CN107354447A - 一种低导热氮化硼‑碳化硅薄膜的制备方法 - Google Patents

一种低导热氮化硼‑碳化硅薄膜的制备方法 Download PDF

Info

Publication number
CN107354447A
CN107354447A CN201710604231.7A CN201710604231A CN107354447A CN 107354447 A CN107354447 A CN 107354447A CN 201710604231 A CN201710604231 A CN 201710604231A CN 107354447 A CN107354447 A CN 107354447A
Authority
CN
China
Prior art keywords
boron nitride
vacuum chamber
carbon nanotube
gas
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710604231.7A
Other languages
English (en)
Inventor
潘影
其他发明人请求不公开姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Superlong Aviation Heat Resistance Material Technology Co Ltd
Original Assignee
Suzhou Superlong Aviation Heat Resistance Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Superlong Aviation Heat Resistance Material Technology Co Ltd filed Critical Suzhou Superlong Aviation Heat Resistance Material Technology Co Ltd
Priority to CN201710604231.7A priority Critical patent/CN107354447A/zh
Publication of CN107354447A publication Critical patent/CN107354447A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明提供一种碳纳米管‑SiC薄膜的制备方法,包括以下步骤:将过渡金属衬底和碳纳米管粉体置于真空反应系统中,碳纳米管粉末颗粒尺寸为10纳米‑20纳米,采用氩气分别作为碳纳米管粉体载气体和三氯甲基硅烷载气体,氢气作为反应气体,在除去真空腔内氧气的情况下,维持室内真空度1‑1000Pa,并升温至800‑1200℃,将氢气注入真空腔中,流量为100‑500mL/min,分别将载有碳纳米管粉末和三氯甲基硅烷的氩气体通入真空腔中,流量分别为10‑100ml/min和100‑500ml/min,碳纳米管粉末供给速度为10‑100mg/min,同时保持氢气流量,保温1‑5h,降温速率为5‑20℃/min。本发明有益效果主要在于提高了SiC薄膜的高温抗氧化,抗烧蚀性能。

Description

一种低导热氮化硼-碳化硅薄膜的制备方法
技术领域
本发明涉及一种低导热碳化硅薄膜的制备方法,特别是涉及一种低导热氮化硼-碳化硅薄膜的制备方法。
背景技术
碳化硼的大部分性能比碳素材料更优。对于六方氮化硼:摩擦系数很低、高温稳定性很好、耐热震性很好、强度很高、导热系数很高、膨胀系数较低、电阻率很大、耐腐蚀、可透微波或透红外线。专利申请公开号为CN 102417375 A的发明公开了一种炭/ 炭复合材料碳化硅/ZrB2-碳化硅/碳化硅 涂层及其制备方法。包括内涂层、外涂层和中间涂层,内涂层的厚度为20 ~ 50μm,外涂层的厚度为30 ~ 80μm,中间涂层的厚度为50 ~ 80μm。通过包埋发法制备碳化硅 内涂层,降低中间层ZrB2-碳化硅与C/C复合材料的热应力。通过超音速等离子喷涂制备ZrB2-碳化硅 中间层,ZrB2-碳化硅为C/C复合材料提供良好的高温烧蚀、中低温抗氧化及隔热性能。通过沉积法制备碳化硅 外涂层,有效愈合涂层表面缺陷,阻止氧气的渗入,为C/C 复合材料提供良好的高温氧化保护。同时在中低温氧化过程中,ZrB2的氧化产物B 2O3可有效愈合涂层中的缺陷,为涂层试样提供良好的中温氧化保护。
专利申请公开号为CN 103722849 A的发明公开了一种SiC/Ta/C/Ta/SiC多层抗氧化耐高温涂层及其制备方法。由碳化硅 层、Ta 层和C 层叠层组成,其特征在于叠层的次序依次为SiC层、Ta 层、C 层、Ta 层、SiC层,循环1~3次,C层两侧均为Ta层,最内层和最外层均为碳化硅层,通过化学气相沉积法在所制备的碳化硅层上依次沉积Ta层,C层,Ta层和碳化硅层,得到SiC/Ta/C/Ta/SiC多层防氧化耐高温涂层。外层碳化硅在高温有氧环境中形成一层SiO2膜,能有效阻止氧原子的扩散,同时在Ta 层和C 层的接触面,可形成TaC层进一步提高抗氧化性能。涂层的交替沉积能够有效缓解涂层之间热膨胀系数差异,可显著提高涂层的热震性能,通过控制沉积时间和沉积次数可控制基体的厚度和层数,可实现对复合涂层微观结构的控制。
发明内容
本发明的目的旨在提高碳化硅薄膜的高温抗氧化,抗烧蚀性能,提供一种能有效提高基体表面高温抗氧化、抗烧蚀性能的氮化硼-碳化硅薄膜的制备方法。
为实现本发明的目的,所采用的技术方案是:一种氮化硼-碳化硅薄膜的制备方法,其特征在于将过渡金属衬底和氮化硼粉体置于真空反应系统中,氮化硼粉末颗粒尺寸为10-20nm,采用氩气分别作为氮化硼粉体载气体和三氯甲基硅烷载气体,氢气作为反应气体,在除去真空腔内氧气的情况下,维持室内真空度1-500Pa,并升温至1000-1200℃,将氢气注入真空腔中,流量为200-500mL/min,分别将载有氮化硼粉末和三氯甲基硅烷的氩气体通入真空腔中,流量分别为10-100ml/min和100-500ml/min,氮化硼粉末供给速度为10-100mg/min,同时保持氢气流量,保温1-5h,降温速率为5-20℃/min。
本发明的有益效果:1.工艺简单,可实现大面积生长;2.所制备的氮化硼薄膜具有较好的抗化学侵蚀和无机酸侵蚀的性能;3.所制备的氮化硼薄膜在硬度强度较高的同时,具有较高的韧性;4.具有较低的导热性能。
具体实施方式
下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定。
实施例1
一种低导热氮化硼-碳化硅薄膜的制备方法,其特征在于将过渡金属衬底和氮化硼粉体置于真空反应系统中,氮化硼粉末颗粒尺寸为10纳米,采用氩气分别作为氮化硼粉体载气体和三氯甲基硅烷载气体,氢气作为反应气体,在除去真空腔内氧气的情况下,维持室内真空度1Pa,并升温至1000℃,将氢气注入真空腔中,流量为100mL/min,分别将载有氮化硼粉末和三氯甲基硅烷的氩气体通入真空腔中,流量分别为10ml/min和100ml/min,氮化硼粉末供给速度为10mg/min,同时保持氢气流量,保温1h,降温速率为5℃/min。
所制备的氮化硼薄膜具有较好的抗化学侵蚀和无机酸侵蚀的性能;在硬度强度较高的同时,具有较高的韧性,具有较低的导热性能。
实施例2
一种低导热氮化硼-碳化硅薄膜的制备方法,其特征在于将过渡金属衬底和氮化硼粉体置于真空反应系统中,氮化硼粉末颗粒尺寸为20纳米,采用氩气分别作为氮化硼粉体载气体和三氯甲基硅烷载气体,氢气作为反应气体,在除去真空腔内氧气的情况下,维持室内真空度500Pa,并升温至1200℃,将氢气注入真空腔中,流量为500mL/min,分别将载有氮化硼粉末和三氯甲基硅烷的氩气体通入真空腔中,流量分别为100ml/min和500ml/min,氮化硼粉末供给速度为100mg/min,同时保持氢气流量,保温5h,降温速率为20℃/min。
所制备的氮化硼薄膜具有较好的抗化学侵蚀和无机酸侵蚀的性能;在硬度强度较高的同时,具有较高的韧性,具有较低的导热性能。
上述仅为本发明的两个具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护的范围的行为。但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何形式的简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (1)

1.一种低导热氮化硼-碳化硅薄膜的制备方法,其特征在于将过渡金属衬底和氮化硼粉体置于真空反应系统中,氮化硼粉末颗粒尺寸为10-20nm,采用氩气分别作为氮化硼粉体载气体和三氯甲基硅烷载气体,氢气作为反应气体,在除去真空腔内氧气的情况下,维持室内真空度1-500Pa,并升温至1000-1300℃,将氢气注入真空腔中,流量为200-500mL/min,分别将载有氮化硼粉末和三氯甲基硅烷的氩气体通入真空腔中,流量分别为10-100ml/min和100-500ml/min,氮化硼粉末供给速度为10-100mg/min,同时保持氢气流量,保温1-5h,降温速率为5-20℃/min。
CN201710604231.7A 2017-07-24 2017-07-24 一种低导热氮化硼‑碳化硅薄膜的制备方法 Pending CN107354447A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710604231.7A CN107354447A (zh) 2017-07-24 2017-07-24 一种低导热氮化硼‑碳化硅薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710604231.7A CN107354447A (zh) 2017-07-24 2017-07-24 一种低导热氮化硼‑碳化硅薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN107354447A true CN107354447A (zh) 2017-11-17

Family

ID=60284434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710604231.7A Pending CN107354447A (zh) 2017-07-24 2017-07-24 一种低导热氮化硼‑碳化硅薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN107354447A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108588675A (zh) * 2018-04-24 2018-09-28 苏州宏久航空防热材料科技有限公司 一种金刚石切割线及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103722849A (zh) * 2013-09-11 2014-04-16 太仓派欧技术咨询服务有限公司 一种SiC/Ta/C/Ta/SiC多层抗氧化耐高温涂层及其制备方法
CN105970185A (zh) * 2016-04-22 2016-09-28 苏州派欧技术咨询服务有限公司 一种碳纳米管-SiC薄膜的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103722849A (zh) * 2013-09-11 2014-04-16 太仓派欧技术咨询服务有限公司 一种SiC/Ta/C/Ta/SiC多层抗氧化耐高温涂层及其制备方法
CN105970185A (zh) * 2016-04-22 2016-09-28 苏州派欧技术咨询服务有限公司 一种碳纳米管-SiC薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周文英等: "《导热高分子材料》", 30 April 2014, 国防工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108588675A (zh) * 2018-04-24 2018-09-28 苏州宏久航空防热材料科技有限公司 一种金刚石切割线及其制备方法

Similar Documents

Publication Publication Date Title
Yang et al. High-temperature protective coatings for C/SiC composites
CN103567374B (zh) 用于铝压铸模具的涂层材料以及制备该涂层材料的方法
Xiong et al. HfC/ZrC ablation protective coating for carbon/carbon composites
US9259760B2 (en) Method for coating oxidation protective layer for carbon/carbon composite, carbon heater, and cooker
López‐Honorato et al. Silver diffusion in coated fuel particles
JP2014111364A (ja) 溶射被覆した強化ポリマー複合材料
WO2021103560A1 (zh) 一种长时耐烧蚀超高熔点含氮碳化物超高温陶瓷及其应用
Hu et al. SiC coatings for carbon/carbon composites fabricated by vacuum plasma spraying technology
Sun et al. Effect of Y2O3 on the oxidation resistant of ZrSiO4/SiC coating prepared by supersonic plasma spraying technique for carbon/carbon composites
Hu et al. Long-term oxidation behavior of carbon/carbon composites with a SiC/B4C–B2O3–SiO2–Al2O3 coating at low and medium temperatures
CN103952660B (zh) 具有氮化物膜的复合材料及其制法和应用
Nguyen et al. Novel polymer-derived ceramic environmental barrier coating system for carbon steel in oxidizing environments
Li et al. SiC nanowires toughed HfC ablative coating for C/C composites
Wu et al. Oxidation protective silicon carbide coating for C/SiC composite modified by a chromium silicide–chromium carbide outer layer
CN105970185B (zh) 一种碳纳米管-SiC薄膜的制备方法
JP2018503750A (ja) 熱の放散を増加させるための特別な設計を有する真空チャンバ
Roy et al. Atomic layer deposition of alumina onto carbon fibers
Dong et al. Fabrication of protective tantalum carbide coatings on carbon fibers using a molten salt method
JP2013234369A (ja) グラファイト材に熱分解窒化ほう素をコーティングする方法及びその方法によって得られた被覆物
CN107354447A (zh) 一种低导热氮化硼‑碳化硅薄膜的制备方法
Arhami et al. As-sprayed highly crystalline Yb2Si2O7 environmental barrier coatings (EBCs) by atmospheric plasma spray (APS)
Shimada et al. High‐Temperature Oxidation at 1500° and 1600° C of SiC/Graphite Coated with Sol–Gel‐Derived HfO2
Kim et al. Thermal shock resistance of TaC/SiC coatings on carbon/carbon composites by the CVD process
KR101743019B1 (ko) 고온 내산화성이 우수한 초경도 탄화붕소 박막, 그 박막을 이용하는 절삭 공구 및 그 박막의 제조방법
Zhu et al. Oxidation behavior of titanium carbonitride coating deposited by atmospheric plasma spray synthesis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171117

WD01 Invention patent application deemed withdrawn after publication