CN107364550A - 渔业水质在线自动检测船 - Google Patents

渔业水质在线自动检测船 Download PDF

Info

Publication number
CN107364550A
CN107364550A CN201710491554.XA CN201710491554A CN107364550A CN 107364550 A CN107364550 A CN 107364550A CN 201710491554 A CN201710491554 A CN 201710491554A CN 107364550 A CN107364550 A CN 107364550A
Authority
CN
China
Prior art keywords
water quality
water
pipe
magnetic valve
ammonia nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710491554.XA
Other languages
English (en)
Other versions
CN107364550B (zh
Inventor
李红霞
强俊
何杰
徐跑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences
Original Assignee
Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences filed Critical Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences
Priority to CN201710491554.XA priority Critical patent/CN107364550B/zh
Publication of CN107364550A publication Critical patent/CN107364550A/zh
Application granted granted Critical
Publication of CN107364550B publication Critical patent/CN107364550B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7756Sensor type
    • G01N2021/7759Dipstick; Test strip
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Abstract

本发明公开了一种渔业水质在线自动检测船,包括船体、水质取样管、四通电磁阀、氨氮检测装置、自来水池、三通电磁阀、稀释池和多参数水质检测仪;船体上安装有控制器,控制器内置有GPS定位模块;氨氮检测装置包括卷带、氨氮检测试纸、混合管、激活剂添加管和摄像头;稀释池内设置有稀释液采样管,该稀释液采样管与多参数水质检测仪的进样通道相连接,且稀释液采样管上设置有电磁阀三。本申请能在线对待检测水域的各个监测点进行水质自动监测,并自动记录监测点位置。同时,能对待检测水域的氨氮含量进行初检,并能自动判断是否需要对采集水样进行稀释,以使采集水样的氨氮浓度在多参数水质检测仪量程内。

Description

渔业水质在线自动检测船
技术领域
本发明涉及水产养殖设备技术领域,特别是一种渔业水质在线自动检测船。
背景技术
养殖水体既是养殖对象的生活场所,也是粪便、残饵等的分解容器。同时,又是浮游生物的培育池。
这种“三池合一”的养殖方式,容易造成“消费者、分解者和生产者”之间的生态失衡,造成水中有机物和有毒有害物质的大量富积,这不仅严重影响养殖动物的生存和生长,而且成为天然水域环境的主要污染源之一。
因此,如何保持水环境的生态平衡,是水产养殖优质、高效的关键技术。要做好水质调控,首先要了解养殖水体的水质参数。
目前,专业的水质监测仪器虽然测试数据精确,然而由于存在着如下不足,难以普遍推广:
1.设备价格昂贵,购置成本高。
2.需要专业人员才能使用,也即需要专人呆在待监测水域内,设置及调整采样装置的位置十分不方便,大大降低了重复使用性及便携性。
3.移动不方便,无法对监测点进行自动定位,从而需要每次监测时候,人为记录监测点的位置,定位不方便且不准确。
4.为保证测量精度,每台水质监测仪均有自己单独的测试量程,一旦渔业水质的参数超过水质监测仪的量程,则其测量结果就不可靠或无法测量。如罗非鱼越冬温室池塘的水质指标,因为养殖密度大,水体小,换水频率低,其中的氨氮,硝氮和亚硝氮等指标的浓度远远高于池塘养殖水体中的浓度,甚至超出了水质监测仪的量程。
发明内容
本发明要解决的技术问题是针对上述现有技术的不足,而提供一种渔业水质在线自动检测船,该渔业水质在线自动检测船能在线对待检测水域的各个监测点进行水质自动监测,并自动记录监测点位置。同时,能对待检测水域的氨氮含量进行初检,并能自动判断是否需要对采集水样进行稀释,以使采集水样的氨氮浓度在多参数水质检测仪量程内。
为解决上述技术问题,本发明采用的技术方案是:
一种渔业水质在线自动检测船,包括船体、水质取样管、四通电磁阀、氨氮检测装置、自来水池、三通电磁阀、稀释池和多参数水质检测仪。
船体上安装有控制器,控制器内置有GPS定位模块。
四通电磁阀具有进水端P、出水端A、出水端B和出水端C。
水质取样管设置在船体的前端,水质取样管的进样端伸入待测水域的水体中,且进样端设置有过滤网;水质取样管的中部设置有蠕动泵一,水质取样管的出样端与四通电磁阀的进水端P相连接。
氨氮检测装置包括卷带、氨氮检测试纸、混合管、激活剂添加管和摄像头。
卷带能向前移动,卷带的上表面粘贴有若干条氨氮检测试纸。
混合管和摄像头设置在其中一条氨氮检测试纸的正上方。
四通电磁阀的出水端A指向混合管,混合管的出口指向位于下方的氨氮检测试纸,混合管的出口上设置有电磁阀一。
激活剂添加管设置在混合管的上方,激活剂添加管的出口指向混合管内,激活剂添加管的出口上设置有电磁阀二。
四通电磁阀的出水端B指向稀释池,四通电磁阀的出水端C与多参数水质检测仪的进样通道相连接。
三通电磁阀具有进水口O、出水口M和出水口N;其中,进水口O通过自来水管与自来水池相连接,自来水管上设置有蠕动泵二;出水口M指向稀释池,出水口N与多参数水质检测仪的进样通道相连接。
稀释池内设置有稀释液采样管,该稀释液采样管与多参数水质检测仪的进样通道相连接,且稀释液采样管上设置有电磁阀三。
上述四通电磁阀、三通电磁阀、电磁阀一、电磁阀二、电磁阀三、蠕动泵一、蠕动泵二和摄像头均与控制器相连接。
水质取样管的进样端呈喇叭状。
氨氮检测装置还包括支撑板、主动轴和从动轴,主动轴和从动轴均平行且转动设置在支撑板上,卷带的一端卷绕在主动轴上,卷带的另一端卷绕在从动轴上。
主动轴的转动由电机驱动。
稀释池的底部设置有废水出水管,该废水出水管上设置有与控制器相连接的电磁阀四。
本发明具有如下有益效果:
本发明的检测船自带有GPS定位模块,故能对船体的航行位置进行定位,通过预先对待检测水域进行监测点的设置,当船体航行至对应的监测点时,上述氨氮检测装置能预先对该监测点的水质的氨氮含量进行快速的预判断,以确认该监测点的氨氮含量是否在多参数水质检测仪量程内,若在量程内,则不需要稀释,水质取样管抽取试样将直接进入多参数水质检测仪进行测试分析;若不在量程内,控制器将自动计算需稀释倍数,使稀释后的稀释样品的氨氮含量在多参数水质检测仪量程内;然后抽取稀释后的稀释样品进入多参数水质检测仪进行测试分析。整个测量过程,不需人工参与,能在线对待检测水域的各个监测点进行水质自动监测,并自动记录监测点位置。
附图说明
图1是本发明一种渔业水质在线自动检测船的结构示意图。
其中有:
10.船体;11.控制器;12.GPS定位模块;
20.水质取样管;21.过滤网;22.蠕动泵一;
30.四通电磁阀;
40.氨氮检测装置;41.支撑板;42.主动轴;43.从动轴;44.卷带;45.氨氮检测试纸;46.混合管;461.电磁阀一;47.激活剂添加管;471.电磁阀二;48.摄像头;
50.自来水池;51.自来水管;52.蠕动泵二;53.三通电磁阀;
60.稀释池;61.稀释样采集管;62.电磁阀三;63.废水出水管;64.电磁阀四;
70.多参数水质检测仪。
具体实施方式
下面结合附图和具体较佳实施方式对本发明作进一步详细的说明。
如图1所示,一种渔业水质在线自动检测船,包括船体10、水质取样管20、四通电磁阀30、氨氮检测装置40、自来水池50、三通电磁阀53、稀释池60和多参数水质检测仪70。
船体上安装有控制器11,控制器内置有GPS定位模块12。
四通电磁阀具有进水端P、出水端A、出水端B和出水端C。
水质取样管设置在船体的前端,水质取样管的进样端伸入待测水域的水体中,且进样端设置有过滤网21;水质取样管的中部设置有蠕动泵一22,水质取样管的出样端与四通电磁阀的进水端P相连接。
水质取样管的进样端优选呈喇叭状,取样干扰小,能防止水流干扰。
氨氮检测装置包括卷带44、氨氮检测试纸45、混合管46、激活剂添加管47和摄像头48。
混合管、激活剂添加管和摄像头均优选通过支撑杆体固定在船体上。
卷带能向前移动,卷带的上表面粘贴有若干条氨氮检测试纸45。
卷带的优选安装方式如下:
也即氨氮检测装置还包括支撑板41、主动轴42和从动轴43,主动轴和从动轴均平行且转动设置在支撑板上,卷带的一端卷绕在主动轴上,卷带的另一端卷绕在从动轴上。
主动轴的转动优选由电机驱动,电机优选固定在支撑板上,支撑板优选固定在船体上。
混合管和摄像头设置在其中一条氨氮检测试纸的正上方。
四通电磁阀的出水端A指向混合管,混合管的出口指向位于下方的氨氮检测试纸,混合管的出口上设置有电磁阀一。
激活剂添加管设置在混合管的上方,激活剂添加管内充填有激活剂,激活剂添加管的出口指向混合管内,激活剂添加管的出口上设置有电磁阀二。
上述氨氮检测试纸及激活剂均为现有技术,具体参见申请号为201510012424.8。
四通电磁阀的出水端B指向稀释池,四通电磁阀的出水端C与多参数水质检测仪的进样通道相连接。
三通电磁阀具有进水口O、出水口M和出水口N;其中,进水口O通过自来水管与自来水池相连接,自来水管上设置有蠕动泵二;出水口M指向稀释池,出水口N与多参数水质检测仪的进样通道相连接。
稀释池内设置有稀释液采样管,该稀释液采样管与多参数水质检测仪的进样通道相连接,且稀释液采样管上设置有电磁阀三。
稀释池的底部设置有废水出水管,该废水出水管上设置有与控制器相连接的电磁阀四。
上述四通电磁阀、三通电磁阀、电磁阀一、电磁阀二、电磁阀三、蠕动泵一、蠕动泵二和摄像头均与控制器相连接。
控制器为现有技术,可以直接使用计算机,也可以从市场上购买。
一种淡水鱼池水质在线检测方法,包括如下步骤。
步骤1,监测点预设以及船体航行路线规划:将待测水域的面积及各个角点的坐标值输入在控制器中,并在控制器中设置好监测点的个数以及各个监测点的坐标值;然后,进行船体航行路径的规划,船体的航行路径需覆盖所有监测点;另外,在控制器内预先存储氨氮检测试纸的氨氮含量颜色标准比对表。
步骤2,多参数水质检测仪工作准备:蠕动泵二启动,三通电磁阀中进水口O与出水口N连通,自来水进入多参数水质检测仪的进样通道,完成对多参数水质检测仪进样通道的自动冲洗。
步骤3,氨氮含量初检测:船体按照步骤1规划的航行路径航行至监测点后,自动记录该监测点的位置坐标,船体停止航行;然后,蠕动泵一启动,四通电磁阀中的进水端P与出水口A连通,水质取样管采集的水样自动进入混合管中;同时,电磁阀二打开,激活剂添加管向混合管中加入设定量的激活剂;水样在混合管内混合均匀后,电磁阀一打开,向氨氮检测试纸中滴注混合后的水样,在设定时间后,摄像头自动对氨氮检测试纸表面进行拍照,并将拍摄照片上传给控制器,控制器将照片中氨氮检测试纸的颜色与步骤1预存的氨氮含量颜色标准比对表进行比对判定,得出氨氮含量的粗测值;氨氮含量初检测完成后,氨氮检测试纸能自动向前移动一格,等待下一次检测。
氨氮检测试纸优选粘贴在卷带上,卷带缠绕在主动轴和从动轴上,主动轴转动,带动氨氮检测试纸向前移动。
步骤4,水样是否需要稀释判定:控制器将氨氮含量的粗测值与多参数水质检测仪量程进行比对,当氨氮含量的粗测值在多参数水质检测仪量程内,则不需要稀释,四通电磁阀中的进水端P与出水端B连通,水样直接进入多参数水质检测仪的进样通道;若不在量程内,控制器将自动计算需稀释倍数,使稀释后的稀释样品的氨氮含量在多参数水质检测仪量程内。
步骤5,水样稀释:蠕动泵二启动,三通电磁阀中进水口O与出水口M连通,稀释池中注入步骤4计算出稀释倍数所需要的自来水量;然后,四通电磁阀中的进水端P与出水端C连通,水样进入稀释池,并在稀释池内混匀;稀释完成后,电磁阀三打开,稀释完成水样通过稀释样采集管进入多参数水质检测仪的进样通道。
步骤5,水质分析:多参数水质检测仪对进入进样通道内的水样进行水质分析检测并记录。
步骤6,下一监测点水质分析:船体航行至下一监测点,循环步骤1至步骤5,完成下一监测点的水质分析;以此类推,完成所有监测点的水质分析。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种等同变换,这些等同变换均属于本发明的保护范围。

Claims (5)

1.一种渔业水质在线自动检测船,其特征在于:包括船体、水质取样管、四通电磁阀、氨氮检测装置、自来水池、三通电磁阀、稀释池和多参数水质检测仪;
船体上安装有控制器,控制器内置有GPS定位模块;
四通电磁阀具有进水端P、出水端A、出水端B和出水端C;
水质取样管设置在船体的前端,水质取样管的进样端伸入待测水域的水体中,且进样端设置有过滤网;水质取样管的中部设置有蠕动泵一,水质取样管的出样端与四通电磁阀的进水端P相连接;
氨氮检测装置包括卷带、氨氮检测试纸、混合管、激活剂添加管和摄像头;
卷带能向前移动,卷带的上表面粘贴有若干条氨氮检测试纸;
混合管和摄像头设置在其中一条氨氮检测试纸的正上方;
四通电磁阀的出水端A指向混合管,混合管的出口指向位于下方的氨氮检测试纸,混合管的出口上设置有电磁阀一;
激活剂添加管设置在混合管的上方,激活剂添加管的出口指向混合管内,激活剂添加管的出口上设置有电磁阀二;
四通电磁阀的出水端B指向稀释池,四通电磁阀的出水端C与多参数水质检测仪的进样通道相连接;
三通电磁阀具有进水口O、出水口M和出水口N;其中,进水口O通过自来水管与自来水池相连接,自来水管上设置有蠕动泵二;出水口M指向稀释池,出水口N与多参数水质检测仪的进样通道相连接;
稀释池内设置有稀释液采样管,该稀释液采样管与多参数水质检测仪的进样通道相连接,且稀释液采样管上设置有电磁阀三;
上述四通电磁阀、三通电磁阀、电磁阀一、电磁阀二、电磁阀三、蠕动泵一、蠕动泵二和摄像头均与控制器相连接。
2.根据权利要求1所述的渔业水质在线自动检测船,其特征在于:水质取样管的进样端呈喇叭状。
3.根据权利要求1所述的渔业水质在线自动检测船,其特征在于:氨氮检测装置还包括支撑板、主动轴和从动轴,主动轴和从动轴均平行且转动设置在支撑板上,卷带的一端卷绕在主动轴上,卷带的另一端卷绕在从动轴上。
4.根据权利要求3所述的渔业水质在线自动检测船,其特征在于:主动轴的转动由电机驱动。
5.根据权利要求1所述的渔业水质在线自动检测船,其特征在于:稀释池的底部设置有废水出水管,该废水出水管上设置有与控制器相连接的电磁阀四。
CN201710491554.XA 2017-06-26 2017-06-26 渔业水质在线自动检测船 Active CN107364550B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710491554.XA CN107364550B (zh) 2017-06-26 2017-06-26 渔业水质在线自动检测船

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710491554.XA CN107364550B (zh) 2017-06-26 2017-06-26 渔业水质在线自动检测船

Publications (2)

Publication Number Publication Date
CN107364550A true CN107364550A (zh) 2017-11-21
CN107364550B CN107364550B (zh) 2023-05-19

Family

ID=60305125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710491554.XA Active CN107364550B (zh) 2017-06-26 2017-06-26 渔业水质在线自动检测船

Country Status (1)

Country Link
CN (1) CN107364550B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110632267A (zh) * 2019-08-02 2019-12-31 同济大学 一种对超出在线仪表适用量程的高浓度污水的连续测定系统及方法
CN110824133A (zh) * 2019-11-22 2020-02-21 湖南文理学院 一种湖泊各级生态容量的精确计算方法
CN112394186A (zh) * 2020-12-30 2021-02-23 安徽中科大赛悟科技有限公司 一种用于水质检测的采样检测装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634654A2 (en) * 1993-07-14 1995-01-18 Arcangelo Ventura Device for monitoring the quality of purified water, particularly for biological purification plants and the like
CN102735501A (zh) * 2012-07-04 2012-10-17 中国水产科学研究院渔业机械仪器研究所 一种养殖水质监测水样采样装置
CN202885870U (zh) * 2012-11-22 2013-04-17 力合科技(湖南)股份有限公司 一种监测船
CN103335955A (zh) * 2013-06-19 2013-10-02 华南农业大学 一种水质在线监测方法与装置
CN203275172U (zh) * 2013-02-21 2013-11-06 广州伊创仪器有限公司 用于在线分析仪的智能稀释系统及该在线分析仪
CN103786838A (zh) * 2014-02-17 2014-05-14 赵德安 一种多功能无舵水产养殖作业船
CN103868782A (zh) * 2014-03-07 2014-06-18 中国水产科学研究院淡水渔业研究中心 渔业水质自动在线监测系统的稀释系统及稀释方法
CN103970093A (zh) * 2014-04-14 2014-08-06 广州市健坤网络科技发展有限公司 一种自动巡航水产养殖在线监控系统
CN203772314U (zh) * 2014-03-27 2014-08-13 中国水产科学研究院淡水渔业研究中心 一种渔业室内养殖水体水质多参数自动在线监测系统
CN105158051A (zh) * 2015-10-14 2015-12-16 郑州富铭环保科技有限公司 一种用于水质在线分析仪测定高浓度水样的稀释装置
CN204989163U (zh) * 2015-09-09 2016-01-20 广州睿航电子科技有限公司 一种无人驾驶自动导航水质监测船
CN105548154A (zh) * 2015-12-08 2016-05-04 东北电力大学 一种基于图像技术的水质氨氮浓度自动检测装置
CN205449792U (zh) * 2016-02-29 2016-08-10 江西怡杉科技有限公司 一种水质采样装置及其监测系统
CN206885285U (zh) * 2017-06-26 2018-01-16 中国水产科学研究院淡水渔业研究中心 养殖水质自动监测船

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634654A2 (en) * 1993-07-14 1995-01-18 Arcangelo Ventura Device for monitoring the quality of purified water, particularly for biological purification plants and the like
CN102735501A (zh) * 2012-07-04 2012-10-17 中国水产科学研究院渔业机械仪器研究所 一种养殖水质监测水样采样装置
CN202885870U (zh) * 2012-11-22 2013-04-17 力合科技(湖南)股份有限公司 一种监测船
CN203275172U (zh) * 2013-02-21 2013-11-06 广州伊创仪器有限公司 用于在线分析仪的智能稀释系统及该在线分析仪
CN103335955A (zh) * 2013-06-19 2013-10-02 华南农业大学 一种水质在线监测方法与装置
CN103786838A (zh) * 2014-02-17 2014-05-14 赵德安 一种多功能无舵水产养殖作业船
CN103868782A (zh) * 2014-03-07 2014-06-18 中国水产科学研究院淡水渔业研究中心 渔业水质自动在线监测系统的稀释系统及稀释方法
CN203772314U (zh) * 2014-03-27 2014-08-13 中国水产科学研究院淡水渔业研究中心 一种渔业室内养殖水体水质多参数自动在线监测系统
CN103970093A (zh) * 2014-04-14 2014-08-06 广州市健坤网络科技发展有限公司 一种自动巡航水产养殖在线监控系统
CN204989163U (zh) * 2015-09-09 2016-01-20 广州睿航电子科技有限公司 一种无人驾驶自动导航水质监测船
CN105158051A (zh) * 2015-10-14 2015-12-16 郑州富铭环保科技有限公司 一种用于水质在线分析仪测定高浓度水样的稀释装置
CN105548154A (zh) * 2015-12-08 2016-05-04 东北电力大学 一种基于图像技术的水质氨氮浓度自动检测装置
CN205449792U (zh) * 2016-02-29 2016-08-10 江西怡杉科技有限公司 一种水质采样装置及其监测系统
CN206885285U (zh) * 2017-06-26 2018-01-16 中国水产科学研究院淡水渔业研究中心 养殖水质自动监测船

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110632267A (zh) * 2019-08-02 2019-12-31 同济大学 一种对超出在线仪表适用量程的高浓度污水的连续测定系统及方法
CN110824133A (zh) * 2019-11-22 2020-02-21 湖南文理学院 一种湖泊各级生态容量的精确计算方法
CN112394186A (zh) * 2020-12-30 2021-02-23 安徽中科大赛悟科技有限公司 一种用于水质检测的采样检测装置
CN112394186B (zh) * 2020-12-30 2023-12-05 中科赛悟科技(安徽)有限公司 一种用于水质检测的采样检测装置

Also Published As

Publication number Publication date
CN107364550B (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
CN206885285U (zh) 养殖水质自动监测船
Ries A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification
CN107356771A (zh) 淡水鱼池水质在线检测方法
Bott et al. A comparison of methods for measuring primary productivity and community respiration in streams
CN107364550A (zh) 渔业水质在线自动检测船
CN206892092U (zh) 淡水鱼池自动喂鱼及水质检测船
US20160061796A1 (en) Systems and methods for rapid measurement of carbon dioxide in water
Pfeiffer et al. Comparative performance of CO2 measuring methods: Marine aquaculture recirculation system application
CN110514618A (zh) 全局全要素条件下多个不同规模化奶牛场粪水运移路线上氮磷含量的快速预测方法
Wikner et al. Precise continuous measurements of pelagic respiration in coastal waters with Oxygen Optodes
CN102393392A (zh) 水产养殖用水氨氮快速检测试剂盒及其检测方法
CN103868782A (zh) 渔业水质自动在线监测系统的稀释系统及稀释方法
CN108267569A (zh) 海洋净群落生产力和呼吸速率原位培养装置及其方法
CN102109512A (zh) 一种检测水质毒性的装置及方法
CN107094689B (zh) 一种鉴别不同来源的鲜活中华乌塘鳢的方法
Mostajir et al. A new transportable floating mesocosm platform with autonomous sensors for real‐time data acquisition and transmission for studying the pelagic food web functioning
CN107075554A (zh) 检测水样品中微生物的方法及设备
CN106596431A (zh) 基于光电比色法的氮磷钾水肥养分浓度在线检测装置
CN106405035A (zh) 基于mems气压传感器的自动增氧装置及方法
CN109406504A (zh) 一种水中氨氮快速检测固体粉末试剂及试剂盒
Moodley et al. Biomass-specific respiration rates of benthic meiofauna: Demonstrating a novel oxygen micro-respiration system
CN105277542B (zh) 一种可消除试剂空白影响的水中亚硝酸盐现场快速检测方法
Suthers et al. Sampling methods for plankton
CN109680033A (zh) 一种水体综合毒性快速检测试剂盒
CN1979128A (zh) 一种简易水质检测箱

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20171121

Assignee: DONG'E XIUQING AQUACULTURE PROFESSIONAL COOPERATIVES

Assignor: FRESHWATER FISHERIES RESEARCH CENTER,CAFS

Contract record no.: X2024980002418

Denomination of invention: Online automatic detection ship for fishery water quality

Granted publication date: 20230519

License type: Common License

Record date: 20240304

EE01 Entry into force of recordation of patent licensing contract