CN107389659A - 一种三维超灵敏可擦写拉曼增强活性衬底及制备方法 - Google Patents

一种三维超灵敏可擦写拉曼增强活性衬底及制备方法 Download PDF

Info

Publication number
CN107389659A
CN107389659A CN201710860555.7A CN201710860555A CN107389659A CN 107389659 A CN107389659 A CN 107389659A CN 201710860555 A CN201710860555 A CN 201710860555A CN 107389659 A CN107389659 A CN 107389659A
Authority
CN
China
Prior art keywords
zinc oxide
dimensional
preparation
hypersensitive
erasable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710860555.7A
Other languages
English (en)
Other versions
CN107389659B (zh
Inventor
郁菁
周航
雷风采
原晓波
杨茂森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Normal University
Original Assignee
Shandong Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Normal University filed Critical Shandong Normal University
Priority to CN201710860555.7A priority Critical patent/CN107389659B/zh
Publication of CN107389659A publication Critical patent/CN107389659A/zh
Application granted granted Critical
Publication of CN107389659B publication Critical patent/CN107389659B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供一种三维超灵敏可擦写拉曼增强活性衬底及制备方法,用乙基纤维素制备溶胶,以松油醇作为分散剂制备氧化锌溶胶溶液,溶剂挥发后得到氧化锌浆料,将氧化锌浆料涂覆与玻璃基片上经马弗炉高温处理得多孔结构的氧化锌膜,作为衬底的骨架。再将适量银颗粒分散液涂覆与氧化锌膜上。干燥后,即可得到。制备的衬底材料为多孔结构,银颗粒均匀分布在氧化锌膜的孔隙中,实现了纳米级的复合,该衬底材料检测到浓度为10‑11M的R6G的,并可以在30分钟内利用紫外线辐射将待检测产物催化降解,然后100%恢复拉曼活性,具有显著的增强性。

Description

一种三维超灵敏可擦写拉曼增强活性衬底及制备方法
技术领域
本发明属于分子信号检测领域,具体涉及一种具有超灵敏、可重复探测性的三维多孔ZnO/Ag复合拉曼活性衬底的制备方法。
技术背景
在过去的几十年里,由于其灵敏度高、响应快、表面增强拉曼散射(SERS),作为一个强大的光谱技术,已广泛应用于化工、制药、生物机械传感。刘,等人采用水热法制备了一种镀金的二氧化钛纳米管阵列基板,衬底显示出了对R6G极好的检测灵敏度,最低可检测浓度(LDC)为10-10M;为了降低成本人们用银代替金,制备出Ag覆盖的ZnO纳米阵列,黄的小组通过调整纳米棒和金属纳米颗粒(NPs)之间的间隔,进一步改进了R6G的LDC到10-11M;卡姆登等人将多孔Ag/AgxO薄膜作为SERS活性基底,并获得了对许多有机物的显著的可检测性,如苯甲酸、4-硝基酚、2-巯基乙烷磺酸盐。
CN103451652A提供了一种银纳米粒子包覆氧化锌纳米管衬底的制备方法本发明涉及一种银纳米粒子包覆氧化锌纳米管衬底的制备方法,该方法采用化学法与磁控溅射法结合的方法,用Zn(OOCCH3)2·2H2O、Zn(NO3)2·6H2O、KCl、无水乙醇、六次甲基四胺和银靶为原料,成功制备了银纳米粒子包覆的氧化锌纳米管衬底。
现有拉曼增强活性衬底大多是在金属氧化物纳米管上负载贵金属,虽然制备的衬底具有很好的灵敏度,然而其制备方法过于复杂或昂贵,因而不适合于实际的应用。因此,开发一种具有强大的增强因子(EF)且原料易得和工艺简单,具有良好的稳定性和出色的重复性的高品质的SERS活性基底十分必要。
发明内容
为解决上述技术问题,本发明提供了一种新的拉曼增强活性衬底的制备方法。
本发明的目的之一在于提供一种原料易得、工艺简单,适用于工业化生产的三维超灵敏可擦写拉曼增强活性衬底的制备方法。
本发明的目的之二在于提供一种灵敏度高、响应快,具有良好稳定性和出色重复性的三维超灵敏可擦写拉曼活性衬底。
为实现上述技术目的,具体地,本发明涉及以下技术方案:
一种三维超灵敏可擦写拉曼活性衬底的制备方法,包括以下步骤:
(1)将乙基纤维素溶于适量乙醇中,得溶胶A;
(2)将氧化锌粉末和松油醇分散于适量乙醇中,再向得到的溶液加入适量溶胶A,加热下强力搅拌使乙醇蒸发得氧化锌浆料;
(3)将步骤(2)得到的氧化锌浆料滴加到玻璃基板上,刮膜后放置于高温环境中;
(4)向冷却后的玻璃基片滴加银颗粒分散液,干燥后得到三维多孔的ZnO/Ag拉曼增强活性衬底。
进一步地,步骤(1)中乙基纤维素与乙醇的质量比为1:6.3。
进一步地,步骤(2)中氧化锌与松油醇的质量比为1:(2-3)。
优选地,步骤(2)中氧化锌与松油醇的质量比为1:2.1。
进一步地,步骤(2)中氧化锌与溶胶A的质量比为1:(6-7)。
优选地,步骤(2)中氧化锌与溶胶A的质量比为1:6.5。
进一步地,步骤(2)中加热温度为60℃。
进一步地,步骤(3)中高温环境的温度为450℃。
进一步地,步骤(3)中玻璃基板在高温环境中放置时间为1.5h。
进一步地,步骤(4)中所述银颗粒的制备方法包括以下步骤:
(1)将聚乙烯吡咯烷酮加入适量乙二醇中,搅拌均匀后加入硝酸银;
(2)将步骤(2)所得混合溶液加热至130℃,保温一段时间,冷却后加入过量丙酮使银颗粒沉淀,离心、洗涤后得纯净的银颗粒。
本发明还提供一种三维超灵敏可擦写拉曼活性衬底,为负载银的氧化锌复合材料,氧化锌膜为多孔结构,银颗粒分散附着在氧化锌膜的孔隙中,银颗粒不易脱附,结构十分稳定,作为拉曼活性衬底具有极好的可重复性。
发明有益效果
本发明提供的三维超灵敏可擦写拉曼增强活性衬底的制备方法工艺简单,便于操作,无需合成金属氧化物纳米管,将贵金属复合到金属氧化物上也无需采用磁控溅射法即可得到结构稳定的衬底,大大降低了拉曼增强活性衬底的制备成本,为拉曼增强衬底的制备提供了新的思路。
本发明提供的三维超灵敏可擦写拉曼增强活性衬底可检测到浓度为10-11M的R6G的,并可以在30分钟内利用紫外线辐射将待检测产物催化降解,然后100%恢复拉曼活性,具有显著的增强性。
附图说明
图1:(a)是没有Ag NPs的三维多孔ZnO衬底的SEM图像,插图是三维多孔氧化锌/银基底的实物样品的照片;(b)是三维多孔ZnO衬底断面的SEM图像;(c)是覆盖银纳米粒子的SEM图像,插图是相应的TEM图像;
图2是在活性衬底上随机选取的10个点中R6G 613cm-1处不同取样点的拉曼信号;
图3是R6G在不同浓度下的SERS光谱(从10-8M-10-11M)。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作和/或它们的组合。
诚如背景技术所述的,现有拉曼增强活性衬底大多是在金属氧化物纳米管上负载贵金属,纳米管的制备方法比较复杂,对操作人员要求较高,将银颗粒复合到金属氧化物纳米管上还需要采用磁控溅射法,成本较高,且制得的衬底可重复性也不理想。
本发明没有采用传统衬底纳米管结构,而是用乙基纤维素制备溶胶,以松油醇作为分散剂制备氧化锌溶胶溶液,溶剂挥发后得到氧化锌浆料,将氧化锌浆料涂覆与玻璃基片上,在马弗炉中450℃放置1.5h,在高温环境下乙基纤维素分解成水和二氧化碳以气体形态逸出,松油醇在远高于其沸点的温度下也以气体形态逸出,逸出的气体使氧化锌膜出现大量的细小孔隙,形成多孔结构。多孔结构的氧化锌膜作为衬底的骨架相对于纳米管结构更加稳定,且更容易与银颗粒复合。本发明无需采用磁控溅射,直接将银颗粒分散液涂覆与氧化锌膜上,银颗粒分散液从表面的孔隙中流入,由于毛细现象使银颗粒分散液均匀分散在氧化锌膜的孔隙中。干燥后,银颗粒均匀分布在氧化锌膜的孔隙中,与氧化锌实现了纳米级的复合。且银颗粒分布在氧化锌膜的孔隙中,除了受到银颗粒与氧化锌静电力的约束,孔隙结构复杂也起到了约束银颗粒使其不易脱落的效果,从而大大增强了该衬底材料的稳定性和可重复性能。
实施例1
将0.25g PVP加入20ml乙二醇中,进行强力搅拌;将0.05gAgNO3加入反应液;将混合溶液以5℃/min加热到130℃,并在130℃条件下反应1h;使混合溶液自然冷却,加入大量丙酮使银颗粒沉淀;将沉淀8000rpm/min离心五分钟,并用乙醇清洗,重复3-4次。
实施例2
将2.5克乙基纤维素加入19毫升乙醇中,然后将乙醇溶液在70℃条件下搅拌3小时,此溶液称为A溶胶。将0.7克的氧化锌粉末和1.5克松油醇分散在17毫升乙醇中,随后在此溶液中加入4.5克的溶胶A并将得到的混合溶液在60℃下强力搅拌6小时,并在这个过程中,保持容器盖打开以便于让乙醇蒸发。
此后,将玻璃片用透明胶带固定,并将氧化锌浆料滴加在玻璃基板上,然后利用刀片进行刮膜,刮膜后将玻璃片置于马弗炉中加热到450℃并保持1.5小时。当基片冷却到室温后,将0.5毫升的银颗粒分散液滴在ZnO膜的表面,干燥后即可得到三维多孔ZnO/Ag拉曼增强活性衬底。
将20微升的10-5M的R6G溶液,全部滴加在活性衬底上,在室温下放置5-10分钟,待R6G溶液完全干燥,使用拉曼共焦显微光谱仪(LabRAM HR Evolution)进行检测。测试过程中,随机选取十个点,参数设置为每8s获取一次信号,探测器重复曝光两次,每秒显示实时采集图像,光强设置为0.5%,激光选取532nm波长,光栅设置为1800gr/mm。
将20微升的10-5M的结晶紫溶液,全部滴加在活性衬底上,在室温下放置5-10分钟,待结晶紫溶液完全干燥,使用拉曼共焦显微光谱仪(LabRAM HR Evolution)进行检测。测试过程中,随机选取十个点,参数设置为每8s获取一次信号,探测器重复曝光两次,每秒显示实时采集图像,光强设置为0.5%,激光选取532nm波长,光栅设置为1800gr/mm。
实施例3
将2.5克乙基纤维素加入19毫升乙醇中,然后将乙醇溶液在70℃条件下搅拌3小时,此溶液称为A溶胶。将0.7克的氧化锌粉末和2.1克松油醇分散在17毫升乙醇中,随后在此溶液中加入4.2克的溶胶A并将得到的混合溶液在60℃下强力搅拌6小时,并在这个过程中,保持容器盖打开以便于让乙醇蒸发。
此后,将玻璃片用透明胶带固定,并将氧化锌浆料滴加在玻璃基板上,然后利用刀片进行刮膜,刮膜后将玻璃片置于马弗炉中加热到450℃并保持1.5小时。当基片冷却到室温后,将0.5毫升的银颗粒分散液滴在ZnO膜的表面,干燥后即可得到三维多孔ZnO/Ag拉曼增强活性衬底。
实施例4
将2.5克乙基纤维素加入19毫升乙醇中,然后将乙醇溶液在70℃条件下搅拌3小时,此溶液称为A溶胶。将0.7克的氧化锌粉末和1.4克松油醇分散在17毫升乙醇中,随后在此溶液中加入4.9克的溶胶A并将得到的混合溶液在60℃下强力搅拌6小时,并在这个过程中,保持容器盖打开以便于让乙醇蒸发。
此后,将玻璃片用透明胶带固定,并将氧化锌浆料滴加在玻璃基板上,然后利用刀片进行刮膜,刮膜后将玻璃片置于马弗炉中加热到450℃并保持1.5小时。当基片冷却到室温后,将0.5毫升的银颗粒分散液滴在ZnO膜的表面,干燥后即可得到三维多孔ZnO/Ag拉曼增强活性衬底。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种三维超灵敏可擦写拉曼增强活性衬底的制备方法,包括以下步骤:
(1)将乙基纤维素溶于适量乙醇中,得溶胶A;
(2)将氧化锌粉末和松油醇分散于适量乙醇中,再向得到的溶液加入适量溶胶A,加热下强力搅拌使乙醇蒸发得氧化锌浆料;
(3)将步骤(2)得到的氧化锌浆料滴加到玻璃基板上,刮膜后放置于高温环境中;
(4)向冷却后的玻璃基片滴加银颗粒分散液,干燥后得到三维多孔的ZnO/Ag拉曼增强活性衬底;
步骤(4)中所述银颗粒的制备方法为:将聚乙烯吡咯烷酮加入适量乙二醇中,搅拌均匀后加入硝酸银;将所得混合溶液加热至130℃,保温一段时间,冷却后加入过量丙酮使银颗粒沉淀,离心、洗涤后得纯净的银颗粒。
2.如权利要求1所述的三维超灵敏可擦写拉曼增强活性衬底的制备方法,其特征在于:步骤(1)中乙基纤维素与乙醇的质量比为1:6.3。
3.如权利要求1所述的三维超灵敏可擦写拉曼增强活性衬底的制备方法,其特征在于:步骤(2)中氧化锌与松油醇的质量比为1:2-3。
4.如权利要求1所述的三维超灵敏可擦写拉曼增强活性衬底的制备方法,其特征在于:步骤(2)中氧化锌与松油醇的质量比为1:2.1。
5.如权利要求1所述的三维超灵敏可擦写拉曼增强活性衬底的制备方法,其特征在于:步骤(2)中氧化锌与溶胶A的质量比为1:6-7。
6.如权利要求1所述的三维超灵敏可擦写拉曼增强活性衬底的制备方法,其特征在于:步骤(2)中加热温度为60℃。
7.如权利要求1所述的三维超灵敏可擦写拉曼增强活性衬底的制备方法,其特征在于:步骤(3)中高温环境的温度为450℃。
8.如权利要求1所述的三维超灵敏可擦写拉曼增强活性衬底的制备方法,其特征在于:步骤(3)中玻璃基板在高温环境中放置时间为1.5h。
9.如权利要求1所述的三维超灵敏可擦写拉曼增强活性衬底的制备方法,其特征在于:步骤(4)中制备银颗粒时所述保温时间为1h。
10.如权利要求1-9任一所述制备方法制得的三维超灵敏可擦写拉曼增强活性衬底,其特征在于:所述三维超灵敏可擦写拉曼增强活性衬底为负载银的氧化锌复合材料,氧化锌膜为多孔结构,银颗粒分散附着在氧化锌膜的孔隙中。
CN201710860555.7A 2017-09-21 2017-09-21 一种三维超灵敏可擦写拉曼增强活性衬底及制备方法 Expired - Fee Related CN107389659B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710860555.7A CN107389659B (zh) 2017-09-21 2017-09-21 一种三维超灵敏可擦写拉曼增强活性衬底及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710860555.7A CN107389659B (zh) 2017-09-21 2017-09-21 一种三维超灵敏可擦写拉曼增强活性衬底及制备方法

Publications (2)

Publication Number Publication Date
CN107389659A true CN107389659A (zh) 2017-11-24
CN107389659B CN107389659B (zh) 2019-09-24

Family

ID=60350956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710860555.7A Expired - Fee Related CN107389659B (zh) 2017-09-21 2017-09-21 一种三维超灵敏可擦写拉曼增强活性衬底及制备方法

Country Status (1)

Country Link
CN (1) CN107389659B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108613961A (zh) * 2018-04-20 2018-10-02 山东师范大学 一种三维灵敏度高、抗摩擦的拉曼活性基底
CN109434111A (zh) * 2018-11-08 2019-03-08 绍兴文理学院 一种孔径可控的泡沫铝超临界制备方法
CN114272930A (zh) * 2021-11-24 2022-04-05 东莞理工学院 一种异质结光催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102728A1 (en) * 2010-02-22 2011-08-25 Universiteit Leiden Raman spectrometer, sensor element for a raman spectrometer and a method for obtaining a raman spectrum using the sensor element
CN103048304A (zh) * 2012-12-07 2013-04-17 江苏大学 一种可循环使用的表面增强拉曼光谱活性基底的制备方法
CN103866321A (zh) * 2014-03-14 2014-06-18 中国科学院合肥物质科学研究院 银纳米颗粒-氧化锌多孔纳米片-碳纤维布复合衬底及其制备方法和用途
KR20150107425A (ko) * 2014-03-14 2015-09-23 한국과학기술원 염료 자가 흡착형 광촉매 필름 및 그의 제조방법
CN105506559A (zh) * 2015-12-15 2016-04-20 龙岩学院 物理方法实现厚银薄膜作为表面增强拉曼散射衬底的装置和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102728A1 (en) * 2010-02-22 2011-08-25 Universiteit Leiden Raman spectrometer, sensor element for a raman spectrometer and a method for obtaining a raman spectrum using the sensor element
CN103048304A (zh) * 2012-12-07 2013-04-17 江苏大学 一种可循环使用的表面增强拉曼光谱活性基底的制备方法
CN103866321A (zh) * 2014-03-14 2014-06-18 中国科学院合肥物质科学研究院 银纳米颗粒-氧化锌多孔纳米片-碳纤维布复合衬底及其制备方法和用途
KR20150107425A (ko) * 2014-03-14 2015-09-23 한국과학기술원 염료 자가 흡착형 광촉매 필름 및 그의 제조방법
CN105506559A (zh) * 2015-12-15 2016-04-20 龙岩学院 物理方法实现厚银薄膜作为表面增强拉曼散射衬底的装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUNYU ZHAO 等: "ZnO/Ag porous nanosheets used as substrate for surface-enhanced Raman scattering to detect organic pollutant", 《RSC ADVANCES》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108613961A (zh) * 2018-04-20 2018-10-02 山东师范大学 一种三维灵敏度高、抗摩擦的拉曼活性基底
CN109434111A (zh) * 2018-11-08 2019-03-08 绍兴文理学院 一种孔径可控的泡沫铝超临界制备方法
CN114272930A (zh) * 2021-11-24 2022-04-05 东莞理工学院 一种异质结光催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN107389659B (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
Li et al. SERS Hotspot engineering by aerosol self‐assembly of plasmonic Ag nanoaggregates with tunable interparticle distance
Zhan et al. Phase-controlled synthesis of molybdenum oxide nanoparticles for surface enhanced Raman scattering and photothermal therapy
Casadio et al. Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy
Singh et al. Bifunctional Au–TiO 2 thin films with enhanced photocatalytic activity and SERS based multiplexed detection of organic pollutant
CN107389659B (zh) 一种三维超灵敏可擦写拉曼增强活性衬底及制备方法
Yang et al. Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability
Zhang et al. A high-efficiency surface-enhanced Raman scattering substrate based on silicon nanowires array decorated with silver nanoparticles
CN104297224B (zh) 一种sers基底材料及其热点激发方法与表征
Ge et al. Flexible and recyclable SERS substrate fabricated by decorated TiO 2 film with Ag NPs on the cotton fabric
Huo et al. Template-assisted fabrication of Ag-nanoparticles@ ZnO-nanorods array as recyclable 3D surface enhanced Raman scattering substrate for rapid detection of trace pesticides
Zhang et al. Three‐Dimensional TiO2− Ag Nanopore Arrays for Powerful Photoinduced Enhanced Raman Spectroscopy (PIERS) and Versatile Detection of Toxic Organics
Prikhodko et al. New advancements in SERS dye detection using interfaced SEM and Raman spectromicroscopy (μRS)
Wang et al. Core-shell upconversion nanoparticles of type NaGdF 4: Yb, Er@ NaGdF 4: Nd, Yb and sensitized with a NIR dye are a viable probe for luminescence determination of the fraction of water in organic solvents
Yan et al. Effect of coating process on performance of reversible thermochromic waterborne coatings for Chinese Fir
Jagadeesan et al. Impact of molarity on structural, optical, morphological and electrical properties of copper oxide thin films prepared by cost effective jet nebulizer spray pyrolysis technique
Retko et al. Surface‐enhanced Raman spectroscopy (SERS) analysis of organic colourants utilising a new UV‐photoreduced substrate
Du et al. Highly sensitive fiber optic enhanced Raman scattering sensor
Liang et al. Periodic Arrays of 3D AuNP‐Capped VO2 Shells and Their Temperature‐Tunable SERS Performance
Qin et al. CsPbCl3 perovskite quantum dots/TiO2 inverse opal photonic crystals for efficient photoelectrochemical detection of alpha fetoprotein
Geng et al. Multifunctional carbon dots for trace water detection, white LEDs, and bioimaging
Bai et al. Construction of flexible, transparent and mechanically robust SERS-active substrate with an efficient spin coating method for rapid in-situ target molecules detection
da Costa Duarte et al. Synthesis of a 5-carboxy indole-based spiropyran fluorophore: thermal, electrochemical, photophysical and bovine serum albumin interaction investigations
Li et al. One-pot fabrication of Mo1-xWxS2 alloy nanosheets as SERS substrates with highly Raman enhancement effect and long-term stability
Sengupta et al. Direct growth of bismuth vanadate thin film arrays on FTO via galvanic deposition mediated by BiOI nanosheets for fabrication of photoelectrochemical non-enzymatic dopamine sensing platform
Lee et al. Vibrational spectroscopic imaging of N719-TiO2 films in the high wavenumber region coupled to EIS analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190924