CN107338575A - 一种可感应外加磁场的纤维膜 - Google Patents

一种可感应外加磁场的纤维膜 Download PDF

Info

Publication number
CN107338575A
CN107338575A CN201610712313.9A CN201610712313A CN107338575A CN 107338575 A CN107338575 A CN 107338575A CN 201610712313 A CN201610712313 A CN 201610712313A CN 107338575 A CN107338575 A CN 107338575A
Authority
CN
China
Prior art keywords
tunica fibrosa
magnetic field
nano
pla
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610712313.9A
Other languages
English (en)
Inventor
邱洪波
朱龙泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongxiang Guardian Applied Technology Research Institute Co Ltd
Original Assignee
Tongxiang Guardian Applied Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongxiang Guardian Applied Technology Research Institute Co Ltd filed Critical Tongxiang Guardian Applied Technology Research Institute Co Ltd
Priority to CN201610712313.9A priority Critical patent/CN107338575A/zh
Publication of CN107338575A publication Critical patent/CN107338575A/zh
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Abstract

本发明公布了一种可感应外加磁场的纤维膜。纤维膜由预氧化聚乳酸经静电纺丝获得,纤维膜表面具有纳米孔和/或微纳米凹槽,纤维膜中还包括磁性载药微球,磁性载药微球上承载有药物成分,纤维膜中还包括可以感应外界磁场或变化电场的激磁粒子。该纤维膜表面具有纳米孔或微纳米凹槽或者两者兼具,纳米孔或微纳米凹槽的尺寸大小均一,大大提供了纤维膜的比表面积,并具有磁性载药微球,本发明可以一步法制备出超高比表面积的表面结构可控的纤维膜。

Description

一种可感应外加磁场的纤维膜
技术领域
本发明涉及纳米材料制备领域,具体涉及一种可感应外加磁场的纤维膜及其制备方法。
背景技术
目前,通过静电纺丝获得多孔结构等表面改性的纤维膜的方法通常需要通过后处理工艺(如化学方法)才能达到。其工艺繁琐,且经后处理难以完全去除纤维膜多余成分,严重影响纤维性能,难以实际应用。
同时,随着科技的发展,需要静电纺纤维膜具有响应外界刺激的功能,比如在靶向治疗技术领域,需要将药物缓释粒子至于靶向区域,并且需要实时监测该药物在这一区域的释放情况,因此,就需要静电纺纤维膜能够对外界施加的刺激有所反应。
发明内容
为解决上述问题,本发明提供了一种可感应外加磁场的纤维膜及其制备方法,该纤维膜表面具有纳米孔或微纳米凹槽或者两者兼具,纳米孔或微纳米凹槽的尺寸大小均一,大大提供了纤维膜的比表面积,并具有磁性载药微球,本发明可以一步法制备出超高比表面积的表面结构可控的纤维膜。
本发明第一方面提供了一种可感应外加磁场的纤维膜,所述纤维膜由预氧化聚乳酸经静电纺丝获得,所述纤维膜表面具有纳米孔和/或微纳米凹槽,所述纤维膜中还包括磁性载药微球,所述磁性载药微球上承载有药物成分,所述纤维膜中还包括可以感应外界磁场或变化电场的激磁粒子。
所述纳米孔的孔径为:0<孔径≤300nm;所述微纳米凹槽的尺寸大小为:大于0.3μm小于1μm。
本发明还提供了一种可感应外加磁场的纤维膜的制备方法,包括以下步骤:
将聚乳酸进行预氧化处理,得到预氧化的聚乳酸,将预氧化后的聚乳酸溶解于二氯甲烷或三氯甲烷,或二氯甲烷与三氯甲烷的混合溶剂中,搅拌至完全溶解,再加入磁性载药微球和可以感应外界磁场或变化电场的激磁粒子,经过超声波振荡混合,去气泡,得到预氧化聚乳酸纺丝液;将得到的预氧化聚乳酸纺丝液放入可调脉冲磁场中进行处理,磁场强度0-5T,处理时间30-90min;再将上述所得预氧化聚乳酸纺丝液置于静电纺丝装置的密闭注射器中,在室温,湿度为10%~60%的条件下,经过静电纺丝获得药物缓释纤维膜,在静电纺丝过程中,使纺丝液也受到可调脉冲磁场的作用,并且在纤维膜在被接收装置接收成型的过程中,也使纤维膜收到可调脉冲磁场的作用,磁场强度1-7T,处理时间30-40min,所述纤维膜表面具有纳米孔和/或微纳米凹槽。
所述纺丝液中,预氧化聚乳酸的浓度为0.5~0.9g/mL。
所述二氯甲烷与三氯甲烷的混合溶剂中,二氯甲烷与三氯甲烷的体积比为1~9:1。
所述静电纺丝过程中所加的电压为1Kv~8Kv,射流速度为1.0mL/h~2.0mL/h,所述喷丝头到收集板之间的距离为13cm~15cm。
所述搅拌的时间为1小时~3小时。
所述纳米孔的孔径为:0<孔径≤300nm。
所述微纳米凹槽的尺寸大小为:大于0.3μm小于1μm。

Claims (9)

1.一种可感应外加磁场的纤维膜,其特征在于,所述纤维膜由预氧化聚乳酸经静电纺丝获得,所述纤维膜表面具有纳米孔和/或微纳米凹槽,所述纤维膜中还包括磁性载药微球,所述磁性载药微球上承载有药物成分,所述纤维膜中还包括可以感应外界磁场或变化电场的激磁粒子。
2.如权利要求1所述的药物缓释纤维膜,其特征在于,所述纳米孔的孔径为:0<孔径≤300nm;所述微纳米凹槽的尺寸大小为:大于0.3μm小于1μm。
3.一种可感应外加磁场的纤维膜的制备方法,其特征在于,包括以下步骤:
将聚乳酸进行预氧化处理,得到预氧化的聚乳酸,将预氧化后的聚乳酸溶解于二氯甲烷或三氯甲烷,或二氯甲烷与三氯甲烷的混合溶剂中,搅拌至完全溶解,再加入磁性载药微球和可以感应外界磁场或变化电场的激磁粒子,经过超声波振荡混合,去气泡,得到预氧化聚乳酸纺丝液;将得到的预氧化聚乳酸纺丝液放入可调脉冲磁场中进行处理,磁场强度0-5T,处理时间30-90min;再将上述所得预氧化聚乳酸纺丝液置于静电纺丝装置的密闭注射器中,在室温,湿度为10%~60%的条件下,经过静电纺丝获得药物缓释纤维膜,在静电纺丝过程中,使纺丝液也受到可调脉冲磁场的作用,并且在纤维膜在被接收装置接收成型的过程中,也使纤维膜收到可调脉冲磁场的作用,磁场强度1-7T,处理时间30-40min,所述纤维膜表面具有纳米孔和/或微纳米凹槽。
4.如权利要求3所述的制备方法,其特征在于,所述纺丝液中,预氧化聚乳酸的浓度为0.5~0.9g/mL。
5.如权利要求3所述的制备方法,其特征在于,所述二氯甲烷与三氯甲烷的混合溶剂中,二氯甲烷与三氯甲烷的体积比为1~9:1。
6.如权利要求3所述的制备方法,其特征在于,所述静电纺丝过程中所加的电压为1Kv~8Kv,射流速度为1.0mL/h~2.0mL/h,所述喷丝头到收集板之间的距离为13cm~15cm。
7.如权利要求3所述的制备方法,其特征在于,所述搅拌的时间为1小时~3小时。
8.如权利要求3所述的制备方法,其特征在于,所述纳米孔的孔径为:0<孔径≤300nm。
9.如权利要求3所述的制备方法,其特征在于,所述微纳米凹槽的尺寸大小为:大于0.3μm小于1μm。
CN201610712313.9A 2016-08-24 2016-08-24 一种可感应外加磁场的纤维膜 Pending CN107338575A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610712313.9A CN107338575A (zh) 2016-08-24 2016-08-24 一种可感应外加磁场的纤维膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610712313.9A CN107338575A (zh) 2016-08-24 2016-08-24 一种可感应外加磁场的纤维膜

Publications (1)

Publication Number Publication Date
CN107338575A true CN107338575A (zh) 2017-11-10

Family

ID=60222265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610712313.9A Pending CN107338575A (zh) 2016-08-24 2016-08-24 一种可感应外加磁场的纤维膜

Country Status (1)

Country Link
CN (1) CN107338575A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107974768A (zh) * 2017-12-27 2018-05-01 哈尔滨工业大学 具有可调控纤维表面微孔结构的形状记忆纤维膜的制备方法及其药物释放的应用
CN111020718A (zh) * 2019-11-11 2020-04-17 南京工业职业技术学院 一种多尺度孔隙纤维制备装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1931129A (zh) * 2006-09-28 2007-03-21 同济大学 一种可生物降解聚合物磁性载药微球的制备方法
CN103498285A (zh) * 2013-10-18 2014-01-08 苏州大学 利用静电纺丝技术制备有序纳米磁性复合材料的方法
CN104562436A (zh) * 2014-12-30 2015-04-29 深圳先进技术研究院 一种表面结构可控的纤维膜及其制备方法
US20150360159A1 (en) * 2014-06-11 2015-12-17 Fibervisions, L.P. Blended Fiber Filters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1931129A (zh) * 2006-09-28 2007-03-21 同济大学 一种可生物降解聚合物磁性载药微球的制备方法
CN103498285A (zh) * 2013-10-18 2014-01-08 苏州大学 利用静电纺丝技术制备有序纳米磁性复合材料的方法
US20150360159A1 (en) * 2014-06-11 2015-12-17 Fibervisions, L.P. Blended Fiber Filters
CN104562436A (zh) * 2014-12-30 2015-04-29 深圳先进技术研究院 一种表面结构可控的纤维膜及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107974768A (zh) * 2017-12-27 2018-05-01 哈尔滨工业大学 具有可调控纤维表面微孔结构的形状记忆纤维膜的制备方法及其药物释放的应用
CN111020718A (zh) * 2019-11-11 2020-04-17 南京工业职业技术学院 一种多尺度孔隙纤维制备装置
CN111020718B (zh) * 2019-11-11 2022-03-11 南京工业职业技术学院 一种多尺度孔隙纤维制备装置

Similar Documents

Publication Publication Date Title
Zhao et al. Generation of Janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation
Liu et al. Facile spray-drying assembly of uniform microencapsulates with tunable core–shell structures and controlled release properties
CN106702597B (zh) 一种核-壳结构纳米纤维膜及其制备方法和应用
Wang et al. Out of the cleanroom, self-assembled magnetic artificial cilia
CN107338575A (zh) 一种可感应外加磁场的纤维膜
Ali et al. Fabrication and magnetic control of alginate-based rolling microrobots
Niedert et al. A tumbling magnetic microrobot system for biomedical applications
CN102240251B (zh) 一种恒温高压静电喷雾装置及利用其制备聚合物载药纳米颗粒的方法
Thomas et al. Electromagnetic manipulation enabled calcium alginate Janus microsphere for targeted delivery of mesenchymal stem cells
Zhan et al. Magnetically responsive superhydrophobic surfaces for microdroplet manipulation
Mair et al. Magnetically aligned nanorods in alginate capsules (MANiACs): Soft matter tumbling robots for manipulation and drug delivery
Chang et al. Thrombolysis based on magnetically-controlled surface-functionalized Fe3O4 nanoparticle
Yang et al. Microfluidic synthesis of chitosan-coated magnetic alginate microparticles for controlled and sustained drug delivery
Zhang et al. Preparation of electrosprayed poly (caprolactone) microparticles based on green solvents and related investigations on the effects of solution properties as well as operating parameters
Jang et al. 4D printed untethered milli-gripper fabricated using a biodegradable and biocompatible electro-and magneto-active hydrogel
Liu et al. Design of polymeric microparticles for pH-responsive and time-sustained drug release
Garjani et al. Morphological and physicochemical evaluation of the propranolol HCl–Eudragit® RS100 electrosprayed nanoformulations
Banerjee et al. Soft multimaterial magnetic fibers and textiles
Li et al. Preparation of novel nano-sized hydrogel microcapsules via layer-by-layer assembly as delivery vehicles for drugs onto hygiene paper
Guevorkian et al. Aligning Paramecium caudatum with static magnetic fields
Bhujbal et al. Effect of storage humidity on physical stability of spray-dried naproxen amorphous solid dispersions with polyvinylpyrrolidone: two fluid nozzle vs. three fluid nozzle
Mair et al. Analysis of driven nanorod transport through a biopolymer matrix
WO2012105984A1 (en) Materials, monitoring, and controlling tissue growth using magnetic nanoparticles
Liu et al. Manipulation of cellular orientation and migration by internalized magnetic particles
TWI516306B (zh) 流體混合方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171110

RJ01 Rejection of invention patent application after publication