CN107396528A - 边耦合驻波加速管的制作方法、边耦合驻波加速管 - Google Patents

边耦合驻波加速管的制作方法、边耦合驻波加速管 Download PDF

Info

Publication number
CN107396528A
CN107396528A CN201710692197.3A CN201710692197A CN107396528A CN 107396528 A CN107396528 A CN 107396528A CN 201710692197 A CN201710692197 A CN 201710692197A CN 107396528 A CN107396528 A CN 107396528A
Authority
CN
China
Prior art keywords
cavity
monocycle
standing wave
cavity unit
accelerator tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710692197.3A
Other languages
English (en)
Other versions
CN107396528B (zh
Inventor
贺守波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai United Imaging Healthcare Co Ltd
Original Assignee
Shanghai United Imaging Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai United Imaging Healthcare Co Ltd filed Critical Shanghai United Imaging Healthcare Co Ltd
Priority to CN201710692197.3A priority Critical patent/CN107396528B/zh
Publication of CN107396528A publication Critical patent/CN107396528A/zh
Application granted granted Critical
Publication of CN107396528B publication Critical patent/CN107396528B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/22Details of linear accelerators, e.g. drift tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/68Cleaning or washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators
    • H05H9/04Standing-wave linear accelerators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/22Details of linear accelerators, e.g. drift tubes
    • H05H2007/225Details of linear accelerators, e.g. drift tubes coupled cavities arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • Particle Accelerators (AREA)

Abstract

本发明边耦合驻波加速管的制作方法涉及医用电子直线加速器领域,其目的是为了提供一种制作过程简单、制作出的加速管运行稳定性高的边耦合驻波加速管的制作方法,以及一种主加速腔无焊缝、腔体打火风险低、能够不受机加工成型条件限制的边耦合驻波加速管。本发明边耦合驻波加速管的制作方法包括通过3D打印技术制作一体成型的单周期加速腔体单元;将打印完成的单周期加速腔体单元进行第一次热处理;使用研磨材料对单周期加速腔体单元进行机械研磨抛光;对机械研磨抛光后的单周期加速腔体单元进行清洗;将清洗后的单周期加速腔体单元进行装配,形成边耦合驻波加速管。

Description

边耦合驻波加速管的制作方法、边耦合驻波加速管
技术领域
本发明涉及医用电子直线加速器领域,特别是涉及一种边耦合驻波加速管的制作方法、边耦合驻波加速管。
背景技术
加速管是医用电子直线加速器的关键部件,它的作用是产生用于临床癌症治疗和成像的高能射线。目前很多医用电子加速管生产商都在采用边耦合的驻波加速管结构,边耦合腔设置在加速路径两侧,电子枪提供的电子,在主加速腔中微波场的作用下获得能量,并通过主加速腔中心的束流孔,到达加速管引出口,而其中的微波功率,却是通过主加速腔与边耦合腔间的耦合孔进行耦合传输。加速管是通过多个加速单元组成一条链而形成的。其中,单周期指组成链的各个加速单元具有相同的形状和尺寸,即具有相同的电参数。
该结构生产工艺流程成熟,但是加工焊接过程繁琐而艰难,并且其在主加速腔内总会有一道焊缝,工艺稍有不慎就会使得整个腔体报废,或者严重影响腔体的微波性能。
一般现在的加速管生产商的生产流程都是完全基于机加工及全钎焊工艺技术来完成,这就确定了腔体的加工和焊接必须独立分开来完成,且机械结构也受到精密加工设备的限制。例如,现有的加速管每个主加速腔赤道附近必须由两片先完成机加工的半腔后,再两者钎焊完成。另外,耦合孔也是先完成主加速腔加工后再反向掏空边腔形成出来的通孔,因此这种加工方式制作出来的耦合孔边缘总是带有尖锐的边角,这种结构类型的耦合孔会引起后期加速管不同程度的微波打火问题,严重制约着加速管的运行稳定性。此外,对于某些特殊需求的加速腔结构(例如重入式边腔结构等),目前的机加工很难完成,还会借助于深冲压成形或者铸造成形来完成,但是这种成形技术会更加复杂,且在加速管生产领域的成品率很低。
发明内容
基于此,本发明要解决的技术问题是提供一种制作过程简单、制作出的加速管运行稳定性高的边耦合驻波加速管的制作方法,以及一种主加速腔无焊缝、腔体打火风险低、能够不受机加工成型条件限制的边耦合驻波加速管。
一种边耦合驻波加速管的制作方法,在其中一个实施例中,包括以下步骤:
通过3D打印技术制作一体成型的单周期加速腔体单元;
将打印完成的单周期加速腔体单元进行第一次热处理;
使用研磨材料对单周期加速腔体单元进行机械研磨抛光;
对机械研磨抛光后的单周期加速腔体单元进行清洗;
将清洗后的单周期加速腔体单元进行装配形成边耦合驻波加速管。
在其中一个实施例中,在对机械研磨抛光后的单周期加速腔体单元进行清洗的步骤中,所述清洗包括化学清洗。
在其中一个实施例中,所述化学清洗采用酸洗方式。
在其中一个实施例中,化学清洗采用酸洗方式时,单周期加速腔体单元浸泡在酸溶液的时间为5-20分钟,所述酸溶液的温度在25℃以内。
在其中一个实施例中,所述清洗还包括去离子水清洗,对机械研磨抛光后的单周期加速腔体单元进行清洗的步骤包括:
对机械研磨抛光后的单周期加速腔体单元进行化学清洗;
对化学清洗后的单周期加速腔体单元进行去离子水清洗,并在清洗后烘干。
在其中一个实施例中,在进行去离子水清洗的步骤中,包括:
以大于20Bar的水压对单周期加速腔体单元的内腔进行高压冲洗。
在其中一个实施例中,烘干温度为100~150摄氏度。
在其中一个实施例中,在对机械研磨抛光后的单周期加速腔体单元进行清洗的步骤之后,包括:
对单周期加速腔体单元进行第二次热处理。
在其中一个实施例中,在将打印完成的单周期加速腔体单元进行第一次热处理的步骤中,进行第一次热处理的温度范围为500℃~800℃,保温时间2小时以上。
在其中一个实施例中,在进行机械研磨抛光的步骤中,进行机械研磨抛光的时间为30min~120min。
一种边耦合驻波加速管,包括多个单周期加速腔体单元,所述单周期加速腔体单元一体成型,具有一个主加速腔和两个与主加速腔连通的半边耦合腔;两个半边耦合腔分别设置在主加速腔的两侧,且相对主加速腔中心对称设置;多个单周期加速腔体单元依次连接,每个单周期加速腔体单元上的主加速腔相连通,相邻的单周期加速腔体单元上的单个半边耦合腔之间相对配合形成一个完整的边耦合腔。
在其中一个实施例中,其中有两个相邻的单周期加速腔体单元,每个单周期加速腔体单元上的其中一个半边耦合腔为半个能量开关腔,具有半个能量开关腔的两个单周期加速腔体单元能够相配合形成一个完整的能量开关腔。
在其中一个实施例中,所述主加速腔与半边耦合腔之间的耦合孔的边缘为圆角。
一种边耦合驻波加速管,包括多个单周期加速腔体单元,所述单周期加速腔体单元具有一个主加速腔和两个与主加速腔连通的半边耦合腔;两个半边耦合腔分别设置在主加速腔的两侧,且相对主加速腔中心对称设置;多个单周期加速腔体单元依次连接,每个单周期加速腔体单元上的主加速腔相连通,相邻的单周期加速腔体单元上的单个半边耦合腔之间相对配合形成一个完整的边耦合腔,所述主加速腔内没有焊缝。
上述边耦合驻波加速管的制作方法,先采用3D打印生产出完整的单周期加速腔体单元;为提高3D打印后腔体内表面的粗糙度,然后对每个单周期加速腔体单元进行机械研磨抛光处理,化学清洗处理,提高表面的粗糙度;之后将各个单周期加速腔体单元进行组装焊接;这一系列工艺流程不断的提高加速管关键部位的表面粗糙度,逐渐降低了加速腔内打火的风险,同时降低了加速管的功率损耗等问题。
上述的边耦合驻波加速管,通过3D打印技术一体成型,避免了现有技术的由两个半腔钎焊而成的缝隙,整个加速腔的主加速腔内无焊缝,提高了加速腔的高频性能。同时,由于单周期加速腔体单元一体成型,不需要传统工艺中的将多个半个主加速腔进行焊接,因此很大程度上降低了传统加速管生产过程中的焊接难度;同时由于焊接次数减少,加之3D打印效率高,大大缩短了边耦合驻波加速管的生产周期。另外,主加速腔可制作为厚度均匀的腔壁,可以缩减加速腔体的腔壁的厚度,有利于加速管的热传递以及散热,提高加速腔体的冷却效率,保证加速管运行的稳定性。本发明利用3D打印技术对单周期加速腔体单元进行加工,为腔体优化提供了新的途径,可以不受机加工成形条件的限制,开拓加速管的设计方案。
附图说明
图1为本发明边耦合驻波加速管中的一个单周期加速腔体单元的立体图;
图2为图1的纵向的剖面图;
图3为图1的左视图;
图4为图3中的A-A截面图;
图5为图3中的B-B截面图;
图6为本发明边耦合驻波加速管的立体图;
图7为图6的纵向的剖面图;
图8为本发明另一个实施例中的边耦合驻波加速管的立体图,图示带能量开关;
图9为具有特殊形状的能量开关的结构示意图;
图10为本发明边耦合驻波加速管的制作方法流程图;
附图标记说明:
单周期加速腔体单元100;
主加速腔110;
边耦合腔120;半边耦合腔121;能量开关腔122;
耦合孔130。
具体实施方式
以下将结合说明书附图对本发明的具体实施方案进行详细阐述,但是本发明可以由权利要求限定和覆盖的多种不同方式实施。
如图1-图5所示,本发明中边耦合驻波加速管的单周期加速腔体单元100一体成型,通过3D打印技术制作而成,具有一个主加速腔110和两个与主加速腔110连通的半边耦合腔121。两个半边耦合腔121分别沿粒子加速方向设置在主加速腔110的两侧,且相对主加速腔110中心对称设置。如图6和图7所示,多个单周期加速腔体单元100依次连接,每个单周期加速腔体单元100上的主加速腔110相连通,相邻的单周期加速腔体单元100上的单个半边耦合腔121之间相对配合形成一个完整的边耦合腔120。多个单周期加速腔体单元100在氢气高温炉内进行焊接,形成一个边耦合驻波加速管。整个加速腔的单个主加速腔110内无焊缝。可选的,焊接可以为钎焊。
本发明中的边耦合驻波加速管的单周期加速腔体单元100通过3D打印技术进行加工,是一体成型的,单周期加速腔体单元100具有腔体,腔体包括一个完整的主加速腔110和两个与主加速腔连通的半边耦合腔121,避免了现有技术的由两个半腔钎焊而成的缝隙,整个加速腔的主加速腔内无焊缝,提高了加速腔的高频性能。同时,由于单周期加速腔体单元100一体成型,不需要传统工艺中的将多个半个主加速腔进行焊接,因此很大程度上降低了传统加速管生产过程中的焊接难度;同时由于焊接次数减少,加之3D打印效率高,大大缩短了边耦合驻波加速管的生产周期。本发明利用3D打印技术对单周期加速腔体单元进行加工,为腔体优化提供了新的途径,可以不受机加工成形条件的限制,开拓了加速管的设计方案。
进一步地,参照图3-图5,主加速腔110与半边耦合腔121之间的耦合孔130的边缘为圆角。耦合孔130边缘消除了尖锐的边角,实现耦合孔130结构的优化。这种结构类型的耦合孔130消除了的微波打火问题,提高了加速管的运行稳定性。通过3D打印技术还可以轻松实现耦合孔130特殊形状的要求,例如,可以制作成椭圆形或者跑道形、或者笑脸形状。
在其他的实施例中,边耦合驻波加速管带能量开关腔,能量开关为特殊形状的边耦合腔。调整了边耦合腔后,后续的主加速腔110中的微波场幅值、相位等将会发生变化,使得在该主加速腔110中通过的电子获得的能量增益发生变化。如图8所示,在带有能量开关的边耦合驻波加速管中,其中有两个相邻的单周期加速腔体单元100,每个单周期加速腔体单元100上的其中一个半边耦合腔为半个能量开关腔,具有能量开关腔的两个单周期加速腔体单元100相配合能够形成一个完整的能量开关腔122。
如图9所示,通过3D打印技术可以制作用于能量开关设计的腔体122’,可实现边耦合腔内任意模型的机械化,例如重入式结构类型的边耦合腔,其具有相对特殊的形状,利用一般的机加工技术较难实现,且成品率低,利用3D打印技术可以较容易制作等。因此,利用3D打印技术有利于能量开关技术的实现。
进一步地,如图8所示,主加速腔110可制作为厚度均匀的腔壁,可以缩减加速腔体的腔壁的厚度,这样会有利于加速管的热传递以及散热,提高加速腔体的冷却效率,保证加速管运行的稳定性。
上述的边耦合驻波加速管的制作方法,如图10所示,具体包括以下步骤:
S100,按照3D打印的流程,制作多个上述完整的单周期加速腔体单元。
S200,将打印好的单周期加速腔体单元放入高温真空炉内进行第一次热处理。
S300,使用研磨材料充入主加速腔内进行机械研磨抛光;
S400,对机械研磨抛光后的单周期加速腔体单元进行清洗;
S500,将清洗后的单周期加速腔体单元进行装配形成边耦合驻波加速管。
通过3D打印技术,制作出的单周期加速腔体单元是一体成型的,很大程度上降低了传统加速管生产过程中的焊接难度;焊接次数减少,缩短了边耦合驻波加速管的生产周期。同时避免了现有技术的由两个半腔钎焊而成的缝隙,整个加速腔的主加速腔内无焊缝,提高了加速腔的高频性能。另外,主加速腔体可制作为厚度均匀的腔壁,可以缩减加速腔体的腔壁的厚度,提高加速腔体的冷却效率,保证加速管运行的稳定性。另外,利用3D打印技术对单周期加速腔体单元进行加工,为腔体优化提供了新的途径,可以不受机加工成形条件的限制,开拓加速管的设计方案。在其它实施例中,可以通过其它一体成型的加工方式制作单周期加速腔体单元,使得整个加速腔的主加速腔内无焊缝。
热处理消除内应力,重结晶提高强度;机械研磨抛光提高表面精度、清洗去除杂质进一步使腔体表面平滑均匀,通过以上流程处理后,可以保证腔体在打印完毕后的粗糙度提升至0.1um以下的表面程度水平,满足医用加速管的精度要求。此外,制造过程中多余的腔体无氧铜粉末可以重复利用,降低了生产成本。
其中,在步骤S100中,单周期加速腔体单元3D打印流程,按照如下的3D打印流程进行:
S110,制备加速管的材料粉末,优选铜粉末;
S120,使用三维软件生成3D打印需要的加速管模型;
S130,将铜粉末分摊在打印机的成型台上,充氩气;
S140,使用3D打印机的扫描控制系统对加速管模型腔体切片进行分析;
S150,将激光能量聚集在制备好的铜粉末上,产生切片实体层;
S160,逐渐在打印好的切片层基础上重复下一切片层,直到一个单周期加速腔体单元打印完成。
在步骤S200中,第一次热处理的具体步骤为:将打印好的单周期加速腔体单元放置于真空密封炉内,逐步升至500-800度,保温2小时以上;然后逐渐降温至室温后从真空密封炉内取出。经过第一次热处理以消除内应力,重结晶提高强度。
在步骤S300中,进行机械研磨抛光的时间优选为30min~120min。机械研磨抛光是在单周期加速腔体单元的主加速腔内注入微小的软质研磨颗粒(如塑料颗粒或者陶瓷颗粒等),然后将腔体封住,沿轴向旋转,此时研磨颗粒在腔内对表面进行研磨。
在步骤S400中,清洗包括化学清洗,具体地,化学清洗采用酸洗方式。
具体地,化学清洗采用酸洗方式时,使用5%-15%的盐酸、10%-30%的硝酸、20-65%的磷酸按照一定比例进行混合得到酸溶液,可以以1:1:2的比例进行混合。将3D打印的腔体放入容纳酸液的容器内浸泡5-20min,同时控制酸的温度在25℃以内。酸洗一方面是将腔体表面的杂质去除掉,另外是将表面处理的更加平滑均匀。
进一步地,清洗还包括去离子水清洗,对机械研磨抛光后的单周期加速腔体单元进行清洗的步骤包括:
S410,对机械研磨抛光后的单周期加速腔体单元进行化学清洗;
S420,对化学清洗后的单周期加速腔体单元进行去离子水清洗,并在清洗后烘干。
具体地,在去离子水清洗的步骤中,用电阻率大于15MΩ·cm的超纯水反复冲洗打印好的腔体内表面,并放置于优于10000级的洁净间内中晾干或者放置于真空炉内加热至100-150℃烘干,作用是去除表面水汽,同时防止有灰尘杂质吸附到内表面内。更优地,清洗腔体内表面是可采用高压水枪进行冲洗,如大于20Bar的水压。高压水清洗作业一方面是将酸冲掉,另一方面是高压水本身也是提高处理腔体粗糙度的方法,去除表面毛刺凸起等。
进一步地,对机械研磨抛光后的单周期加速腔体单元进行清洗的步骤之后,包括:
对单周期加速腔体单元进行第二次热处理。
在第二次热处理之后,将单周期加速腔体单元进行装配并进一步钎焊进行连接,形成边耦合驻波加速管。第二次热处理主要目的是将单周期加速腔体单元腔体的内表面吸附的气体分子释放掉,消除表面气泡。
通过上述一系列工艺流程不断的提高加速管关键部位的表面粗糙度,逐渐降低了加速腔内打火的风险,同时降低了加速管的功率损耗等问题。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种边耦合驻波加速管的制作方法,其特征在于,包括以下步骤:
通过3D打印技术制作一体成型的单周期加速腔体单元;
将打印完成的单周期加速腔体单元进行第一次热处理;
使用研磨材料对单周期加速腔体单元进行机械研磨抛光;
对机械研磨抛光后的单周期加速腔体单元进行清洗;
将清洗后的单周期加速腔体单元进行装配形成边耦合驻波加速管。
2.根据权利要求1所述的边耦合驻波加速管的制作方法,其特征在于,在对机械研磨抛光后的单周期加速腔体单元进行清洗的步骤中,所述清洗包括化学清洗。
3.根据权利要求2所述的边耦合驻波加速管的制作方法,其特征在于,所述清洗还包括去离子水清洗,对机械研磨抛光后的单周期加速腔体单元进行清洗的步骤包括:
对机械研磨抛光后的单周期加速腔体单元进行化学清洗;
对化学清洗后的单周期加速腔体单元进行去离子水清洗,并在清洗后烘干。
4.根据权利要求3所述的边耦合驻波加速管的制作方法,其特征在于,在进行去离子水清洗的步骤中,包括:
以大于20Bar的水压对单周期加速腔体单元的内腔进行高压冲洗。
5.根据权利要求3所述的边耦合驻波加速管的制作方法,其特征在于,烘干温度为100~150摄氏度。
6.根据权利要求1所述的边耦合驻波加速管的制作方法,其特征在于,在对机械研磨抛光后的单周期加速腔体单元进行清洗的步骤之后,包括:
对单周期加速腔体单元进行第二次热处理。
7.根据权利要求1所述的边耦合驻波加速管的制作方法,其特征在于,在将打印完成的单周期加速腔体单元进行第一次热处理的步骤中,进行第一次热处理的温度范围为500℃~800℃,保温时间2小时以上。
8.一种边耦合驻波加速管,其特征在于,包括多个单周期加速腔体单元,所述单周期加速腔体单元一体成型,具有一个主加速腔和两个与主加速腔连通的半边耦合腔;两个半边耦合腔分别设置在主加速腔的两侧,且相对主加速腔中心对称设置;多个单周期加速腔体单元依次连接,每个单周期加速腔体单元上的主加速腔相连通,相邻的单周期加速腔体单元上的单个半边耦合腔之间相对配合形成一个完整的边耦合腔。
9.根据权利要求8所述的边耦合驻波加速管,其特征在于,其中有两个相邻的单周期加速腔体单元,每个单周期加速腔体单元上的其中一个半边耦合腔为半个能量开关腔,具有半个能量开关腔的两个单周期加速腔体单元能够相配合形成一个完整的能量开关腔。
10.根据权利要求8或9所述的边耦合驻波加速管,其特征在于,所述主加速腔与半边耦合腔之间的耦合孔的边缘为圆角。
CN201710692197.3A 2017-08-14 2017-08-14 边耦合驻波加速管的制作方法、边耦合驻波加速管 Active CN107396528B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710692197.3A CN107396528B (zh) 2017-08-14 2017-08-14 边耦合驻波加速管的制作方法、边耦合驻波加速管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710692197.3A CN107396528B (zh) 2017-08-14 2017-08-14 边耦合驻波加速管的制作方法、边耦合驻波加速管

Publications (2)

Publication Number Publication Date
CN107396528A true CN107396528A (zh) 2017-11-24
CN107396528B CN107396528B (zh) 2019-08-23

Family

ID=60356012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710692197.3A Active CN107396528B (zh) 2017-08-14 2017-08-14 边耦合驻波加速管的制作方法、边耦合驻波加速管

Country Status (1)

Country Link
CN (1) CN107396528B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109462932A (zh) * 2018-12-28 2019-03-12 上海联影医疗科技有限公司 一种驻波加速管
WO2020034093A1 (zh) * 2018-08-14 2020-02-20 西门子(中国)有限公司 3d打印方法
CN111618536A (zh) * 2020-06-11 2020-09-04 东莞益谦机械设备科技有限公司 一种电子加速器腔体的加工方法
EP3944725A1 (en) * 2020-07-23 2022-01-26 Universität der Bundeswehr München Manufacturing method for radio-frequency cavity resonators and corresponding resonator
CN116027101A (zh) * 2022-12-15 2023-04-28 中国科学院近代物理研究所 射频超导腔打火类型在线甄别方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103567726A (zh) * 2013-11-18 2014-02-12 中国科学院近代物理研究所 超导腔的制备方法
CN103619119A (zh) * 2013-11-18 2014-03-05 中国科学院近代物理研究所 一种超导腔的制备方法
CN103998341A (zh) * 2011-10-18 2014-08-20 阿斯特里姆有限公司 用于为航天器储罐排出/容纳液体的装置
US20150366046A1 (en) * 2014-06-13 2015-12-17 Jefferson Science Associates, Llc Slot-Coupled CW Standing Wave Accelerating Cavity
CN106535459A (zh) * 2016-12-23 2017-03-22 上海联影医疗科技有限公司 加速管以及具有该加速管的直线加速器
CN106583720A (zh) * 2016-11-28 2017-04-26 南通金源智能技术有限公司 铝基烯合金薄壁叶片的3d打印制造方法
CN106851958A (zh) * 2017-02-14 2017-06-13 上海联影医疗科技有限公司 加速管
CN106944619A (zh) * 2016-01-07 2017-07-14 深圳嵩洋微电子技术有限公司 一种制造化学机械抛光垫修整盘的方法
CN107333382A (zh) * 2017-08-07 2017-11-07 沈阳东软医疗系统有限公司 一种边耦合驻波加速管及驻波加速器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103998341A (zh) * 2011-10-18 2014-08-20 阿斯特里姆有限公司 用于为航天器储罐排出/容纳液体的装置
CN103567726A (zh) * 2013-11-18 2014-02-12 中国科学院近代物理研究所 超导腔的制备方法
CN103619119A (zh) * 2013-11-18 2014-03-05 中国科学院近代物理研究所 一种超导腔的制备方法
US20150366046A1 (en) * 2014-06-13 2015-12-17 Jefferson Science Associates, Llc Slot-Coupled CW Standing Wave Accelerating Cavity
CN106944619A (zh) * 2016-01-07 2017-07-14 深圳嵩洋微电子技术有限公司 一种制造化学机械抛光垫修整盘的方法
CN106583720A (zh) * 2016-11-28 2017-04-26 南通金源智能技术有限公司 铝基烯合金薄壁叶片的3d打印制造方法
CN106535459A (zh) * 2016-12-23 2017-03-22 上海联影医疗科技有限公司 加速管以及具有该加速管的直线加速器
CN106851958A (zh) * 2017-02-14 2017-06-13 上海联影医疗科技有限公司 加速管
CN107333382A (zh) * 2017-08-07 2017-11-07 沈阳东软医疗系统有限公司 一种边耦合驻波加速管及驻波加速器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034093A1 (zh) * 2018-08-14 2020-02-20 西门子(中国)有限公司 3d打印方法
CN109462932A (zh) * 2018-12-28 2019-03-12 上海联影医疗科技有限公司 一种驻波加速管
US11191148B2 (en) 2018-12-28 2021-11-30 Shanghai United Imaging Healthcare Co., Ltd. Accelerating apparatus for a radiation device
CN111618536A (zh) * 2020-06-11 2020-09-04 东莞益谦机械设备科技有限公司 一种电子加速器腔体的加工方法
CN111618536B (zh) * 2020-06-11 2021-07-09 东莞益谦机械设备科技有限公司 一种电子加速器腔体的加工方法
EP3944725A1 (en) * 2020-07-23 2022-01-26 Universität der Bundeswehr München Manufacturing method for radio-frequency cavity resonators and corresponding resonator
WO2022017833A1 (en) * 2020-07-23 2022-01-27 Universität der Bundeswehr München Manufacturing method for radio-frequency cavity resonators and corresponding resonator
CN116027101A (zh) * 2022-12-15 2023-04-28 中国科学院近代物理研究所 射频超导腔打火类型在线甄别方法及系统

Also Published As

Publication number Publication date
CN107396528B (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
CN107396528B (zh) 边耦合驻波加速管的制作方法、边耦合驻波加速管
CN103433701B (zh) 自定位多腔电桥波导真空钎焊工艺
CN107225244A (zh) 一种调控/降低激光增材制造零件内应力的方法
CN104588620B (zh) 一种钨铜模块的制备方法
KR101327650B1 (ko) 타이어 가황 금형의 세정 방법 및 장치
CN105088196A (zh) 一种大面积、高密度微波等离子体产生装置
CN103203606B (zh) 一种制造多腔体相变均温板的方法
CN108480631A (zh) 一种用于提高激光增材制造构件残余压应力的方法
CN111985059B (zh) 一种基于增材制造与热等静压的零件成形方法及系统
CN217479541U (zh) 塑胶溅射镀膜设备
CN113543450B (zh) 一种用于超导腔的铜铌复合材料板的制作方法
CN214624967U (zh) 一种微波等离子清洗机用的波导矩阵
KR20130010257A (ko) 플라즈마 이온질화를 이용한 대형 플라스틱 사출금형의 복합표면처리방법
CN104979410B (zh) 一种单晶硅片无掩膜反应离子蚀刻绒面制备方法
CN207282468U (zh) 一种等离子减薄装置
CN102936714B (zh) 基于大面积强流脉冲电子束复合处理制备硬质碳化物陶瓷涂层的装置及其制备方法
CN103017502B (zh) 除水装置及改善锂离子电池正负极极片含水量的方法
CN101289285A (zh) 等离子体加工装置
CN104084664A (zh) 一种非晶合金的去毛刺方法
CN112142304A (zh) 压铸模具、壳体压铸系统、制作方法、壳体和电子设备
CN203617249U (zh) 模塑互联器件的制备装置
CN103178164A (zh) 制造相变太阳花散热装置的方法
CN114560443B (zh) 一种同时制备氟化氢及晶体硅产品的微波等离子体装置
JP2009135049A (ja) 超電導高周波加速空洞の製造方法および超電導高周波加速空洞
KR20130010254A (ko) 대형 플라스틱 사출금형의 복합표면처리방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 201807 Shanghai City, north of the city of Jiading District Road No. 2258

Patentee after: Shanghai Lianying Medical Technology Co., Ltd

Address before: 201807 Shanghai City, north of the city of Jiading District Road No. 2258

Patentee before: SHANGHAI UNITED IMAGING HEALTHCARE Co.,Ltd.