的小鼠中取出时,与SCFA治疗的小鼠相比,在PBS治疗的小鼠肝脏表面的肿瘤更多和更大(图5)。当从每个叶制备显微镜切片时,再次评估肿瘤大小,存在的52%的肿瘤是小的(直径<0.5cm),而32%是大的(直径大于1cm)。相比之下,在安慰剂治疗的小鼠中,只有29%是小的,但是50%被认为是大的(图6;X2=4.59,P<0.05)。这也反映在两组小鼠中大:小肿瘤的比例。在安慰剂治疗的小鼠中,比例为1.75,但是在SCFA治疗的小鼠中,比例转变到0.62,表明SCFA部分阻断了大肿瘤的发展。在所有小鼠中,肿瘤形态的特征是未分化的HCC,与肿瘤大小无关(图6D)。
HCC是一个主要的公共卫生问题,特别是在HBV流行的发展中国家。在大多数情况下,诊断为晚期,这使得这种肿瘤类型难以治疗。这为开发和应用可用于治疗早期癌症或癌前病变患者的干预策略提供了强有力的依据。本文的结果表明,即使3个月用选择的乳酸菌或其SCFA代谢物的混合物进行治疗,出现在HBx转基因小鼠中的HCC结节的数量和大小也显著减少。
HBx转基因小鼠随着年龄的增长肝脏病变逐渐发展,最终导致在10个月时出现HCC(Yu DY等,J Hepatol,1999;31:123-132)。用Synbiotic 2000TM治疗6-9个月龄的小鼠可有力地降低发育异常的发生率(图2B),而从9-12个月龄开始治疗的小鼠的HCC发病率显著降低(图2C)。鉴于发育异常在6-9月龄期发展,HCC在9-12个月龄期发展,这些发现表明Synbiotic2000TM可阻止慢性肝病发展为肿瘤前和肿瘤结节。这一解释也与9个月龄时确定的脂肪变性和发育异常不受在该年龄开始的Synbiotic 2000TM治疗影响(图2C)的观察结果一致。
在HBx转基因小鼠中,HBx的肝内水平随年龄增长以及潜在的肝脏异常的严重程度而增加(图3A和3C)。这与有慢性肝病的人类和土拨鼠中X蛋白与进行性慢性肝病的表达之间的强烈联系是一致的(Jin YM等,JViral Hepat,2001;8(5):322-30;Feitelson MA等,JHepatol,1993;17(Suppl.3):S24-S34)。在由肝脏炎症浸润中的细胞免疫应答提供的活性氧(ROS)存在下HBx活性增强(Wang JH等,Biochem Biophys Res Commun,2003;310(1):32-9;Lim W等,J Mol Med(Berl),2010;88(4):359-69)。在这些情况下,HBx反激活其自身的增强子/启动子(其也是这些HBx转基因小鼠中转基因的一部分),导致HBx表达水平的提高。还知道少量的HBx与线粒体相关,其中它损害了电子传递链,导致ROS的进一步积累(Fatima G等,J Gen Virol,2012;93(Pt 4):706-15)。在这种情况下,已知乳酸生产细菌及其SCFA代谢产物刺激肠内及其外的T调节细胞(Smith PM等,Science,2013;341(6145):569-73),其可以限制炎症反应和ROS产生,从而降低HBx的活性和肝内水平(图3)。这也与有限的微阵列分析的结果一致,其中在用Synbiotic 2000TM治疗的小鼠中的许多基于免疫的标志物下调(图4)。以前的工作已经显示HBV携带者和进行性慢性肝病的HBx转基因小鼠中肝内ROS增加(Ha HL等,World J Gastroentero,2010;16(39):4932-7)。当在逐渐年长的小鼠中评估免疫标志物的抽样时,使用Synbiotic 2000TM的治疗在具有最高水平的肝内ROS的最老的小鼠中具有最大的作用(即这些免疫标志物的下调)(图4)。由于HBx的水平和活性部分依赖于ROS,并且HBx驱动这些动物的肿瘤发展,这可能解释了HBx表达降低(图3,图10)与用Synbiotic 2000TM治疗的小鼠中发育异常和HCC发病率降低之间的相关性(图8和图9,图2)。
HBx激活多个通路的基因表达,对肝癌发生有重要作用。它们在用Synbiotic2000TM治疗的9个月大的小鼠之间的抑制支持了这一假说,即这种介入部分阻断了HBx促进肿瘤发展的能力(图4)。例如,HBx通过上调Gli 1和2(Arzumanyan A等,Cancer Res,2012;72(22):5912-5920)介导的hedgehog信号的激活被Synbiotic 2000TM强烈地下调分别多于40倍和7倍(图4C)。用典型的hedgehog抑制剂GDC-0449治疗HBx转基因小鼠也降低了HBx转基因小鼠中出现的肿瘤的数量和大小(Arzumanyan A等,Cancer Res,2012;72(22):5912-5920),强调hedgehog信号对HCC的重要性。Notch信号,也被HBx上调(Wang F等,CancerLett,2010;298(1):64-73),在Synbiotic 2000TM治疗后平均减少了10倍以上(图4C)。由于Notch在胚胎发生期间有助于细胞命运,其在致癌过程中的再活化也可能介导从正常到肿瘤细胞转化的步骤。对于Nodal可作出的一个类似论据是:对于使用Synbiotic 2000TM治疗的9个月大的小鼠,Nodal可以下调20倍以上。对于肝癌发生重要的β-连环蛋白的HBx活化在Synbiotic2000TM治疗的HCC小鼠中未被活化(图4C)。鉴于β-连环蛋白是一种“严格”相关蛋白,HBx至少部分通过上调“严格”标志物的表达促进HCC,通过Synbiotic 2000TM的b-连环蛋白激活的抑制可能阻断肝和/或癌干细胞在肝脏中的扩增。也被HBx上调的TGFβ信号被在9个月大的小鼠中开始的Synbiotic 2000TM治疗基本上消除(图4C)。鉴于HBx将TGFβ信号从肝细胞生长的负调节因子转变为正调节因子,这种通路的抑制将部分阻止HBx促进肿瘤发展。此外,Synbiotic 2000TM治疗强烈地抑制了MMP-9(15倍)和MMP-10(超过65倍)(图4C)的事实,否则HBx会使其上调(Liu LP等,Cancer Invest,2010;28(5):443-51;Sze KM等,Hepatology,2013;57(1):131-9)并促进癌症通过转移扩散,提出了另外的通路,通过这种方法可阻止肝脏病变进展到发育异常和HCC。
在ROS存在下由HBx激活的NF-κB的作用似乎为许多观察到的Synbiotic 2000TM在肝脏病理学和相关分子变化中的效应提供了一个共同特征。例如,Notch信号的下调伴随着肝癌发生中NF-κB活性的下调(Lu J等,Int J Oncol,2013;42(5):1636-43)。Notch抑制也导致β-连环蛋白活性的抑制(Sun Q等,Int JOncol,2014),表明这些通路在HCC发展中互通。NF-κB的HBx激活也上调MMP-9的表达和活性,其促进肿瘤转移(Liu LP等,CancerInvest,2010;28(5):443-51)。有趣的是,IL-6的HBx上调依赖于MyD88(和NF-κB)(Xiang WQ等,J Hepatol,2011;54(1):26-33)。当结合其受体时,IL-6导致STAT3的激活(磷酸化),其又激活多种基因,包括STAT3本身。未磷酸化的STAT3然后结合NF-κB,导致改变了对HCC有贡献的另外选择的细胞基因的表达(Yang J等,Genes Dev,2007;21(11):1396-408)。此外,诸如TLR3、IL-18、TNFa、TGFβ、MyD88和IRF3的炎症介质也通过NF-κB向下游发出信号,表明Synbiotic 2000TM治疗所建立的抗炎环境预期会降低表达和/或通过这些分子发信号,这就是这些小鼠似乎发生的情况(图4C)。TLR3和IL-18水平降低6倍,TNFα和MyD88降低3倍,TGFβ降低5倍以上,IRF3降低近4倍。这些研究结果表明,ROS的减少和随后的NF-κB失活可能是癌症化学预防的重要策略。
SCFAs是产生细菌的乳酸的主要代谢产物,其促进T细胞分化成效应细胞和调节性T细胞以促进免疫或免疫耐受(Park J等,Mucosal Immunol,2014)。在这项研究中,似乎耐受性是有利的。SCFA治疗概括了Synbiotic 2000TM治疗预防HCC的结果(图5和图6)。丁酸盐的施用有助于解决化学诱导的结肠炎(Smith PM等,Science,2013;341(6145):569-73;Celasco G等,Biomed Rep,2014;2(4):559-563)和部分阻断的DEN诱导的HCC(Kuroiwa-Trzmielina J等,Int J Cancer,2009;124(11):2520-7;de Conti A等,J Nutr Biochem,2012;23(8):860-6),而丙酸盐已被证明可以降低在小鼠模型中已建立的肿瘤的生长(Bindels LB等,Br J Cancer,2012;107(8):1337-44)。因此,SCFAs可能阻止肿瘤发展和进展。SCFAs的抗炎性质可以通过结合G蛋白偶联受体(GPCR)和作为HDACi(Tan J等,AdvImmunol,2014;121:91-119)来反映其功能。鉴于通过GPCR相关通路(其中Smoothened和Frizzled是GCPRs)(Dorsam RT等,Trends Pharmacol Sci,2013;34(4):226-32)发生hedgehog和Wnt信号的HBx激活,通过SCFAs改变GPCR信号可能可以改变或部分阻断由HBx激活的信号,如同其它癌症一样。此外,HBx激活HDAC表达的发现(Tian Y等,Mol Cell Biol,2013;33(15):2810-6),以及SCFAs作为HDACi,表明有助于癌变的关键通路可能被SCFAs阻断。最后,重要的是考虑到Synbiotic 2000TM和SCFA治疗的影响可能远远超出上述机制,因为随着治疗,HBx表达的降低(图3)也可能抑制HBx在基因表达中介导表观变化的能力,如DNA和蛋白质甲基化、蛋白质磷酸化、泛素化、类泛素化以及其它有致癌作用的翻译后修饰(Mann DA,Hepatology,2014)。
本文引用的每个专利、专利申请和出版物的公开内容通过引用整体并入本文。
虽然已经参考具体实施例公开了本发明,但是显然本领域技术人员可以设计出本发明的其它实施例和变型,而不脱离本发明的真实精神和范围。所附权利要求旨在被解释为包括所有这些实施例和等同变化。

Claims (15)

1.用于预防或延缓受试者肝细胞癌发病的方法,所述方法包括向受试者施用包含至少一种短链脂肪酸的治疗有效量的组合物。
2.根据权利要求1所述的方法,其中所述短链脂肪酸选自:甲酸,乙酸,丙酸,异丁酸,丁酸,异戊酸,戊酸,异己酸,己酸,乳酸,琥珀酸和丙酮酸。
3.根据权利要求1所述的方法,其中所述组合物还包含药学上可接受的赋形剂。
4.根据权利要求1所述的方法,其中所述组合物与另一治疗剂组合施用。
5.根据权利要求1所述的方法,其中所述组合物经口施用。
6.根据权利要求5所述的方法,其中所述组合物与食物或饮料一起施用。
7.用于预防或延缓受试者肝细胞癌发病的方法,所述方法包括向受试者施用包含至少一种益生菌的治疗有效量的组合物。
8.根据权利要求7所述的方法,其中所述益生菌选自:植物乳杆菌、嗜酸乳杆菌、副干酪乳杆菌、肠系膜明串珠菌、保加利亚乳杆菌、乳酸乳杆菌、唾液乳杆菌、戊糖片球菌、嗜热链球菌、枯草芽孢杆菌、凝结芽孢杆菌、屎肠球菌、两歧双歧杆菌、乳酸双歧杆菌、长双歧杆菌和婴儿双歧杆菌。
9.根据权利要求7所述的方法,其中所述组合物还包含药学上可接受的赋形剂。
10.根据权利要求9所述的方法,其中所述赋形剂包含至少一种益生元。
11.根据权利要求7所述的方法,其中所述组合物与另一治疗剂组合施用。
12.根据权利要求7所述的方法,其中所述组合物经口施用。
13.根据权利要求12所述的方法,其中所述组合物与食物或饮料一起施用。
14.用于预防或延缓受试者肝细胞癌发病的试剂盒,所述试剂盒含有包含至少一种短链脂肪酸的组合物。
15.用于预防或延缓受试者肝细胞癌发病的试剂盒,所述试剂盒含有包含至少一种益生菌的组合物。
CN201680017250.3A 2015-01-23 2016-01-21 短链脂肪酸在癌症预防中的应用 Pending CN107405321A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210967776.5A CN115350171A (zh) 2015-01-23 2016-01-21 短链脂肪酸在癌症预防中的应用

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562106778P 2015-01-23 2015-01-23
US62/106,778 2015-01-23
PCT/US2016/014292 WO2016118730A1 (en) 2015-01-23 2016-01-21 Use of short chain fatty acids in cancer prevention

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202210967776.5A Division CN115350171A (zh) 2015-01-23 2016-01-21 短链脂肪酸在癌症预防中的应用

Publications (1)

Publication Number Publication Date
CN107405321A true CN107405321A (zh) 2017-11-28

Family

ID=56417737

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210967776.5A Pending CN115350171A (zh) 2015-01-23 2016-01-21 短链脂肪酸在癌症预防中的应用
CN201680017250.3A Pending CN107405321A (zh) 2015-01-23 2016-01-21 短链脂肪酸在癌症预防中的应用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202210967776.5A Pending CN115350171A (zh) 2015-01-23 2016-01-21 短链脂肪酸在癌症预防中的应用

Country Status (13)

Country Link
US (5) US10231941B2 (zh)
EP (1) EP3247342A4 (zh)
JP (3) JP6783247B2 (zh)
KR (1) KR20170128247A (zh)
CN (2) CN115350171A (zh)
AU (3) AU2016209244A1 (zh)
CA (1) CA2974510A1 (zh)
IL (1) IL253581A0 (zh)
MX (1) MX2017009532A (zh)
RU (1) RU2017127597A (zh)
SG (2) SG11201705953XA (zh)
WO (1) WO2016118730A1 (zh)
ZA (1) ZA201704977B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110090230A (zh) * 2018-01-30 2019-08-06 青岛东海药业有限公司 凝结芽孢杆菌在制备预防或治疗胆管癌制剂中的应用
CN113116940A (zh) * 2020-01-14 2021-07-16 景岳生物科技股份有限公司 一种副干酪乳杆菌gmnl-346用于抗口腔癌之用途
CN115210364A (zh) * 2019-09-25 2022-10-18 马尔堡菲利普大学 短链脂肪酸戊酸作为细胞疗法和抗肿瘤疗法的增强剂

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201112091D0 (en) 2011-07-14 2011-08-31 Gt Biolog Ltd Bacterial strains isolated from pigs
GB201117313D0 (en) 2011-10-07 2011-11-16 Gt Biolog Ltd Bacterium for use in medicine
GB201306536D0 (en) 2013-04-10 2013-05-22 Gt Biolog Ltd Polypeptide and immune modulation
GB2551642B (en) 2014-10-31 2020-09-23 Pendulum Therapeutics Inc Methods and compositions relating to microbial treatment and diagnosis of disorders
SI3065748T1 (en) 2014-12-23 2018-05-31 4D Pharma Research Limited Severe bacteroid tethethioomycron and its use in reducing inflammation
JP6427278B2 (ja) 2014-12-23 2018-11-21 フォーディー ファーマ リサーチ リミテッド4D Pharma Research Limited pirinポリペプチド及び免疫モジュレーション
CN114984057A (zh) 2015-06-15 2022-09-02 4D制药研究有限公司 包含细菌菌株的组合物
MA41010B1 (fr) 2015-06-15 2020-01-31 4D Pharma Res Ltd Compositions comprenant des souches bactériennes
RS59446B1 (sr) 2015-06-15 2019-11-29 4D Pharma Res Ltd Blautia stercosis i wexlerae za upotrebu u lečenju inflamatornih i autoimunskih bolesti
SI3360559T1 (sl) 2015-06-15 2020-02-28 4D Pharma Research Limited Sestavki, ki vsebujejo bakterijske seve
MA41060B1 (fr) 2015-06-15 2019-11-29 4D Pharma Res Ltd Compositions comprenant des souches bactériennes
EP3209310B1 (en) 2015-11-20 2018-01-31 4D Pharma Research Limited Compositions comprising bacterial strains
GB201520497D0 (en) 2015-11-20 2016-01-06 4D Pharma Res Ltd Compositions comprising bacterial strains
GB201520631D0 (en) 2015-11-23 2016-01-06 4D Pharma Res Ltd Compositions comprising bacterial strains
GB201520638D0 (en) 2015-11-23 2016-01-06 4D Pharma Res Ltd Compositions comprising bacterial strains
GB201612191D0 (en) 2016-07-13 2016-08-24 4D Pharma Plc Compositions comprising bacterial strains
NZ745678A (en) 2016-03-04 2019-03-29 4D Pharma Plc Compositions comprising bacterial blautia strains for treating visceral hypersensitivity
TW201821093A (zh) 2016-07-13 2018-06-16 英商4D製藥有限公司 包含細菌菌株之組合物
WO2018089861A1 (en) * 2016-11-11 2018-05-17 The Regents Of The University Of California Methods and compositions for the treatment of cancer and metabolic diseases
GB201621123D0 (en) 2016-12-12 2017-01-25 4D Pharma Plc Compositions comprising bacterial strains
US11065217B2 (en) 2017-01-27 2021-07-20 Temple University—Of the Commonwealth System of Higher Education Use of short chain fatty acids for the treatment and prevention of diseases and disorders
JP7136807B2 (ja) 2017-04-17 2022-09-13 ザ・ユニバーシティ・オブ・シカゴ ヒトの健康及び疾患の治療用途向けの短鎖脂肪酸の腸への送達用ポリマー材料
AU2018272291A1 (en) 2017-05-22 2020-01-16 4D Pharma Research Limited Compositions comprising bacterial strains
TW201907931A (zh) 2017-05-24 2019-03-01 英商4D製藥研究有限公司 包含細菌菌株之組合物
ES2917415T3 (es) 2017-06-14 2022-07-08 4D Pharma Res Ltd Composiciones que comprenden una cepa bacteriana
HUE052319T2 (hu) 2017-06-14 2021-04-28 4D Pharma Res Ltd Baktériumtörzseket tartalmazó készítmények
CN111107859B (zh) 2017-06-14 2022-04-29 4D制药研究有限公司 包含细菌菌株的组合物
BR112019028301A2 (pt) 2017-07-05 2020-07-14 Evelo Biosciences, Inc. composições e métodos para tratar câncer com o uso de bifidobacterium animalis ssp. lactis
MX2019014315A (es) * 2017-08-04 2020-02-03 Nestle Sa Bacterias probioticas preacondicionadas en un medio que contiene gos y uso de estas.
WO2019046646A1 (en) 2017-08-30 2019-03-07 Whole Biome Inc. METHODS AND COMPOSITIONS FOR THE TREATMENT OF MICROBIOMA ASSOCIATED DISORDERS
PL3743086T3 (pl) * 2018-05-11 2022-06-20 4D Pharma Research Limited Kompozycje zawierające szczepy bakteryjne
SG11202011817WA (en) * 2018-06-01 2020-12-30 Evolve Biosystems Inc Compositions and methods to promote host defense and stimulate, expand, and/or reset t cell repertoires
KR102510198B1 (ko) * 2019-11-14 2023-03-15 가톨릭대학교 산학협력단 락토바실러스 속 균주 및 SCFA(Short fatty chain acid)를 포함하는 면역 질환의 예방 및 치료용 조성물
EP4134089A1 (en) * 2020-03-05 2023-02-15 Liscure Biosciences Co., Ltd. Pharmaceutical composition comprising genus leuconostoc strain as active ingredient for prevention or treatment of cancer
GB2613487A (en) * 2020-08-04 2023-06-07 Univ Temple Methods and compositions for treating cytokine release syndrome
US11938152B2 (en) 2020-08-06 2024-03-26 Kedar N Prasad High-dose antioxidants in cancer treatment
WO2022104116A1 (en) * 2020-11-12 2022-05-19 Temple University Of The Commonwealth System Of Higher Education Use of short chain fatty acids in cancer prevention
WO2022177409A1 (ko) * 2021-02-22 2022-08-25 주식회사 리스큐어바이오사이언시스 류코노스톡 메센테로이데스 균주 유래 나노소포체를 유효성분으로 포함하는 암의 예방 또는 치료용 약학 조성물
WO2023141202A1 (en) * 2022-01-19 2023-07-27 Hodgdon Ian Short-chain fatty acids for cancer treatment
CN117925434A (zh) * 2022-10-26 2024-04-26 慕恩(广州)生物科技有限公司 粪肠球菌mnh 22871及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130323215A1 (en) * 2010-11-29 2013-12-05 Hooi Ling Foo Tumour Cytotoxic Agent and Methods Thereof
US20140065114A1 (en) * 2012-08-29 2014-03-06 China Medical University Use of lactobacillus for liver protection
WO2014033453A1 (en) * 2012-08-28 2014-03-06 Medical Research Council Nanoparticle formulation

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735967A (en) 1985-05-28 1988-04-05 Neesby Torben E Method for desensitizing the gastrointestinal tract from food allergies
AU645070B2 (en) 1990-04-10 1994-01-06 Nb International Technologies Use of short chain fatty acid containing lipids to maintain gastrointestinal integrity and function in patients DO NOT SEAL - SEE LETTER DATED 22.03.94
PH31403A (en) 1991-03-01 1998-10-29 Warner Lambert Co Therapeutic compositions to protect and recuscitate mammalian cells and methods for preparing same.
JP3971454B2 (ja) 1993-10-29 2007-09-05 ザ トラスティーズ オブ ボストン ユニバーシティ 抗新生物剤としての酪酸、酪酸塩、および誘導体の生理学的に安定な組成物
JP2000072667A (ja) 1998-08-25 2000-03-07 Kurasuraa:Kk 大腸炎治療用経口投与剤
US6201077B1 (en) 1998-12-01 2001-03-13 Phillips Petroleum Company Process that produces polymers
EP1034788A1 (en) 1999-03-11 2000-09-13 Société des Produits Nestlé S.A. Lactic acid bacteria strains capable of preventing diarrhea
EP1463759B8 (en) 2002-01-07 2013-07-10 Euroscreen S.A. Ligand for g-protein coupled receptor gpr43 and uses thereof
CA2632078C (en) 2002-03-04 2012-08-14 Sloan-Kettering Institute For Cancer Research Methods of inducing terminal differentiation
CN100566711C (zh) 2002-04-15 2009-12-09 斯隆-凯特林癌症研究院 治疗癌症的化合物及其用途
US8846039B2 (en) 2002-04-26 2014-09-30 Asan Laboratories Company (Cayman), Limited Method for ameliorating pruritus
AU2003259521A1 (en) 2002-09-13 2004-04-30 Mcguire Va Medical Center 111K Combination of a) n-{5-(4-(4-methyl-piperazino-methyl)-benzoylamido)-2-methylphenyl}-4-(3-pyridyl)-2-pyrimidine-amine and b) a histone deacetylase inhibitor for the treatment of leukemia
US20050023179A1 (en) 2003-07-31 2005-02-03 Albritton Charles Wade Fragile-product cage for vacuum packaging appliances
CA2535889A1 (en) 2003-08-29 2005-03-17 Aton Pharma, Inc. Combination methods of treating cancer
WO2007016953A1 (en) 2005-07-29 2007-02-15 Matuschka-Greiffenclau Markus Composition for reducing alcohol induced liver cancer risk
JP2009532346A (ja) 2006-03-31 2009-09-10 イラスマス・ユニバーシティ・メディカル・センター・ロッテルダム 腫瘍増殖制御のための新規組成物
US20080153908A1 (en) 2006-12-20 2008-06-26 Jani Dharmendra M Method of Treating Mucin Deficiency with an Active Pharmaceutical and Related Composition
EP2237684A2 (en) 2008-01-08 2010-10-13 Akthelia Pharmaceuticals Agonists for antimicrobial peptide systems
CN101214234B (zh) 2008-01-10 2010-09-08 中国人民解放军第二军医大学 α-羟基酸在制备癌瘤体内注射治疗药物中的应用
NO346641B1 (no) 2009-02-18 2022-11-07 Sea Qiq As Mineralblanding omfattende magnesiumoksid, preparat inneholdende mineralblandingen og anvendelse av mineralblandingen
US20120107291A1 (en) 2009-06-19 2012-05-03 Danisco A/S Bifidobacteria for treating diabetes and related conditions
US8962686B2 (en) 2010-04-28 2015-02-24 The Chinese University Of Hong Kong Method and medication for prevention and treatment of ocular hypertension and glaucoma
EP2389932A1 (en) 2010-05-28 2011-11-30 Lunamed AG Compositions for use in genetic disorders comprising 4-phenyl-butyric acid and its salts
US20130115280A1 (en) 2010-07-29 2013-05-09 Cosmo Technologies Ltd Pharmaceutical and/or dietary compositions based on sort chain fatty acids
EP2680866A1 (en) * 2011-03-01 2014-01-08 Quorum Innovations, LLC Materials and methods for treating conditions associated with pathogenic biofilm
WO2012131069A1 (en) 2011-03-31 2012-10-04 Proponent Biotech Gmbh Short chain fatty acids and their derivatives for use in treatment immunogenic disorders
SG11201402650RA (en) * 2012-01-16 2014-06-27 Elizabeth Mckenna Compositions and methods for the treatment of hepatic diseases and disorders
WO2015006355A2 (en) 2013-07-09 2015-01-15 Puretech Ventures, Llc Compositions containing combinations of bioactive molecules derived from microbiota for treatment of disease
CN105658226B (zh) 2013-08-16 2019-05-14 港大科桥有限公司 使用益生菌治疗癌症的方法和组合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130323215A1 (en) * 2010-11-29 2013-12-05 Hooi Ling Foo Tumour Cytotoxic Agent and Methods Thereof
WO2014033453A1 (en) * 2012-08-28 2014-03-06 Medical Research Council Nanoparticle formulation
US20140065114A1 (en) * 2012-08-29 2014-03-06 China Medical University Use of lactobacillus for liver protection

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUI-LU ZHANG等: "Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats", 《JOURNAL OF HEPATOLOGY》 *
STEPHEN M. RIORDAN等: "Synbiotic-associated improvement in liver function in cirrhotic patients: Relation to changes in circulating cytokine messenger RNA and protein levels", 《MICROBIAL ECOLOGY IN HEALTH AND DISEASE》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110090230A (zh) * 2018-01-30 2019-08-06 青岛东海药业有限公司 凝结芽孢杆菌在制备预防或治疗胆管癌制剂中的应用
CN110090230B (zh) * 2018-01-30 2022-07-12 青岛东海药业有限公司 凝结芽孢杆菌在制备预防或治疗胆管癌制剂中的应用
CN115210364A (zh) * 2019-09-25 2022-10-18 马尔堡菲利普大学 短链脂肪酸戊酸作为细胞疗法和抗肿瘤疗法的增强剂
CN113116940A (zh) * 2020-01-14 2021-07-16 景岳生物科技股份有限公司 一种副干酪乳杆菌gmnl-346用于抗口腔癌之用途
CN113116940B (zh) * 2020-01-14 2023-09-29 景岳生物科技股份有限公司 一种副干酪乳杆菌gmnl-346用于抗口腔癌之用途

Also Published As

Publication number Publication date
US10231941B2 (en) 2019-03-19
JP2021020929A (ja) 2021-02-18
CN115350171A (zh) 2022-11-18
ZA201704977B (en) 2022-12-21
IL253581A0 (en) 2017-09-28
KR20170128247A (ko) 2017-11-22
US11963938B2 (en) 2024-04-23
AU2019201799B2 (en) 2020-10-15
RU2017127597A (ru) 2019-02-25
US20190160031A1 (en) 2019-05-30
MX2017009532A (es) 2018-04-10
AU2016209244A1 (en) 2017-08-17
US20220008369A1 (en) 2022-01-13
WO2016118730A1 (en) 2016-07-28
SG10201907660YA (en) 2019-10-30
US20180185307A1 (en) 2018-07-05
US10143669B2 (en) 2018-12-04
EP3247342A1 (en) 2017-11-29
US20240342122A1 (en) 2024-10-17
RU2017127597A3 (zh) 2019-07-17
AU2019201799A1 (en) 2019-04-04
JP6783247B2 (ja) 2020-11-11
US20180008565A1 (en) 2018-01-11
AU2020239699A1 (en) 2020-10-15
CA2974510A1 (en) 2016-07-28
EP3247342A4 (en) 2018-10-10
SG11201705953XA (en) 2017-08-30
JP2018504457A (ja) 2018-02-15
JP2023027219A (ja) 2023-03-01

Similar Documents

Publication Publication Date Title
CN107405321A (zh) 短链脂肪酸在癌症预防中的应用
US11759442B2 (en) Use of short chain fatty acids for the treatment and prevention of diseases and disorders
US20220142978A1 (en) Use of short chain fatty acids for the treatment and prevention of diseases and disorders
ES2616449T3 (es) Uso terapéutico de un agonista de TLR y terapia de combinación
JP4786341B2 (ja) 三酸化ヒ素を含む経口組成物の処方およびその使用法
CN107771083A (zh) 聚糖治疗剂和治疗方法
WO2019169179A1 (en) Augmenting efficacy of cancer therapies using probiotic based compositions
Mao et al. Lentinan administration relieves gut barrier dysfunction induced by rotavirus in a weaned piglet model
JP2022078078A (ja) 天然に存在するCpGオリゴヌクレオチド組成物およびその治療的適用
CN107735097A (zh) 用于治疗癌症或免疫性疾病的细胞外基质组合物
TW201233802A (en) Liquid viral formulations
EP3739068A1 (en) Nanovesicles derived from faecalibacterium prausnitzii, and uses thereof
CN112118852A (zh) 用于治疗炎症性肠病的组合物和方法
TW201642857A (zh) 以組合療法治療肝細胞癌
EP3796914A1 (en) Methods of treating cancers characterized by a high expression level of spindle and kinetochore associated complex subunit 3 (ska3) gene
Wu et al. Antitumor Activity of Polysaccharides Extracted from the Spore Powder of Ganoderma Lucidum (Fr.) Karst.
WO2024102902A1 (en) Methods of treating or preventing liver diseases or disorders
EP3573612A1 (en) Use of short chain fatty acids for the treatment and prevention of diseases and disorders
KR20100134966A (ko) 4&#39;-o-글루코스-루테올린의 항암제로서의 용도

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1240857

Country of ref document: HK

RJ01 Rejection of invention patent application after publication

Application publication date: 20171128

RJ01 Rejection of invention patent application after publication