CN107342586B - 一种用于确定配电网静态等值的方法及装置 - Google Patents

一种用于确定配电网静态等值的方法及装置 Download PDF

Info

Publication number
CN107342586B
CN107342586B CN201710418918.1A CN201710418918A CN107342586B CN 107342586 B CN107342586 B CN 107342586B CN 201710418918 A CN201710418918 A CN 201710418918A CN 107342586 B CN107342586 B CN 107342586B
Authority
CN
China
Prior art keywords
node
power
geq
equation
distribution network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710418918.1A
Other languages
English (en)
Other versions
CN107342586A (zh
Inventor
余娟
胡博
代伟
李林威
颜伟
赵霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201710418918.1A priority Critical patent/CN107342586B/zh
Priority to US15/729,461 priority patent/US10126802B1/en
Publication of CN107342586A publication Critical patent/CN107342586A/zh
Application granted granted Critical
Publication of CN107342586B publication Critical patent/CN107342586B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3058Monitoring arrangements for monitoring environmental properties or parameters of the computing system or of the computing system component, e.g. monitoring of power, currents, temperature, humidity, position, vibrations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Abstract

本发明公开了一种用于确定配电网静态等值的方法及装置,涉及电力系统静态等值技术领域,其中的方法包括:获取配电网中与边界节点相关的节点导纳矩阵、功率损耗以及边界节点的电压值和电流值;构建用于确定边界节点的静态等值的静态等值确定条件,包括:灵敏度一致性方程、网损一致性方程、等值网络功率平衡方程和节点基尔霍夫电流方程,根据静态等值确定条件计算静态等值参数。本发明的方法及装置,保留了原有PQ模型简单有效的优点,综合考虑了灵敏度与网络损耗在等值前后的一致性,保留了主动配电网中的分布式发电机的电压功率支撑作用,能够反映传输网络到主动配电网络的功率注入方向的变化,提高了对于配电网进行稳态分析的精度。

Description

一种用于确定配电网静态等值的方法及装置
技术领域
本发明涉及电力系统静态等值技术领域,尤其涉及一种用于确定配电网 静态等值的方法及装置。
背景技术
配电网是指在电力网中起分配电能作用的网络。伴随着大量的分布式电 源、多元化负荷的广泛接入和交直流新型混合配电网架的引入,配电网不再 是只有电力负荷,而是电源与电力负荷并存,成为能量双向甚至多向流动的 主动配电网,对配电网的协调控制水平和服务质量提出了更高要求。输电网 与多个配电网相连接,配电网负荷、支路、电网等元件众多,并且输电网自 身规模庞大,使得输电网与配电网难以进行集中统一分析,因此需要将配电 网进行等值。配电网等值方法将复杂的配电网对输电网的影响保留在一个简 单的等值网络中,可在减少计算复杂性的同时保留配电网对输电网影响的重 要特性,从而提高对电力系统进行稳态分析的精度。
现有的对于主动配电网的静态等值方法主要有PQ等值方法和恒阻抗、恒 电流和恒功率负荷等值方法(ZIP等值方法)。PQ等值方法将配电网等值为边 界节点处的注入/流出功率,ZIP等值方法则考虑负荷随电压变化的非线性特 性。现有方法主要的缺点包括:1)没有考虑分布式电源的等值电压功率支撑 特性,从传输网络到配电网络的功率注入方向不能改变,会给电力系统的稳 态分析带来较大的误差;2)仅考虑潮流状态等值前后一致性,而没有考虑等 值前后灵敏度与网损的一致性,导致主动配电网等值的精度不高。
发明内容
有鉴于此,本发明要解决的一个技术问题是提供一种用于确定配电网静 态等值的方法及装置。
根据本发明的一个方面,提供一种用于确定配电网静态等值的方法,包 括:获取配电网中与边界节点相关的节点导纳矩阵,并获取所述配电网的功 率损耗以及所述边界节点的电压值和电流值;构建用于确定所述边界节点的 静态等值的静态等值确定条件,其中,所述静态等值确定条件包括:灵敏度 一致性方程、网损一致性方程、等值网络功率平衡方程和节点基尔霍夫电流 方程;基于所述节点导纳矩阵、所述功率损耗以及所述电压值和所述电流 值,并根据所述静态等值确定条件计算出所述边界节点的静态等值参数。
可选地,所述获取配电网中与边界节点相关的节点导纳矩阵、并获取所 述边界节点的功率损耗以及电压值和电流值包括:获取节点导纳矩阵
Figure BDA0001314420630000021
YBI
Figure BDA0001314420630000022
Figure BDA0001314420630000023
其中,所述
Figure BDA0001314420630000024
为边界节点B处的非发电 机节点之间的节点导纳矩阵,所述
Figure BDA0001314420630000025
为所述配电网的外部节点处的非发 电机节点间的节点导纳矩阵,所述
Figure BDA0001314420630000026
为所述配电网的外部节点处的非发 电机节点与所述边界节点B处的非发电机节点间的节点导纳矩阵,所述YBI为 所述边界节点B与所述配电网的内部节点间的导纳之和的矩阵;获取所述配 电网的功率损耗Sloss、所述边界节点B的电流值IB和电压值VB
可选地,所述构建用于确定所述边界节点的静态等值的静态等值确定条 件包括:构建所述灵敏度一致性方程为:
Figure BDA0001314420630000027
其中,Zeq1为所述边界节点B和等值负荷节点Leq间的阻抗,Zeq2为所述Leq和等值发电机节点Geq间的阻抗;
构建所述网损一致性方程为:
|IB|2Zeq1+|IGeq|2Zeq2=Sloss
其中,|IB|表示所述电流值IB的幅值幅值,|IGeq|表示所述Geq处等值发电 机电流的幅值,Zeq1为所述边界节点B和所述Leq间的阻抗,Zeq2为所述Leq和所 述Geq间的阻抗;
构建所述等值网络功率平衡方程为:
Figure BDA0001314420630000031
其中,VB为所述边界节点B的电压,ILeq为所述Leq处的电流,IGeq为所述 Geq处的电流,VLeq为所述Leq处的电压,VGeq为所述Geq处的电压;
构建所述节点基尔霍夫电流方程为:
-ILeq+IGeq+IB=0。
可选地,所述基于所述节点导纳矩阵、所述功率损耗以及所述电压值和 所述电流值、并根据所述静态等值确定条件计算出所述边界节点的静态等值 参数包括:基于所述节点导纳矩阵、所述功率损耗以及所述电压值和所述电 流值对所述灵敏度一致性方程、所述网损一致性方程、所述等值网络功率平 衡方程和所述节点基尔霍夫电流方程进行求解,获得Zeq1,Zeq2,ILeq和IGeq;其 中ILeq为所述Leq处的电流,IGeq为所述Geq处的电流,所述Zeq1为所述边界节点 B和所述Leq间的阻抗,Zeq2为所述Leq和所述Geq间的阻抗。
可选地,所述构建所述等值网络功率平衡方程还包括:构建第一公式 为:
Figure BDA0001314420630000032
构建第二公式为:VLeq=VB-IBZeq1;构建第三公式为:
Figure BDA0001314420630000033
构建第四公式为:VGeq=VLeq+IGeqZeq2;构建第五公式为:
Figure BDA0001314420630000034
所述基于所述节点导纳矩阵、所述功率损耗以及所述电压值和 所述电流值、并根据所述静态等值确定条件计算出所述边界节点的静态等值 参数还包括:基于所述节点导纳矩阵、所述功率损耗以及所述电压值和所述 电流值对所述第二公式、所述第三公式、所述第四公式和所述第五公式进行 求解,获得SLeq、SGeq、VLeq、VGeq;其中,SB为所述边界节点B的功率,SLeq为所述Leq处的功率,SGeq为所述Geq处的功率。
根据本发明的另一方面,提供一种用于确定配电网静态等值的装置,包 括:获取模块,用于获取配电网中与边界节点相关的节点导纳矩阵,并获取 所述配电网的功率损耗以及所述边界节点的电压值和电流值;构建模块,用 于构建用于确定所述边界节点的静态等值的静态等值确定条件,其中,所述 静态等值确定条件包括:灵敏度一致性方程、网损一致性方程、等值网络功 率平衡方程和节点基尔霍夫电流方程;计算模块,用于基于所述节点导纳矩 阵、所述功率损耗以及所述电压值和所述电流值,并根据所述静态等值确定 条件计算出所述边界节点的静态等值参数。
可选地,所述获取模块具体用于获取节点导纳矩阵
Figure BDA0001314420630000041
YBI
Figure BDA0001314420630000042
Figure BDA0001314420630000043
并获取所述配电网的功率损耗Sloss、所述边界节点B的电流值IB和 电压值VB;其中,所述
Figure BDA0001314420630000044
为边界节点B处的非发电机节点之间的节点导 纳矩阵,所述
Figure BDA0001314420630000045
为所述配电网的外部节点处的非发电机节点间的节点导 纳矩阵,所述
Figure BDA0001314420630000046
为所述配电网的外部节点处的非发电机节点与所述边界 节点B处的非发电机节点间的节点导纳矩阵,所述YBI为所述边界节点B与所 述配电网的内部节点间的导纳之和的矩阵。
可选地,所述构建模块,还用于构建所述灵敏度一致性方程为:
Figure BDA0001314420630000047
其中,Zeq1为所述边界节点B和等值负荷节点Leq间的阻抗,Zeq2为所述Leq和等值发电机节点Geq间的阻抗;所述构建模块,还用于构建所述网损一致性 方程为:
|IB|2Zeq1+|IGeq|2Zeq2=Sloss
其中,|IB|表示所述电流值IB的幅值幅值,|IGeq|表示所述Geq处等值发电 机电流的幅值,Zeq1为所述边界节点B和所述Leq间的阻抗,Zeq2为所述Leq和所 述Geq间的阻抗。
所述构建模块,还用于构建所述等值网络功率平衡方程为:
Figure BDA0001314420630000051
其中,VB为所述边界节点B的电压,ILeq为所述Leq处的电流,IGeq为所述 Geq处的电流,VLeq为所述Leq处的电压,VGeq为所述Geq处的电压;
所述构建模块,还用于构建所述节点基尔霍夫电流方程为:
-ILeq+IGeq+IB=0。
可选地,所述计算模块,还用于基于所述节点导纳矩阵、所述功率损耗 以及所述电压值和所述电流值对所述灵敏度一致性方程、所述网损一致性方 程、所述等值网络功率平衡方程和所述节点基尔霍夫电流方程进行求解,获 得Zeq1,Zeq2,ILeq和IGeq
可选地,所述构建模块,还用于构建第一公式为:
Figure BDA0001314420630000052
构建第二公 式为:VLeq=VB-IBZeq1,构建第三公式为:
Figure BDA0001314420630000053
构建第四公式为: VGeq=VLeq+IGeqZeq2,构建第五公式为:
Figure BDA0001314420630000054
所述计算模块,还用于基 于所述节点导纳矩阵、所述功率损耗以及所述电压值和所述电流值对所述第 二公式、所述第三公式、所述第四公式和所述第五公式进行求解,获得SLeq、 SGeq、VLeq、VGeq;其中,SB为所述边界节点B的功率,SLeq为所述Leq处的功 率,SGeq为所述Geq处的功率。
本发明用于确定配电网静态等值的方法及装置,获取输入的配电网等值 前的节点导纳矩阵、网络功率损耗以及边界节点的电压与电流,构建灵敏度 一致性方程、网损一致性方程、等值网络功率平衡方程及等值负荷节点基尔 霍夫电流方程,通过求解得到等值参数;保留了原有PQ模型简单有效的优 点,综合考虑了灵敏度与网络损耗在等值前后的一致性,保留了主动配电网 中的分布式发电机的电压功率支撑作用,能够反映传输网络到主动配电网络 的功率注入方向的变化,提高了对于配电网进行稳态分析的精度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下 面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来 讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附 图。
图1为根据本发明的用于确定配电网静态等值的方法的一个实施例的流 程示意图;
图2为一种具有或支持分布式发电机的主动配电网的等值网络示意图;
图3A和图3B为一种主动配电网络的节点示意图;
图4为根据本发明的用于确定配电网静态等值的装置的一个实施例的模 块示意图。
具体实施方式
下面参照附图对本发明进行更全面的描述,其中说明本发明的示例性实 施例。下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进 行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有 做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范 围。下面结合各个图和实施例对本发明的技术方案进行多方面的描述。
下文中的“第一”、“第二”等仅用于描述上相区别,并没有其它特殊的 含义。
图1为根据本发明的用于确定配电网静态等值的方法的一个实施例的流 程示意图,如图1所示:
步骤101,获取配电网中与边界节点相关的节点导纳矩阵,并获取配电 网的功率损耗以及边界节点的电压值和电流值。
如图2所示,确定主动配电网中的边界节点B,获取配电网等值前的节 点导纳矩阵
Figure BDA0001314420630000071
YBI
Figure BDA0001314420630000072
等值前配电网功率损耗Sloss、边界 节点的电压电流IB、VB,其中,
Figure BDA0001314420630000073
为边界节点处的非发电机节点之间的 节点导纳矩阵,
Figure BDA0001314420630000074
为外部节点处的非发电机节点间的节点导纳矩阵,
Figure BDA0001314420630000075
为外部节点处的非发电机节点与边界节点处的非发电机节点间的节点 导纳矩阵,YBI为边界节点与内部节点间导纳之和。
步骤102,构建用于确定边界节点的静态等值的静态等值确定条件,静 态等值确定条件包括:灵敏度一致性方程、网损一致性方程、等值网络功率 平衡方程和节点基尔霍夫电流方程等。
构建等值前后灵敏度一致性的方程为:
Figure BDA0001314420630000076
其中,
Figure BDA0001314420630000079
为边界节点处的非发电机节点之间的节点导纳矩阵,
Figure BDA0001314420630000077
为外部节点处的非发电机节点间的节点导纳矩阵,
Figure BDA0001314420630000078
为外部节点 处的非发电机节点与边界节点处的非发电机节点间的节点导纳矩阵,YBI为边 界节点与内部节点间导纳之和。Zeq1为边界节点B和等值负荷节点Leq间的阻 抗,Zeq2为Leq和等值发电机节点Geq间的阻抗。
构建等值前后网损一致性方程为:
|IB|2Zeq1+|IGeq|2Zeq2=Sloss (2);
其中,|IB|表示边界节点电流IB的幅值,|IGeq|表示节点Geq处等值发电机 电流的幅值,Zeq1为节点B和节点Leq间的阻抗,Zeq2为节点Leq和节点Geq间的 阻抗。Sloss是等值前配电网功率损耗。
构建等值网络功率平衡方程为:
SB-SLeq+SGeq-Sloss=0 (3);
Figure BDA0001314420630000081
VLeq=VB-IBZeq1 (5);
Figure BDA0001314420630000082
VGeq=VLeq+IGeqZeq2 (7);
Figure BDA0001314420630000083
Figure BDA0001314420630000084
将上述等式(4)-(8)代入(3),构建(9)等值网络功率方程。其 中,SB、IB、VB为边界节点B处的功率、电流、电压,SLeq为节点等值负荷 Leq处的功率,SGeq为节点等值发电机Geq处的功率,ILeq为节点等值负荷Leq处 的电流,IGeq为节点等值发电机Geq处的电流,VLeq为节点等值负荷Leq处的电 压,VGeq为节点等值发电机Geq处的电压,Zeq1为为节点B和节点Leq间的阻抗,Zeq2为节点Leq和节点Geq间的阻抗。Sloss是等值前配电网功率损耗。其 中,(*)*表示(*)的共轭运算。
构建等值负荷节点基尔霍夫电流方程为:
-ILeq+IGeq+IB=0 (10);
式(10)为等值负荷节点处的基尔霍夫电流方程,其中IB为边界节点B 处的电流,ILeq为节点等值负荷Leq处的电流,IGeq为节点等值发电机Geq处的 电流。
步骤103,基于节点导纳矩阵、功率损耗以及电压值和电流值,并根据 静态等值确定条件计算出边界节点的静态等值参数。
通过在步骤101中获取的输入数据,根据公式(1)、(2)、(9)、(10)建 立的四个非线性方程组,通过非线性方程组求解方法,即可求解出Zeq1,Zeq2, ILeq和IGeq四个未知量,其中ILeq为节点等值负荷Leq处的电流,IGeq为节点等值 发电机Geq处的电流,Zeq1为为节点B和节点Leq间的阻抗,Zeq2为节点Leq和节 点Geq间的阻抗。其他等值参数SLeq、SGeq、VLeq、VGeq通过公式(4)-(8)求 解。
上述实施例中的用于确定配电网静态等值的方法,提供一种综合考虑灵 敏度与网损一致性的用于确定配电网静态等值的方法,可以利用计算机,通 过程序先输入配电网等值前的节点导纳矩阵、配电网等值前的网络功率损耗 以及边界节点的电压与电流,然后构建等值前后灵敏度一致性方程、网损一 致性方程、等值网络功率平衡方程及等值负荷节点基尔霍夫电流方程,求解 出等值参数;保留了原有PQ模型简单有效的优点,全面考虑了灵敏度与网络 损耗等值前后的一致性,保留了主动配电网中的分布式发电机的电压功率支 撑作用,能够反映传输网络到主动配电网络的功率注入方向的变化,提高了 对于配电网进行稳态分析的精度。
在一个实施例中,以IEEE 14节点输电系统和图3A和3B所示的14节点 主动配电系统组成的系统为例进行说明,14节点的主动配电系统详细数据见 下表1所示:
Figure BDA0001314420630000091
Figure BDA0001314420630000101
表1-14节点主动配电系统的详细数据
关于用于确定配电网静态等值的具体步骤如下:
步骤201,输入数据。
输入配电网等值前的节点导纳矩阵
Figure BDA0001314420630000102
YBI
Figure BDA0001314420630000103
等值 前配电网功率损耗Sloss=0.0063+j0.0070、边界节点的电压电流 IB=0.2194-j0.0748、VB=0.9583-j0.2895,其中
Figure BDA0001314420630000104
为边界节点处的非发电机 节点之间的节点导纳矩阵,
Figure BDA0001314420630000105
为外部节点处的非发电机节点间的节点导 纳矩阵,
Figure BDA0001314420630000106
为外部节点处的非发电机节点与边界节点处的非发电机节点 间的节点导纳矩阵,YBI为边界节点与内部节点间导纳之和,具体的各矩阵如 下所示:
Figure BDA0001314420630000107
Figure BDA0001314420630000108
Figure BDA0001314420630000109
Figure BDA00013144206300001010
YBI=[0-j1.7979]。
步骤202,构建等值前后灵敏度一致性的方程
Figure BDA0001314420630000111
式(1)左边为未知量,其中Zeq1为节点B和节点Leq间的阻抗,Zeq2为节 点Leq和节点Geq间的阻抗。
步骤203,构建等值前后网损一致性的方程:
|IB|2Zeq1+|IGeq|2Zeq2=Sloss (2)
式中,|IB|=0.2318表示边界节点电流IB=0.2194-j0.0748的幅值,Zeq1为节 点B和节点Leq间的阻抗,Zeq2为节点Leq和节点Geq间的阻抗。 Sloss=0.0063+j0.0070表示等值前配电网的功率损耗。
步骤204,构建等值网络功率平衡方程:
SB-SLeq+SGeq-Sloss=0 (3)
Figure BDA0001314420630000112
VLeq=VB-IBZeq1 (5)
Figure BDA0001314420630000113
VGeq=VLeq+IGeqZeq2 (7)
Figure BDA0001314420630000114
Figure BDA0001314420630000115
将上述等式(4)-(8)代入(3),构建(9)等值网络功率方程,式中 SB=0.2319+j0.0082、IB=0.2194-j0.0748、VB=0.9583-j0.2895为边界节点B处的 功率、电流、电压,SLeq为节点等值负荷Leq处的功率,SGeq为节点等值发电机 Geq处的功率,ILeq为节点等值负荷Leq处的电流,IGeq为节点等值发电机Geq处 的电流,VLeq为节点等值负荷Leq处的电压,VGeq为节点等值发电机Geq处的电 压,Zeq1为为节点B和节点Leq间的阻抗,Zeq2为节点Leq和节点Geq间的阻抗。 Sloss是等值前配电网功率损耗。其中,(*)*表示(*)的共轭运算。
Figure BDA0001314420630000116
步骤205,构建等值负荷节点基尔霍夫电流方程:
-ILeq+IGeq+IB=0 (10)
式(10)为等值负荷节点处的基尔霍夫电流方程,其中 IB=0.2194-j0.0748为边界节点B处的电流,ILeq为节点等值负荷Leq处的电流, IGeq为节点等值发电机Geq处的电流。
步骤206,求解等值参数方程:通过步骤1)中的输入数据,根据步骤 2)-5)中(1)、(2)、(9)、(10)建立的四个非线性方程组,通过非线性方 程组求解方法,即可求解出Zeq1,Zeq2,ILeq和IGeq四个未知量,其中,ILeq为节 点等值负荷Leq处的电流,IGeq为节点等值发电机Geq处的电流,Zeq1为节点B 和节点Leq间的阻抗,Zeq2为节点Leq和节点Geq间的阻抗。其他等值参数SLeq、 SGeq、VLeq、VGeq通过公式(4)-(8)求解。
计算结果为:
Zeq1=0.0343+j0.0611;
Zeq2=0.0356+j0.0297;
ILeq=-0.5174+j0.2660;
IGeq=0.2980-j0.1912。
通过求解(4)-(8)非线性方程进而求得其他等值参数:
SLeq=56.9477+j9.6270;
SGeq=34.3864+j9.5121;
VLeq=0.9462-j0.3004;
VGeq=0.9625-j0.2983。
将上述实施例中的用于确定配电网静态等值的方法应用于实际的配电网 中进行实验,将求解结果与现有主要方法进行对比,进而对比各方法在主动 配电网运行参数改变时的相对误差及绝对误差,判断各方法的效果。在节点5在系统边界节点15的电压增加2.3%的情况下,比较M0-M3栏中的有功功 率、无功功率、电压的绝对误差与相对误差数据,进而判断各方法的效果。
通过多种方法求得主动配电网的值以及其绝对误差、相对误差见下表 2,其中,M0为不使用等值的主动配电网,M1为PQ等值,M2为传统ZIP等 值,M3为本发明的用于确定配电网静态等值。从实验结果可以明显看出,本 发明的用于确定配电网静态等值的方法的M3的绝对误差与相对误差远小于其 他方法。
Figure BDA0001314420630000131
表2-各方法计算的主动配电网有功功率、无功功率、电压对比表
本发明的用于确定配电网静态等值的方法,综合了灵敏度与网损一致性 对主动配电网进行静态等值,保留了主动配电网中发电机的功率电压支撑作 用,保证了主动配电网等值的精度。
在一个实施例中,如图4所示,本发明提供一种用于确定配电网静态等 值的装置40,包括:获取模块41、构建模块42和计算模块43。获取模块41 获取配电网中与边界节点相关的节点导纳矩阵,并获取配电网的功率损耗以 及边界节点的电压值和电流值。构建模块42构建用于确定边界节点的静态等 值的静态等值确定条件,其中,静态等值确定条件包括:灵敏度一致性方 程、网损一致性方程、等值网络功率平衡方程和节点基尔霍夫电流方程。计 算模块43基于节点导纳矩阵、功率损耗以及电压值和电流值,并根据静态等 值确定条件计算出边界节点的静态等值参数。
在一个实施例中,获取模块41获取节点导纳矩阵
Figure BDA0001314420630000132
YBI
Figure BDA0001314420630000133
Figure BDA0001314420630000134
并获取配电网的功率损耗Sloss、边界节点B的电流值IB和电压值VB; 其中,
Figure BDA0001314420630000135
为边界节点B处的非发电机节点之间的节点导纳矩阵,
Figure BDA0001314420630000136
为配电网的外部节点处的非发电机节点间的节点导纳矩阵,
Figure BDA0001314420630000141
为配电网 的外部节点处的非发电机节点与边界节点B处的非发电机节点间的节点导纳 矩阵,YBI为边界节点B与配电网的内部节点间的导纳之和的矩阵。
构建模块42构建灵敏度一致性方程为:
Figure BDA0001314420630000142
其中,Zeq1为边界节点B和等值负荷节点Leq间的阻抗,Zeq2为Leq和等值发 电机节点Geq间的阻抗。
构建模块42构建网损一致性方程为:
|IB|2Zeq1+|IGeq|2Zeq2=Sloss
其中,|IB|表示所述电流值IB的幅值幅值,|IGeq|表示所述Geq处等值发电 机电流的幅值,Zeq1为所述边界节点B和所述Leq间的阻抗,Zeq2为所述Leq和所 述Geq间的阻抗。
构建模块42构建等值网络功率平衡方程为:
Figure BDA0001314420630000143
其中,VB为边界节点B的电压,ILeq为Leq处的电流,IGeq为Geq处的电 流,VLeq为Leq处的电压,VGeq为Geq处的电压。
构建模块42构建节点基尔霍夫电流方程为:-ILeq+IGeq+IB=0。
计算模块43基于节点导纳矩阵、功率损耗以及电压值和电流值对灵敏度 一致性方程、网损一致性方程、等值网络功率平衡方程和节点基尔霍夫电流 方程进行求解,获得Zeq1,Zeq2,ILeq和IGeq
构建模块42构建第一公式为:
Figure BDA0001314420630000144
构建第二公式为: VLeq=VB-IBZeq1,构建第三公式为:
Figure BDA0001314420630000145
构建第四公式为: VGeq=VLeq+IGeqZeq2,构建第五公式为:
Figure BDA0001314420630000146
计算模块43基于节点导纳 矩阵、功率损耗以及电压值和电流值对所述第二公式、所述第三公式、所述 第四公式和所述第五公式进行求解,获得SLeq、SGeq、VLeq、VGeq;其中,SB为 边界节点B的功率,SLeq为Leq处的功率,SGeq为Geq处的功率。
上述实施例中提供的用于确定配电网静态等值的方法及装置,针对现有 的主动配电网静态等值方法的不足,提供一种综合灵敏度与网损一致性的主 动配电网静态等值方法,保留了原有PQ模型简单有效的优点,全面考虑了灵 敏度与网络损耗等值前后的一致性,使用当前输配网的网络拓扑结构及潮流 状态信息构建包括等值发电机、支路和负荷的物理等值网络并求解等值参 数,提高了主动配电网等值精度。
可能以许多方式来实现本发明的方法和系统。例如,可通过软件、硬 件、固件或者软件、硬件、固件的任何组合来实现本发明的方法和系统。 用于方法的步骤的上述顺序仅是为了进行说明,本发明的方法的步骤不限 于以上具体描述的顺序,除非以其它方式特别说明。此外,在一些实施例 中,还可将本发明实施为记录在记录介质中的程序,这些程序包括用于实 现根据本发明的方法的机器可读指令。因而,本发明还覆盖存储用于执行 根据本发明的方法的程序的记录介质。
本发明的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者 将本发明限于所公开的形式。很多修改和变化对于本领域的普通技术人员而 言是显然的。选择和描述实施例是为了更好说明本发明的原理和实际应用, 并且使本领域的普通技术人员能够理解本发明从而设计适于特定用途的带有 各种修改的各种实施例。

Claims (6)

1.一种用于确定配电网静态等值的方法,其特征在于,包括:
获取配电网中与边界节点相关的节点导纳矩阵,并获取所述配电网的功率损耗以及所述边界节点的电压值和电流值;
其中,获取节点导纳矩阵
Figure FDA0002380886230000011
YBI
Figure FDA0002380886230000012
Figure FDA0002380886230000013
所述
Figure FDA0002380886230000014
为边界节点B处的非发电机节点之间的节点导纳矩阵,所述
Figure FDA0002380886230000015
为所述配电网的外部节点处的非发电机节点间的节点导纳矩阵,所述
Figure FDA0002380886230000016
为所述配电网的外部节点处的非发电机节点与所述边界节点B处的非发电机节点间的节点导纳矩阵,所述YBI为所述边界节点B与所述配电网的内部节点间的导纳之和的矩阵;获取所述配电网的功率损耗Sloss、所述边界节点B的电流值IB和电压值VB
构建用于确定所述边界节点的静态等值的静态等值确定条件,其中,所述静态等值确定条件包括:灵敏度一致性方程、网损一致性方程、等值网络功率平衡方程和节点基尔霍夫电流方程;
其中,构建所述灵敏度一致性方程为:
Figure FDA0002380886230000017
其中,Zeq1为所述边界节点B和等值负荷节点Leq间的阻抗,Zeq2为所述Leq和等值发电机节点Geq间的阻抗;
构建所述网损一致性方程为:
|IB|2Zeq1+|IGeq|2Zeq2=Sloss
其中,|IB|表示所述电流值IB的幅值,|IGeq|表示所述Geq处等值发电机电流的幅值,Zeq1为所述边界节点B和所述Leq间的阻抗,Zeq2为所述Leq和所述Geq间的阻抗;
构建所述等值网络功率平衡方程为:
Figure FDA0002380886230000021
其中,VB为所述边界节点B的电压,ILeq为所述Leq处的电流,IGeq为所述Geq处的电流;
构建所述节点基尔霍夫电流方程为:
-ILeq+IGeq+IB=0;
基于所述节点导纳矩阵、所述功率损耗以及所述电压值和所述电流值,并根据所述静态等值确定条件计算出所述边界节点的静态等值参数。
2.如权利要求1所述的方法,其特征在于,所述基于所述节点导纳矩阵、所述功率损耗以及所述电压值和所述电流值、并根据所述静态等值确定条件计算出所述边界节点的静态等值参数包括:
基于所述节点导纳矩阵、所述功率损耗以及所述电压值和所述电流值对所述灵敏度一致性方程、所述网损一致性方程、所述等值网络功率平衡方程和所述节点基尔霍夫电流方程进行求解,获得Zeq1,Zeq2,ILeq和IGeq
3.如权利要求2所述的方法,其特征在于,所述构建所述等值网络功率平衡方程还包括:构建第一公式为:
Figure FDA0002380886230000022
构建第二公式为:VLeq=VB-IBZeq1;构建第三公式为:
Figure FDA0002380886230000023
构建第四公式为:VGeq=VLeq+IGeqZeq2;构建第五公式为:
Figure FDA0002380886230000024
所述基于所述节点导纳矩阵、所述功率损耗以及所述电压值和所述电流值、并根据所述静态等值确定条件计算出所述边界节点的静态等值参数还包括:
基于所述节点导纳矩阵、所述功率损耗以及所述电压值和所述电流值对所述第二公式、所述第三公式、所述第四公式和所述第五公式进行求解,获得SLeq、SGeq、VLeq、VGeq
其中,SB为所述边界节点B的功率,SLeq为所述Leq处的功率,SGeq为所述Geq处的功率,VLeq为所述Leq处的电压,VGeq为所述Geq处的电压。
4.一种用于确定配电网静态等值的装置,其特征在于,包括:
获取模块,用于获取配电网中与边界节点相关的节点导纳矩阵,并获取所述配电网的功率损耗以及所述边界节点的电压值和电流值;
其中,所述获取模块具体用于获取节点导纳矩阵
Figure FDA0002380886230000031
YBI
Figure FDA0002380886230000032
Figure FDA0002380886230000033
并获取所述配电网的功率损耗Sloss、所述边界节点B的电流值IB和电压值VB;所述
Figure FDA0002380886230000034
为边界节点B处的非发电机节点之间的节点导纳矩阵,所述
Figure FDA0002380886230000035
为所述配电网的外部节点处的非发电机节点间的节点导纳矩阵,所述
Figure FDA0002380886230000036
为所述配电网的外部节点处的非发电机节点与所述边界节点B处的非发电机节点间的节点导纳矩阵,所述YBI为所述边界节点B与所述配电网的内部节点间的导纳之和的矩阵;
构建模块,用于构建用于确定所述边界节点的静态等值的静态等值确定条件,其中,所述静态等值确定条件包括:灵敏度一致性方程、网损一致性方程、等值网络功率平衡方程和节点基尔霍夫电流方程;
其中,所述构建模块,还用于构建所述灵敏度一致性方程为:
Figure FDA0002380886230000037
其中,Zeq1为所述边界节点B和等值负荷节点Leq间的阻抗,Zeq2为所述Leq和等值发电机节点Geq间的阻抗;
所述构建模块,还用于构建所述网损一致性方程为:
|IB|2Zeq1+|IGeq|2Zeq2=Sloss
其中,|IB|表示所述电流值IB的幅值,|IGeq|表示所述Geq处等值发电机电流的幅值,Zeq1为所述边界节点B和所述Leq间的阻抗,Zeq2为所述Leq和所述Geq间的阻抗;
所述构建模块,还用于构建所述等值网络功率平衡方程为:
Figure FDA0002380886230000041
其中,VB为所述边界节点B的电压,ILeq为所述Leq处的电流,IGeq为所述Geq处的电流,VLeq为所述Leq处的电压,VGeq为所述Geq处的电压;
所述构建模块,还用于构建所述节点基尔霍夫电流方程为:
-ILeq+IGeq+IB=0;
计算模块,用于基于所述节点导纳矩阵、所述功率损耗以及所述电压值和所述电流值,并根据所述静态等值确定条件计算出所述边界节点的静态等值参数。
5.如权利要求4所述的装置,其特征在于,
所述计算模块,还用于基于所述节点导纳矩阵、所述功率损耗以及所述电压值和所述电流值对所述灵敏度一致性方程、所述网损一致性方程、所述等值网络功率平衡方程和所述节点基尔霍夫电流方程进行求解,获得Zeq1,Zeq2,ILeq和IGeq
6.如权利要求5所述的装置,其特征在于,
所述构建模块,还用于构建第一公式为:
Figure FDA0002380886230000042
构建第二公式为:VLeq=VB-IBZeq1,构建第三公式为:
Figure FDA0002380886230000043
构建第四公式为:VGeq=VLeq+IGeqZeq2,构建第五公式为:
Figure FDA0002380886230000044
所述计算模块,还用于基于所述节点导纳矩阵、所述功率损耗以及所述电压值和所述电流值对所述第二公式、所述第三公式、所述第四公式和所述第五公式进行求解,获得SLeq、SGeq、VLeq、VGeq
其中,SB为所述边界节点B的功率,SLeq为所述Leq处的功率,SGeq为所述Geq处的功率,VLeq为所述Leq处的电压,VGeq为所述Geq处的电压。
CN201710418918.1A 2017-06-06 2017-06-06 一种用于确定配电网静态等值的方法及装置 Expired - Fee Related CN107342586B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710418918.1A CN107342586B (zh) 2017-06-06 2017-06-06 一种用于确定配电网静态等值的方法及装置
US15/729,461 US10126802B1 (en) 2017-06-06 2017-10-10 Method and device for determining static equivalences of distribution networks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710418918.1A CN107342586B (zh) 2017-06-06 2017-06-06 一种用于确定配电网静态等值的方法及装置

Publications (2)

Publication Number Publication Date
CN107342586A CN107342586A (zh) 2017-11-10
CN107342586B true CN107342586B (zh) 2020-08-04

Family

ID=60219961

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710418918.1A Expired - Fee Related CN107342586B (zh) 2017-06-06 2017-06-06 一种用于确定配电网静态等值的方法及装置

Country Status (2)

Country Link
US (1) US10126802B1 (zh)
CN (1) CN107342586B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165651B (zh) * 2019-04-30 2023-02-28 中南大学 一种适用于直流电力网络优化的分布式协同控制方法
CN110879915B (zh) * 2019-10-21 2022-09-02 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 电力系统外部等值的方法和系统
CN111682546B (zh) * 2020-06-01 2021-11-12 国网河北省电力有限公司石家庄供电分公司 基于灵敏度分析的直流潮流改进算法
CN111864741B (zh) * 2020-07-27 2022-09-30 国网安徽省电力有限公司电力科学研究院 一种线路参数误差对功率分布影响的定量分析方法及系统
CN112685981A (zh) * 2020-12-28 2021-04-20 南方电网科学研究院有限责任公司 一种电力系统静态等值方法、装置、终端设备及存储介质
CN113283094B (zh) * 2021-05-31 2022-10-21 山东大学 基于量测辨识的交直流大电网电压稳定评估方法及系统
CN113946985B (zh) * 2021-12-20 2022-02-22 中国电力科学研究院有限公司 一种确定新能源场站等值模型的方法及系统
CN117728448B (zh) * 2024-02-08 2024-04-23 北京智芯微电子科技有限公司 有源配电网的动态调控方法、装置、设备及介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104362622A (zh) * 2014-11-11 2015-02-18 安顺供电局 一种带小水电机组地区电网的负荷模型和建模方法
WO2016040813A1 (en) * 2014-09-12 2016-03-17 Carnegie Mellon University Systems, methods, and software for planning, simulating, and operating electrical power systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016040813A1 (en) * 2014-09-12 2016-03-17 Carnegie Mellon University Systems, methods, and software for planning, simulating, and operating electrical power systems
CN104362622A (zh) * 2014-11-11 2015-02-18 安顺供电局 一种带小水电机组地区电网的负荷模型和建模方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Sufficient and necessary condition of sensitivity consistency in static equivalent methods;Juan Yu et al.;《IET Generation, Transmission & Distribution》;20150430;第9卷(第7期);603-608 *
考虑潮流及灵敏度一致性的风电场静态等值新方法;余娟,等;《中国电机工程学报》;20150705;第35卷(第13期);3231-3238 *

Also Published As

Publication number Publication date
US10126802B1 (en) 2018-11-13
CN107342586A (zh) 2017-11-10
US20180348834A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
CN107342586B (zh) 一种用于确定配电网静态等值的方法及装置
CN108667048B (zh) 新能源并网系统振荡稳定性的频域判稳方法及装置
JP6025575B2 (ja) 三相電力潮流解析のためのシステムおよび方法
CN109936169A (zh) 并联逆变器之间不平衡和谐波功率的分配控制方法及装置
Purba et al. Dynamic aggregation of grid-tied three-phase inverters
CN109802392B (zh) 大规模配电网潮流计算方法及装置
CN110045186B (zh) 电力系统公共连接点处的系统谐波阻抗估计方法和系统
US20210397762A1 (en) Distribution grid admittance estimation with limited nonsynchronized measurements
CN110445164B (zh) 电网系统频率调整方法、装置、计算机设备及存储介质
CN107370149B (zh) 确定电力系统负荷削减量的方法和系统
de Melo et al. Distribution system state estimation algorithm with improved angular reference treatment
CN107196292B (zh) 一种主动配电网静态等值方法及装置
CN109830964B (zh) 一种微电网动态功率平衡方法及系统
CN111682546A (zh) 基于灵敏度分析的直流潮流改进算法
CN115549093A (zh) 一种新能源电力系统在线建模与振荡分析的方法及系统
CN109193663A (zh) 计及发电自动控制不平衡功率分摊的潮流计算方法及系统
Rahman et al. Scalable cellular computational network based WLS state estimator for power systems
Ye et al. Comprehensive mitigation strategy of voltage sag based on sensitive load clustering
CN113221064A (zh) 模型处理方法、装置、计算机设备和存储介质
CN109873415B (zh) 一种电力系统等值方法和装置
CN109670254B (zh) 机电暂态与电磁暂态混合仿真的接口位置选择方法及系统
Su et al. Toward characterization of the feasible region of loadability of power systems
CN105576667B (zh) 外网等值网络边界电压无功支撑充裕性计算方法
CN109728582A (zh) 基于多端直流输电系统频率控制方法、装置与存储介质
CN112688341B (zh) 一种直流受端电网无功补偿设备配置站点选择方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200804

Termination date: 20210606

CF01 Termination of patent right due to non-payment of annual fee