CN107376889B - 一种硅藻土/(C+TiO2)纳米复合光催化剂的制备方法 - Google Patents

一种硅藻土/(C+TiO2)纳米复合光催化剂的制备方法 Download PDF

Info

Publication number
CN107376889B
CN107376889B CN201710721789.3A CN201710721789A CN107376889B CN 107376889 B CN107376889 B CN 107376889B CN 201710721789 A CN201710721789 A CN 201710721789A CN 107376889 B CN107376889 B CN 107376889B
Authority
CN
China
Prior art keywords
diatomite
tio
catalyst
nano composite
composite photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710721789.3A
Other languages
English (en)
Other versions
CN107376889A (zh
Inventor
杜高翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Yixing Technology Co Ltd
Original Assignee
Beijing Yixing Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Yixing Technology Co Ltd filed Critical Beijing Yixing Technology Co Ltd
Priority to CN201710721789.3A priority Critical patent/CN107376889B/zh
Publication of CN107376889A publication Critical patent/CN107376889A/zh
Application granted granted Critical
Publication of CN107376889B publication Critical patent/CN107376889B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种硅藻土/(C+TiO2)纳米复合光催化剂的制备方法。所述方法以经过精细提纯和孔结构改造的硅藻土为载体,钛酸四丁酯为钛源和碳源,通过原位沉积‑分散、阻隔‑碳化与晶化‑阻隔剂去除的方法,控制碳和二氧化钛在硅藻土颗粒表面的存在方式,制备成硅藻土/(C+TiO2)复合粉体材料。通过本发明所述方法制备的硅藻土/(C+TiO2)复合光催化剂,在硅藻土表面负载大量的大小较为均匀的球形TiO2颗粒,其催化活性高,光降解速率大,且能有效减少二氧化钛回收过程中的损失;生产过程不产生污染,适合工业化生产。

Description

一种硅藻土/(C+TiO2)纳米复合光催化剂的制备方法
技术领域
本发明属于无机非金属材料和复合光催化剂制备技术领域,具体涉及一种硅藻土/(C+TiO2)纳米复合光催化剂的制备方法。
背景技术
与传统的化学氧化法、生物处理法和高温焚烧法相比,半导体光催化技术利用太阳能,在常温常压下就能彻底降解空气和水中的污染物,且不存在二次污染,被认为是一种理想的环境治理技术。光催化剂是光催化法处理污水和废气中污染物的物质载体,其性能决定着光催化处理污水和废气的效率和成本。在半导体光催化剂中,二氧化钛以其廉价、无毒、导带价带电位合适、光腐蚀性小、无二次污染等优点,成为多相光催化领域的研究热点。
二氧化钛光催化技术在近年得到了较快的发展,但其在工业应用仍存在瓶颈问题:(1)为增大单位催化剂的界面反应面积,研究者将二氧化钛制备成超细颗粒,甚至纳米级颗粒,由于二氧化钛的超亲水性,尤其是紫外光照射后的超亲水性、超细性和高分散性,光催化处理污水后催化剂的回收十分困难;(2)光催化处理污水的部分工艺是在紫外光照条件下进行的,而光降解速率较低,造成光催化处理污水的成本远高于其他方法。因此,解决纳米TiO2与水分离困难和光催化处理污水和废气的速率问题,对于实现光催化方法的工业化应用具有十分重要的意义。
硅藻土是一种由硅藻遗骸沉积而成的、以无定型二氧化硅为主要成分的多孔矿物,具有强吸附性、耐酸性、耐700℃高温等优点,在吸附剂、助滤剂、污水处理、催化剂载体等方面有着广泛的应用。硅藻土储量丰富,价格低廉,以其作为光催化材料载体,不仅可以降低制备和使用成本,还可以解决在废水处理实际应用时回收困难的问题。
通过无机复合方式形成具有光催化性能的硅藻土/TiO2复合粉体一直受到研究者的关注,如专利CN101804338A以提纯的精硅藻土为载体,以四氯化钛为前驱体,专利CN1970149A将硅藻土用稀硫酸洗涤后,以硫酸氧钛为前驱体,调节反应条件使其水解形成沉淀,经过滤、洗涤、干燥、煅烧制备出硅藻土微粒负载纳米TiO2产品。上诉方法存在的主要问题是生产过程产生大量酸性废水,污染环境。
发明内容
为了解决纳米级二氧化钛回收困难,可见光条件下光催化降解速率低等问题,本发明提供一种硅藻土/(C+TiO2)纳米复合光催化剂的制备方法。所述方法以经过精细提纯和孔结构改造的硅藻土为载体,钛酸四丁酯为钛源和碳源,通过原位沉积-分散、阻隔-碳化与晶化-阻隔剂去除的方法,控制碳和二氧化钛在硅藻土颗粒表面的存在方式,制备成硅藻土/(C+TiO2)复合粉体材料。与现有方法相比,通过本发明所述方法制备的硅藻土/(C+TiO2)复合光催化剂,在硅藻土表面负载大量的大小较为均匀的球形TiO2颗粒,其催化活性高,光降解速率大,且能有效减少二氧化钛回收过程中的损失;所述方法生产过程不产生污染,适合工业化生产。
为实现上述目标,本发明采用以下技术方案:
一种硅藻土/(C+TiO2)纳米复合光催化剂的制备方法,所述方法以经过精细提纯和孔结构改造的硅藻土为载体,钛酸四丁酯为钛源和碳源,通过原位沉积-分散、阻隔-碳化与晶化-阻隔剂去除的方法,控制碳和二氧化钛在硅藻土颗粒表面的存在方式,制备成硅藻土/(C+TiO2)复合粉体材料。
所述方法包括以下步骤:
1)把钛酸四丁酯和无机盐类分散阻隔剂在适量的水中分散乳化;
2)将经过精细提纯的硅藻土与经步骤1)得到的乳化后的钛有机化合物乳液混合,使硅藻土颗粒负载钛有机化合物和无机盐分散阻隔剂,然后进行干燥处理;
3)将干燥后的硅藻土/钛有机化合物粉体置于气氛炉中,在氮气气氛下碳化、二氧化钛结晶化处理,煅烧温度300~800℃,保温时间1~100h,冷却至常温后用蒸馏水洗涤去掉可溶性无机盐部分,获得硅藻土/(C+TiO2)纳米复合光催化材料。
优选的,所述无机盐类分散阻隔剂包括硅酸钠、硝酸钙、硝酸镁等可溶性无机盐。
优选的,所属步骤1)中,无机盐类分散阻隔剂为钛酸四丁酯质量的1%~10%。
优选的,所述步骤2)中,要求硅藻土质量:钛元素质量=100:5~25。
本发明的优点和有益效果为:
1)以硅藻土作为二氧化钛的载体,可以完全解决催化剂与水分离困难的问题;
2)在硅藻土表面负载碳,可以有效地提高颗粒与有机物的亲和力,提高吸附效率;
3)将二氧化钛与碳复合后,材料的光催化性能也远优于单纯的二氧化钛;
4)本发明制备的硅藻土/(C+TiO2)复合光催化剂,在硅藻土表面负载大量的大小较为均匀的球形TiO2颗粒,其催化活性高,光降解速率大,且能有效减少二氧化钛回收过程中的损失;
5)本发明生产过程不产生污染,适合工业化生产。
附图说明
下面结合附图和实施例对本发明作进一步说明。
图1为本发明实施例1所述的用钛酸四丁酯和硅藻土制备的硅藻土/(C+TiO2)纳米复合光催化剂的SEM图。
具体实施方式
实施例1
1)称取10g钛酸四丁酯,硅酸钠0.5g,在水中分散乳化;
2)在上述钛有机化合物混合液中加入12g精细提纯的硅藻土,充分混合,将产物干燥;
3)将干燥后的产物置于氮气气氛炉中,在650℃保温2h,冷却至常温后,用蒸馏水洗涤去掉可溶性的无机盐,得到硅藻土/(C+TiO2) 纳米复合光催化剂,其SEM图如附图1所示。
实施例2
1)称取100g钛酸四丁酯,硝酸钙1g,在水中分散乳化;
2)在上述钛有机化合物混合液中加入410g精细提纯的硅藻土,充分混合,将产物干燥;
3)将干燥后的产物置于氮气气氛炉中,在300℃保温1h,冷却至常温后,用蒸馏水洗涤去掉可溶性的无机盐,得到硅藻土/(C+TiO2) 纳米复合光催化剂。
实施例3
1)称取50g钛酸四丁酯,硅酸钠5g,在水中分散乳化;
2)在上述钛有机化合物混合液中加入51g精细提纯的硅藻土,充分混合,将产物干燥;
3)将干燥后的产物置于氮气气氛炉中,在800℃保温100h,冷却至常温后,用蒸馏水洗涤去掉可溶性的无机盐,得到硅藻土 /(C+TiO2)纳米复合光催化剂。
最后应说明的是:显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (6)

1.一种硅藻土/C+TiO2纳米复合光催化剂的制备方法,其特征在于:所述方法以经过精细提纯和孔结构改造的硅藻土为载体,钛酸四丁酯为钛源和碳源,通过原位沉积-分散、阻隔-碳化与晶化-阻隔剂去除的方法,控制碳和二氧化钛在硅藻土颗粒表面的存在方式,制备成硅藻土/C+TiO2复合粉体材料。
2.如权利要求1所述的一种硅藻土/C+TiO2纳米复合光催化剂的制备方法,其特征在于,所述方法包括以下步骤:
1)把钛酸四丁酯和无机盐类分散阻隔剂在适量的水中分散乳化;
2)将经过精细提纯的硅藻土与经步骤1)得到的乳化后的钛有机化合物乳液混合,使硅藻土颗粒负载钛有机化合物和无机盐分散阻隔剂,然后进行干燥处理;
3)将干燥后的硅藻土/钛有机化合物粉体置于气氛炉中,在氮气气氛下碳化、二氧化钛结晶化处理,煅烧温度300~800℃,保温时间1~100h,冷却至常温后用蒸馏水洗涤去掉可溶性无机盐部分,获得硅藻土/C+TiO2纳米复合光催化材料。
3.如权利要求2所述的一种硅藻土/C+TiO2纳米复合光催化剂的制备方法,其特征在于:所述无机盐类分散阻隔剂为硅酸钠、硝酸钙、硝酸镁。
4.如权利要求2所述的一种硅藻土/C+TiO2纳米复合光催化剂的制备方法,其特征在于:所述 步骤1)中,无机盐类分散阻隔剂为钛酸四丁酯质量的1%~10%。
5.如权利要求2所述的一种硅藻土/C+TiO2纳米复合光催化剂的制备方法,其特征在于:所述步骤2)中,要求硅藻土质量:钛元素质量=100:5~25。
6.如权利要求1所述的一种硅藻土/C+TiO2纳米复合光催化剂的制备方法,其特征在于:将二氧化钛与碳复合后负载在硅藻土表面。
CN201710721789.3A 2017-08-22 2017-08-22 一种硅藻土/(C+TiO2)纳米复合光催化剂的制备方法 Active CN107376889B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710721789.3A CN107376889B (zh) 2017-08-22 2017-08-22 一种硅藻土/(C+TiO2)纳米复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710721789.3A CN107376889B (zh) 2017-08-22 2017-08-22 一种硅藻土/(C+TiO2)纳米复合光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN107376889A CN107376889A (zh) 2017-11-24
CN107376889B true CN107376889B (zh) 2019-10-01

Family

ID=60353895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710721789.3A Active CN107376889B (zh) 2017-08-22 2017-08-22 一种硅藻土/(C+TiO2)纳米复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN107376889B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113058606A (zh) * 2021-03-18 2021-07-02 北京工业大学 一种富氧空位NaFeSi2O6光催化剂的制备与光还原Cr(VI)的方法
CN113201960B (zh) * 2021-04-30 2023-04-07 北京依依星科技有限公司 一种光催化纸及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1970149A (zh) * 2006-12-07 2007-05-30 天津大学 硅藻土微粒负载纳米TiO2的制备方法
CN101195086A (zh) * 2006-12-06 2008-06-11 中国矿业大学(北京) 可用于水和空气净化的硅藻土负载纳米TiO2材料的制备方法
CN105944708A (zh) * 2016-04-28 2016-09-21 安徽理工大学 TiO2-C@TiO2-rGO透明自支撑薄膜及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI455889B (zh) * 2008-08-05 2014-10-11 Nat Univ Tsing Hua 碳包覆金屬氧化物奈米顆粒及其製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101195086A (zh) * 2006-12-06 2008-06-11 中国矿业大学(北京) 可用于水和空气净化的硅藻土负载纳米TiO2材料的制备方法
CN1970149A (zh) * 2006-12-07 2007-05-30 天津大学 硅藻土微粒负载纳米TiO2的制备方法
CN105944708A (zh) * 2016-04-28 2016-09-21 安徽理工大学 TiO2-C@TiO2-rGO透明自支撑薄膜及其制备方法和应用

Also Published As

Publication number Publication date
CN107376889A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
Ramasundaram et al. Highly reusable TiO2 nanoparticle photocatalyst by direct immobilization on steel mesh via PVDF coating, electrospraying, and thermal fixation
Huang et al. Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NO x
Chen et al. Fabrication of In2O3-Ag-Ag3PO4 composites with Z-scheme configuration for photocatalytic ethylene degradation under visible light irradiation
CN109569739B (zh) 基于二氧化钛的双层中空材料及其在硫化氢光催化处理中的应用
Lin et al. Enhanced photocatalysis using side-glowing optical fibers coated with Fe-doped TiO2 nanocomposite thin films
Da Dalt et al. Photocatalytic degradation of methyl orange dye in water solutions in the presence of MWCNT/TiO2 composites
Shi et al. Palygorskite supported BiVO4 photocatalyst for tetracycline hydrochloride removal
Khanmohammadi et al. Insights into mesoporous MCM-41-supported titania decorated with CuO nanoparticles for enhanced photodegradation of tetracycline antibiotic
Zhang et al. Green recovery of titanium and effective regeneration of TiO2 photocatalysts from spent selective catalytic reduction catalysts
CN101195086A (zh) 可用于水和空气净化的硅藻土负载纳米TiO2材料的制备方法
CN101773827B (zh) 高活性载铂TiO2纳米管光催化剂的制备方法
Abdullah et al. Development of CuO/CuS/MnO2 ternary nanocomposite for visible light-induced photocatalytic degradation of methylene blue
CN107321341B (zh) 一种硅藻土/(GR+TiO2)复合光催化剂的制备方法
Jiang et al. Equilibrium and kinetic studies of CI Basic Blue 41 adsorption onto N, F-codoped flower-like TiO2 microspheres
Li et al. Preparation and characterization of ternary Cu/Cu2O/C composite: An extraordinary adsorbent for removing anionic organic dyes from water
Colón et al. Effect of ZrO2 incorporation and calcination temperature on the photocatalytic activity of commercial TiO2 for salicylic acid and Cr (VI) photodegradation
CN101574652B (zh) 负载型光催化剂的制备方法及应用
Chen et al. Synthesis of TiO2 hollow sphere multimer photocatalyst by etching titanium plate and its application to the photocatalytic decomposition of gaseous styrene
Adhikari et al. Effect of particle size on the photocatalytic activity of BiNbO4 under visible light irradiation
CN107376889B (zh) 一种硅藻土/(C+TiO2)纳米复合光催化剂的制备方法
Wang et al. Enhanced photocatalytic performance of Bi2O3/H-ZSM-5 composite for rhodamine B degradation under UV light irradiation
CN104759273A (zh) 一种原位碳掺杂中空二氧化钛可见光催化剂的制备方法
Wang et al. Highly efficient photocatalytic oxidation of antibiotic ciprofloxacin using TiO2@ g-C3N4@ biochar composite
CN105964248A (zh) 粉煤灰微珠负载纳米二氧化钛复合光催化剂的制备方法
CN110694604B (zh) 一种TiO2-PPy超浸润光催化复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant