CN107385412B - 一种复合薄膜的制备方法 - Google Patents

一种复合薄膜的制备方法 Download PDF

Info

Publication number
CN107385412B
CN107385412B CN201610326908.0A CN201610326908A CN107385412B CN 107385412 B CN107385412 B CN 107385412B CN 201610326908 A CN201610326908 A CN 201610326908A CN 107385412 B CN107385412 B CN 107385412B
Authority
CN
China
Prior art keywords
film
reaction
carbon
passed
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610326908.0A
Other languages
English (en)
Other versions
CN107385412A (zh
Inventor
张伟
吉小超
于鹤龙
王红美
汪勇
杜军
周新远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Rui Mann Technology Co., Ltd.
Hebei Beijing Tianjin Hebei remanufacturing industry technology research Co., Ltd.
Academy of Armored Forces Engineering of PLA
Original Assignee
Hebei Beijing Tianjin Hebei Remanufacturing Industry Technology Research Co Ltd
Beijing Rui Mann Technology Co Ltd
Academy of Armored Forces Engineering of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei Beijing Tianjin Hebei Remanufacturing Industry Technology Research Co Ltd, Beijing Rui Mann Technology Co Ltd, Academy of Armored Forces Engineering of PLA filed Critical Hebei Beijing Tianjin Hebei Remanufacturing Industry Technology Research Co Ltd
Priority to CN201610326908.0A priority Critical patent/CN107385412B/zh
Publication of CN107385412A publication Critical patent/CN107385412A/zh
Application granted granted Critical
Publication of CN107385412B publication Critical patent/CN107385412B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Abstract

本发明提供了一种复合薄膜的制备方法,包括以下步骤:A)在基底表面制备金属催化剂薄膜,将表面制备有金属催化剂薄膜的基底再置于PECVD设备的反应腔体中,将所述反应腔体加热,通入载气与碳源气体,接通电源,反应后得到阵列碳纳米管薄膜;B)关闭电源,停止通入碳源气体,向所述反应腔体中继续通入载气,接通电源对碳纳米管薄膜进行刻蚀后关闭电源;C)将所述反应腔体冷却,通入反应气体后接通电源,反应后得到复合薄膜。本发明提供了一种原位复合薄膜的制备方法。该方法利用等离子体增强化学气相沉积方法在基底上制备阵列的碳纳米管薄膜,在此基础上继续制备所需要的薄膜,通过控制工艺,实现基体薄膜与碳纳米管的复合。

Description

一种复合薄膜的制备方法
技术领域
本发明涉及表面工程技术领域,尤其涉及一种碳纳米管纤维增强复合薄膜的制备方法。
背景技术
碳纳米管以其优异的力学和电学性能而受到广泛的关注。研究表明,碳纳米管的密度约为钢的1/6,而抗拉强度能够达到50-200GPa,约为钢的100倍、碳纤维的2倍。利用碳纳米管与传统的工业材料复合,可明显提高复合材料的弹性、强度与抗疲劳性能。增强纤维的长径比是决定复合材料强度的关键因素,而碳纳米管的长径比通常在1000:1以上,因此碳纳米管是理想的高强度增强纤维。碳纳米管还具有良好的电学性能,还能够一定程度的改善复合材料的电学性能。利用碳纳米管增强的传统块体材料已在机械、电子、能源以及航空航天等领域得到了应用。
近年来,随着薄膜技术的快速发展,各种先进功能薄膜在减磨耐磨、润滑、光学、微电子、电磁的领域发挥了重要作用。薄膜的结构也由最初的单元素结构向多元、梯度、多层等复杂结构发展。由于薄膜制备工艺的复杂性,制备纤维增强结构的复合薄膜具有一定的难度。
传统化学气相沉积方法制备的薄膜,最大的缺点就是薄膜中存在较大的应力,而导致薄膜的开裂与失效。纤维增强的复合结构最大的优势在于增韧,通过与碳纳米管的复合,能够有效分散薄膜中产生的高应力,增加薄膜韧性,提高薄膜寿命。另一方面,许多传统的功能薄膜是脆性的,随着柔性电子器件的快速发展,对其产生了新的挑战,通过加入碳纳米管进行纤维复合,能够有效的提升整个复合薄膜体系的韧性,解决传统脆性功能薄膜在柔性电子器件领域应用的难题。
发明内容
本发明解决的技术问题在于提供一种复合薄膜的制备方法,本申请制备的复合薄膜具有较好的综合性能。
有鉴于此,本申请提供了一种复合薄膜的制备方法,包括以下步骤:
A),在基底表面制备金属催化剂薄膜,将表面制备有金属催化剂薄膜的基底置于PECVD设备的反应腔体中,将所述反应腔体加热,通入载气与碳源气体,接通电源,反应后得到碳纳米管薄膜;
B),关闭电源,停止通入碳源气体,向所述反应腔体中继续通入载气,接通电源对碳纳米管薄膜进行刻蚀后关闭电源;
C),将所述反应腔体冷却,通入反应气体后接通电源,反应后得到复合薄膜。
优选的,得到碳纳米管薄膜的过程具体为:
将表面制备有金属催化剂薄膜的基底置于PECVD设备的反应腔体中,将所述反应腔体加热至温度超过450℃,通入载气,继续加热所述反应腔体至500~600℃,再通入碳源气体,接通电源,反应后得到碳纳米管薄膜。
优选的,制备催化剂薄膜的方法为蒸发法或溅射法。
优选的,步骤A)中,所述载气为氢气与氩气,所述氩气的流量为20~60sccm,所述氢气的流量为15~30sccm。
优选的,步骤A)中,所述电源的功率为10W~200W,所述金属催化剂薄膜的厚度为1~50nm,所述金属催化剂薄膜为铁、钴、镍或上述元素复合的薄膜。
优选的,步骤B)中,所述电源功率为200~500W,所述刻蚀的时间为1~5min。
优选的,步骤C)中,所述反应腔体冷却至150~180℃。
优选的,步骤C)中,所述反应气体为氩气和甲烷,所述氩气的流量为15~25sccm,所述甲烷的流量为10~20sccm。
优选的,步骤C)中所述电源的功率为100~200W。
优选的,所述碳纳米管薄膜的厚度为1~20μm。
本申请提供了一种复合薄膜的制备方法,首先在基底表面制备金属催化剂薄膜,再将其置于PECVD设备的反应腔体中,将所述反应腔体加热后通入载气与碳源气体,接通电源,反应后制备得到碳纳米管薄膜;然后关闭电源,停止通入碳源气体,而继续通入载气,接通电源后刻蚀碳纳米管薄膜,使碳纳米管薄膜疏松,便于复合薄膜的制备;最后将腔体冷却后通入反应气体接通电源,反应制备非晶碳膜,并与碳纳米管薄膜复合,得到纳米复合薄膜。本申请制备复合薄膜均在PECVD设备的反应腔体中进行,原位制备方法提升了复合薄膜的制备效率,同时在同一腔体内制备复合薄膜,使得碳纳米管能够在整个复合薄膜体系中均匀分布,从而使得制备得到的纳米复合薄膜具有较好的各向同性,使得到的碳纤维纳米管增强复合薄膜具有较好的韧性,不易开裂,在导电、导热性方面也较好。
附图说明
图1为本发明实施例1制备的碳纳米管薄膜的SEM照片;
图2为本发明实施例1制备的复合薄膜的SEM照片;
图3为本发明实施例2制备的复合薄膜的SEM照片;
图4为本发明实施例3制备的复合薄膜的SEM照片。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明实施例公开了一种复合薄膜的制备方法,包括以下步骤:
A),在基底表面制备金属催化剂薄膜,将表面制备有金属催化剂薄膜的基底再置于PECVD设备的反应腔体中,将所述反应腔体加热,通入载气与碳源气体,接通电源,反应后得到碳纳米管薄膜;
B),关闭电源,停止通入碳源气体,向所述反应腔体中继续通入载气,接通电源对碳纳米管薄膜进行刻蚀后关闭电源;
C),将所述反应腔体冷却,通入反应气体后接通电源,反应后得到复合薄膜。
本申请提供了一种复合薄膜的制备方法,其首先制备了表面具有纳米催化剂薄膜的基底,再利用等离子体化学气相沉积在其上制备碳纳米管作为增强相,然后利用PECVD方法制备相应的基体薄膜,使其与碳纳米管相复合,而形成复合薄膜。本申请制备的复合薄膜具有基体薄膜的性能,如光学性、磁性、导电、耐磨、耐腐等性能,同时由于碳纳米管的加入,能够改善整个复合体系的韧性、导电性等性能。
在制备复合薄膜的过程中,包括碳纳米管薄膜的制备、刻蚀处理与基体薄膜的制备三个步骤,且所有步骤均是在PECVD设备的反应腔体中进行的。
按照本发明,首先进行碳纳米管薄膜的制备,具体为:提供一基底,在其表面制备金属催化剂薄膜。本申请对所述金属催化剂薄膜的制备方法没有特别的限制,为本领域技术人员熟知的制备方法即可,例如:采用蒸发、溅射等方法。本申请对所述基底没有特别的限制,为本领域技术人员熟知的表面光滑的基底即可,可以为硅片,也可以为玻璃或表面抛光后的金属。所述金属催化剂薄膜的厚度优选为1~50nm,更优选为10~30nm。本申请所述金属催化剂薄膜优选为铁、钴、镍或上述金属复合的薄膜,为了调控催化剂颗粒的活性还可以添加铝、铜等元素。再将表面制备有金属催化剂薄膜的基底置于PECVD设备的反应腔体中,加热所述反应腔体,通入载气与碳源气体,接通电源,反应后得到碳纳米管薄膜。上述制备碳纳米管薄膜的过程具体为:
将制备有金属催化剂薄膜的基底置于PECVD设备的反应腔体中,将所述反应腔体加热至温度超过450℃,通入载气,继续加热腔体至500~600℃,再通入碳源气体,接通电源,反应后得到碳纳米管催化剂薄膜。
催化剂薄膜表面由于氧化的作用产生的金属氧化物是不利于碳纳米管生长的,载气中有氢气,可用来还原催化薄膜中的氧,提高制备得到的碳纳米管的质量。本申请所述PECVD反应腔体为本领域技术人员熟知的PECVD设备中的反应腔体,本申请对所述PECVD设备没有特别的限制,为本领域技术人员熟知的设备。本申请所述表面制备有金属催化剂薄膜的基底置于PECVD反应腔体的具体位置为本领域技术人员熟知的位置,对此本申请没有特别的限制。本申请在PECVD反应腔体中进行的操作均按照本领域技术人员熟知的方式进行即可,对此本申请没有特别的限制。在上述过程中,载气主要起两方面的作用,一方面通过控制通入氩气和氢气的量,可有效控制腔体内的气压,使得等离子场容易被激发;另一方通过通入载气,能够有效稀释腔体中的碳源气体,若碳源气体的含量较高,则容易生成非晶碳,抑制碳纳米管的生长。通常控制碳源气体占腔体内气体的5%~20%。所述载气优选为氢气与氩气,所述氢气的流量15~30sccm,所述氩气的流量为20~60sccm。本申请所述碳源气体优选为本领域技术人员熟知的碳源气体,更优选为甲烷、乙炔和正丁烷中的一种或多种,所述碳源气体的流量优选为5~20sccm,在实施例中,所述碳源气体优选为10~15sccm。所述电源的功率优选为10~200W,在实施例中,所述电源的功率为30~100W,通过接通电源,电离反应气体,产生等离子体场,反应得到碳纳米管薄膜。本申请所制备的碳纳米管薄膜的厚度为1~20μm。
本申请然后进行碳纳米管薄膜的刻蚀处理。上述制备的碳纳米管薄膜比较致密,致密的结构会阻碍后续复合薄膜的制备,利用等离子体处理碳纳米管薄膜,利用其刻蚀作用使碳纳米管薄膜变得疏松。在碳纳米管薄膜制备完成后关闭电源,停止通入碳源气体,向PECVD反应腔体中继续通入载气,持续通入载气,接通电源进行刻蚀处理。在上述过程中,接通电源后电离载气,产生等离子体,而使部分碳纳米管在等离子体刻蚀的作用下与基底剥离,使得碳纳米管在复合薄膜中分散的均匀。本申请中所述刻蚀过程有两个方面的作用:一是清洗作用,二是利用等离子体的轰击和刻蚀作用,使得原有的碳纳米管变得相对疏松,便于后续复合薄膜的制备。上述过程中,接通电源之前,所述反应腔体内的气压为0.08~0.2Pa,在实施例中,所述气压为0.1Pa。所述载气优选为氩气与氢气,所述氩气的流量优选为20~40sccm,所述氢气的流量优选为15~30sccm。所述电源的功率优选为200~500W,所述刻蚀的时间优选为1~5min。在刻蚀之后则将电源关闭。
本申请最后进行基体薄膜的制备,原位碳纳米管增强复合薄膜的制备难点在于实现基体薄膜与碳纳米管薄膜的制备,利用刻蚀作用使碳纳米管薄膜变得疏松之后,便于复合薄膜的制备。在刻蚀处理完成后,腔体内的温度还比较高,不适合基体薄膜的制备,需等待PECVD设备的反应腔体温度冷却至适合基体薄膜的生长温度,冷却过程中停止通入载气。本申请制备基体薄膜的过程为:
将所述反应腔体冷却,通入反应气体后接通电源,反应后得到复合薄膜。
在上述过程中,所述PECVD反应腔体冷却至150~180℃。本申请制备的基体薄膜为类金刚石薄膜,则所述反应气体优选为氩气和甲烷,所述氩气的流量优选为15~25sccm,所述甲烷的流量优选为10~20sccm。所述电源的功率优选为100~200W。
本发明提供了一种纤维增强的纳米复合薄膜结构体系的制备方法。通过工艺的优化,本方案中的几个制备步骤都在同一反应腔体内完成,原位制备方法提升了复合薄膜的制备效率。另一方面,原位制备使得碳纳米管能够在整个复合薄膜体系中均匀分布,从而使得制备得到的纳米复合薄膜具有较好的各向同性,得到的碳纳米管增强复合薄膜具有较好的韧性,不易开裂,在导电、导热性能,在柔性电子器件、燃料电池、电磁屏蔽、生物抗菌等领域都具有良好的应用前景。
为了进一步理解本发明,下面结合实施例对本发明提供的复合薄膜的制备方法进行详细说明,本发明的保护范围不受以下实施例的限制。
实施例1
步骤1:提供Si片基底,基底表面用PVD方法制备了一层10nm的Fe-Ni复合催化剂薄膜。放入PECVD反应腔体之前,用乙醇浸泡超声清洗10min,烘干后置于PECVD反应腔体的阴极板上;
步骤2:加热腔体至450℃后,向腔体内通入氩气与氢气,流量分别为30sccm和20sccm;继续加热腔体使其达到600℃后,向腔体内通入碳源气体甲烷,其流量为10sccm;然后接通电源,电离反应气体,产生等离子体场;持续制备10min后,关闭电源,停止通入碳源气体,继续通入氩气和氢气,制备得到的厚度约为1μm碳纳米管薄膜;
步骤3:完成碳纳米管薄膜的制备后,持续向腔体内通入氩气和氢气,控制腔体内的气压至0.1Pa左右,接通电源,功率为200W,整个刻蚀过程持续2min;刻蚀作用使得原本致密的碳纳米管变得相对疏松,部分碳纳米管在等离子体刻蚀的作用下与基底剥离,使得碳纳米管在整个复合薄膜中分散的更均匀;
步骤4:刻蚀过程完成后,腔体内的温度还比较高,不适合基体薄膜的制备,需等待腔体温度冷却至适合基体薄膜的生长温度,冷却过程中停止通入氩气和氢气,当温度冷却至170℃左右时,开始制备类金刚石复合薄膜;向腔体内通入氩气和甲烷,其气流量分别为20sccm和15sccm,然后接通电源,功率为200W,制备时间为30min,得到碳纳米管增强的复合类金刚石薄膜。
本实施例制备的复合薄膜的等效电阻约为200Ω。
本实施例实现了碳纳米管与类金刚石薄膜的原位复合。通常在利用PECVD方法制备类金刚石薄膜的过程中,由于薄膜中存在较高的应力,使得薄膜容易开裂失效,通过与碳纳米管相结合,形成的复合结构能够有效的释放薄膜中的应力,使得薄膜不易开裂。与此同时,纤维增强结构还能够为薄膜体系增加韧性,使得复合薄膜具有更好的整体性能。本实施例复合薄膜的制备过程都在同一反应腔体内完成,工艺简单,复合薄膜的制备效率高。
实施例2
与实施例1中的前3个步骤相同,区别在于:步骤4中,当炉内温度冷却至170℃时,开始制备类金刚石薄膜,反应气体依然是氩气和甲烷,流量为20sccm和15sccm,电源功率为100W,制备时间为30min。本实施例制备的复合薄膜如图3所示,从附图中可以看到,本实施例能够有效制备碳纳米管增强类金刚石复合薄膜。本实施例制备的复合薄膜的等效电阻为500Ω。
实施例3
与实施例1中的前三个步骤相同,区别在于:步骤四中,当炉内温度冷却至200℃时,开始制备类金刚石薄膜,反应气体依然是氩气和甲烷,流量为20sccm和15sccm,电源功率为300W,制备时间为30min。由于功率较高,制备得到的非晶碳膜具有很高的内应力,无法有效成膜,只有少量的非晶碳附着于碳纳米管薄膜的表面。如图4所示,可以看到,刻蚀后的碳纳米管表面变得疏松。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (6)

1.一种复合薄膜的制备方法,包括以下步骤:
A),将表面制备有金属催化剂薄膜的基底置于PECVD设备的反应腔体中,将所述反应腔体加热至温度超过450℃,通入载气,继续加热所述反应腔体至500~600℃,再通入碳源气体,接通电源,反应后得到碳纳米管薄膜;所述碳纳米管薄膜的厚度为1~20μm;
B),关闭电源,停止通入碳源气体,向所述反应腔体中继续通入载气,接通电源对碳纳米管薄膜进行刻蚀后关闭电源;
C),将所述反应腔体冷却,通入反应气体后接通电源,反应后得到复合薄膜;
步骤A)中,所述载气为氢气与氩气,所述氩气的流量为20~60sccm,所述氢气的流量为15~30sccm;
步骤A)中,所述电源的功率为10W~200W,所述金属催化剂薄膜的厚度为1~50nm;
步骤B)中,所述电源功率为200~500W,所述刻蚀的时间为1~5min。
2.根据权利要求1所述的制备方法,其特征在于,制备催化剂薄膜的方法为蒸发法或溅射法。
3.根据权利要求1所述的制备方法,其特征在于,所述金属催化剂薄膜为铁、钴、镍或上述元素复合的薄膜。
4.根据权利要求1所述的制备方法,其特征在于,步骤C)中,所述反应腔体冷却至150~180℃。
5.根据权利要求1所述的制备方法,其特征在于,步骤C)中,所述反应气体为氩气和甲烷,所述氩气的流量为15~25sccm,所述甲烷的流量为10~20sccm。
6.根据权利要求1所述的制备方法,其特征在于,步骤C)中所述电源的功率为100~200W。
CN201610326908.0A 2016-05-17 2016-05-17 一种复合薄膜的制备方法 Active CN107385412B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610326908.0A CN107385412B (zh) 2016-05-17 2016-05-17 一种复合薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610326908.0A CN107385412B (zh) 2016-05-17 2016-05-17 一种复合薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN107385412A CN107385412A (zh) 2017-11-24
CN107385412B true CN107385412B (zh) 2019-08-06

Family

ID=60338777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610326908.0A Active CN107385412B (zh) 2016-05-17 2016-05-17 一种复合薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN107385412B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088921B (zh) * 2021-04-13 2023-03-24 昆明理工大学 一种多孔金刚石膜/三维碳纳米线网络复合材料的制备方法及其产品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101255544B (zh) * 2008-03-21 2012-06-27 中国科学院上海硅酸盐研究所 纳米金属或金属氧化物/碳纳米管复合材料的制备方法
CN104532206A (zh) * 2014-12-12 2015-04-22 中国科学院重庆绿色智能技术研究院 一种在绝缘衬底上原位生长掺杂石墨烯薄膜的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR421701A0 (en) * 2001-04-04 2001-05-17 Commonwealth Scientific And Industrial Research Organisation Process and apparatus for the production of carbon nanotubes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101255544B (zh) * 2008-03-21 2012-06-27 中国科学院上海硅酸盐研究所 纳米金属或金属氧化物/碳纳米管复合材料的制备方法
CN104532206A (zh) * 2014-12-12 2015-04-22 中国科学院重庆绿色智能技术研究院 一种在绝缘衬底上原位生长掺杂石墨烯薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"低温等离子体增强化学气相沉积技术制备碳纳米管";李社强等;《真空》;20040430;第41卷(第4期);第41页左栏第1段、右栏第2段

Also Published As

Publication number Publication date
CN107385412A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
CN103773985B (zh) 一种高效原位制备石墨烯增强铜基复合材料的方法
Tian et al. A highly order‐structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra‐low Pt loading PEM fuel cells
JP5833587B2 (ja) ステンレス鋼を母材とする耐食性及び伝導性ナノカーボンコーティング方法及びそれによる燃料電池分離板の製造方法
CN106374116A (zh) 一种燃料电池金属双极板上的高熵合金复合涂层和工艺
US20160138171A1 (en) Method for manufacturing corrosion resistant and conductive nano carbon coating layer and fuel cell bipolar plate thereby using stainless steel substrate
CN101800318B (zh) 一种质子交换膜燃料电池用金属双极板及其制备方法
TWI337204B (zh)
Delmas et al. Growth of long and aligned multi-walled carbon nanotubes on carbon and metal substrates
CN103626172A (zh) 一种高导热石墨纸的制备方法
CN110371955A (zh) 一种石墨烯-金属复合材料的制备方法
CN102146641B (zh) 碳纳米管植入法改性炭纤维纸的制造工艺
CN109467450A (zh) 一种含Ti3SiC2界面层的SiCf/SiC复合材料的制备方法
CN104707997A (zh) 一种铜/石墨核壳结构的制备工艺
CN108118308A (zh) 一种类金刚石薄膜的制备方法
CN107385412B (zh) 一种复合薄膜的制备方法
TW202021904A (zh) 石墨烯膠膜的製備方法及石墨烯的轉移方法
TW201000393A (en) Method for making carbon nanotube film
CN111306971B (zh) 基于碳纳米材料薄膜的超轻薄柔性热管及其制备方法
TW201542852A (zh) 一奈米管膜的製備方法
CN107937871A (zh) 一种燃料电池双极板复合涂层及其制备方法
CN109763321B (zh) 一种导电石墨烯/银复合芳纶丝束及其制备方法
TWI539650B (zh) 燃料電池膜電極
CN108189515A (zh) 一种石墨烯-碳纳米管薄膜基导热垫片及其制备方法
CN108554745A (zh) 一种dlc膜层的表面处理方法
CN115411285A (zh) 一种含有防腐薄膜的燃料电池双极板及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20190123

Address after: 100043 Beijing Shijingshan District Financial Street Changan center 26 hospital 5 building 2507

Applicant after: Beijing Rui Mann Technology Co., Ltd.

Applicant after: Hebei Beijing Tianjin Hebei remanufacturing industry technology research Co., Ltd.

Applicant after: Armored Infantry Engineering College, People's Liberation Army

Address before: 100000 Key Laboratory of remanufacturing technology, No. 21, Dujia Kan, Fengtai District, Beijing

Applicant before: Armored Infantry Engineering College, People's Liberation Army

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant