CN107330158A - 基于局部精细接触模型的轴承等效径向刚度识别方法 - Google Patents

基于局部精细接触模型的轴承等效径向刚度识别方法 Download PDF

Info

Publication number
CN107330158A
CN107330158A CN201710426821.5A CN201710426821A CN107330158A CN 107330158 A CN107330158 A CN 107330158A CN 201710426821 A CN201710426821 A CN 201710426821A CN 107330158 A CN107330158 A CN 107330158A
Authority
CN
China
Prior art keywords
bearing
mrow
model
rigidity
local fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710426821.5A
Other languages
English (en)
Other versions
CN107330158B (zh
Inventor
郭勤涛
陆倩玲
展铭
陶言和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201710426821.5A priority Critical patent/CN107330158B/zh
Publication of CN107330158A publication Critical patent/CN107330158A/zh
Application granted granted Critical
Publication of CN107330158B publication Critical patent/CN107330158B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design

Abstract

本发明公开一种基于局部精细接触模型的轴承径向刚度识别方法,步骤如下:1)建立轴承局部精细接触模型;2)建立轴承整体等效模型;3)分别对两个模型进行静力计算,观察两者的中心点径向位移量;4)以局部精细接触模型的中心点径向位移量为标准,调整整体等效模型弹簧单元的刚度值,使其中心点径向位移量与局部精细接触模型的中心点径向位移量相同,则认为此时弹簧单元总刚度值就是轴承整体在载荷Fr下的径向刚度值;5)改变外载荷Fr大小,得到多组载荷下的识别刚度值,从而拟合出轴承径向刚度随载荷变化的曲线,最终识别得到轴承等效径向刚度变化图;6)设计合理的轴承模态试验方案,验证上述识别刚度的准确性。

Description

基于局部精细接触模型的轴承等效径向刚度识别方法
技术领域:
本发明涉及一种基于局部精细接触模型的轴承等效径向刚度识别方法,其属于系统参数识别领域。
背景技术:
轴承刚度定义为:轴承内外圈在产生单位相对弹性位移量时需要外加的负载。参照相对位移变化方向,可分为径向刚度、轴向刚度和角刚度等。对具有回转体的机械设备而言,其支撑轴承的刚度是决定轴承,轴,甚至整个系统使用寿命的关键性参数。通常情况下,在有限元分析阶段,为避免轴承滚子和内外圈的接触分析,我们把轴承的滚子简化为多排多个的弹簧单元,从而将识别轴承的等效刚度化作识别弹簧单元的刚度值。为获得该弹簧单元的准确刚度,一般需要对轴承进行相关试验(刚度测试试验或模态试验)。
毋庸置疑,上述常用的试验结合仿真的方法是获取准确轴承等效刚度、进行后续分析的有效保障,但当出现现场试验实施困难、试验成本太高、研究对象还处于设计阶段等情况时,找到某种有效方法代替试验来识别轴承的等效刚度很有必要,从而能在一定程度上保证有限元分析的准确性。
发明内容:
本发明在考虑轴承现场试验无法实施的情况下,提出一种基于局部精细接触模型的轴承等效径向刚度识别方法,能够一定程度上保证在有限元分析阶段进行轴承等效径向刚度准确性,有利于后期基于该轴承刚度的系统响应分析。
本发明所采用的技术方案有:一种基于局部精细接触模型的轴承径向刚度识别方法,步骤如下:
1)建立轴承局部精细接触模型,选取轴承最底端滚子的一半作为研究对象,建立其精细接触模型,即轴承局部精细接触模型;
2)建立轴承整体等效模型,在轴承内外圈之间建立多个弹簧-阻尼单元代替滚动体,并给弹簧-阻尼单元赋任意初始刚度值;
3)静力接触计算,分别在上述两个模型的中心点施加径向外载荷1/2Q和Fr,Fr代表的是轴承整体受到的径向外载荷,Q代表此时最底端滚子受到的载荷大小,两者的关系如公式(1)所示,其中Z表示滚子的数量,在对应的载荷和边界条件下,分别对两个模型进行静力计算,观察两者的中心点径向位移量δ1和δ2
4)等效径向刚度识别,以局部精细接触模型的中心点径向位移量为标准,调整整体等效模型弹簧-阻尼单元的刚度值,使其中心点径向位移量与局部精细接触模型的中心点径向位移量相同,则认为此时弹簧单元总刚度值就是轴承整体在载荷Fr下的径向刚度值;
5)改变外载荷Fr大小,重新建立对应载荷下的局部精细接触模型,按照步骤3)和4)重新进行静力计算和等效径向刚度识别,得到多组载荷下的识别刚度值,从而拟合出轴承径向刚度随载荷变化的曲线,最终识别得到轴承等效径向刚度变化图;
6)设计合理的轴承模态试验方案,验证上述识别刚度的准确性。
进一步地,其中步骤6)具体包括:
a)设计试验方案:以轴-轴承结构为试验对象,采用力锤激励,加速度传感器采集信号,将信号输入到数据采集仪,最后传至计算机并记录,采用N-modal软件进行数据处理并识别出轴承试验结构的各阶模态频率与振型;
b)建立试验结构的有限元模型,参考步骤5)中的曲线,取试验载荷对应的刚度值代入有限元模型,进行模态计算,同样得到各阶模态频率与振型;
c)将相同振型下的试验模态频率和仿真模态频率进行比较,验证基于局部精细接触模型识别轴承径向刚度的有效性。
进一步地,步骤1)中轴承局部精细接触模型,其滚子和内外圈的接触区域网格大小要达到接触半宽的1/4到1/2才能达到精细模型的条件,其中,接触半宽根据赫兹理论公式(2)进行计算
其中,b表示接触半宽;l表示圆柱滚子长度;∑ρ为主曲率和;E1,E2表示两接触物体的弹性模量,μ12为泊松比。
本发明具有如下有益效果:
1)在没有试验或者试验实施困难的情况下,一定程度上依旧可以保证轴承径向刚度的准确性;
2)有利于后期基于轴承刚度的系统响应计算。
附图说明:
图1是本发明基于局部精细接触模型的轴承等效径向刚度识别方法的流程图。
图2是本发明N222E轴承的径向刚度随径向载荷的变化图。
具体实施方式:
下面结合附图对本发明作进一步的说明。
本发明公开一种基于局部精细接触模型的轴承径向刚度识别方法,具体步骤如下:
1)建立轴承的局部精细接触模型。在不考虑游隙的情况下,考虑到精细模型网格的庞大和计算机处理能力,选取轴承最底端滚子的一半作为研究对象,建立其精细接触模型,即轴承局部精细接触模型。
2)建立轴承等效模型。建立轴承整体模型,在轴承内外圈之间建立多个弹簧-阻尼单元代替滚动体,并给弹簧单元赋任意初始刚度值。
3)静力接触计算。分别在上述两个模型的中心点施加径向外载荷1/2Q和Fr,Fr代表的是轴承整体受到的径向外载荷,Q代表此时最底端滚子受到的载荷大小,两者的关系如公式(1)所示,其中Z表示滚子的数量。在对应的载荷和边界条件下,分别对两个模型进行静力计算,观察两者的中心点径向位移量δ1和δ2
4)等效径向刚度识别。以局部精细接触模型的中心点径向位移量为标准,调整整体等效模型弹簧单元的刚度值,使其中心点径向位移量与局部精细接触模型的中心点径向位移量相同,则认为此时弹簧单元总刚度值就是轴承整体在载荷Fr下的径向刚度值。
5)改变外载荷Fr大小,重新建立对应载荷下的局部精细接触模型,按照步骤3)和4)重新进行静力计算和等效径向刚度识别,可得到多组载荷下的识别刚度值,从而可以拟合出轴承径向刚度随载荷变化的曲线,最终识别得到轴承等效径向刚度变化图。
6)设计合理的轴承模态试验方案,验证上述识别刚度的准确性。具体步骤包括:
a)设计试验方案:以轴-轴承结构为试验对象,采用力锤激励,加速度传感器采集信号,将信号输入到OROS数据采集仪,最后传至计算机并记录;采用N-modal软件进行数据处理并识别出轴承试验结构的各阶模态频率与振型。
b)建立试验结构的有限元模型,参考步骤5)中的曲线,取试验载荷对应的刚度值代入有限元模型,进行模态计算,同样得到各阶模态频率与振型;
c)将相同振型下的试验模态频率和仿真模态频率进行比较,验证基于局部精细接触模型识别轴承径向刚度的有效性。
其中步骤1)中轴承局部精细接触模型,其滚子和内外圈的接触区域网格大小要达到接触半宽的1/4到1/2才能达到精细模型的条件。其中,接触半宽可根据赫兹理论公式(2)进行计算。
其中,b表示接触半宽;l表示圆柱滚子长度;∑ρ为主曲率和;E1,E2表示两接触物体的弹性模量,μ12为泊松比。
本发明以N222E型号的圆柱滚子轴承为例,部件包括轴承内圈、外圈和滚子,其局部精细接触模型有33123个3D单元,等效模型的组成单元包括2160个3D单元和90个弹簧-阻尼单元;具体步骤如下:
1)赫兹理论值计算:取径向负载Fr=119KN,根据赫兹理论计算公式(1)和(2),得到此时作用在最底端的滚子承受的径向载荷Q=26.97KN;滚子和内圈的接触半宽b1=0.356mm;滚子与外圈的接触半宽b2=0.4128mm。
2)局部精细接触模型的建立:取N222E轴承最底端滚子的1/2作为局部研究对象,并在滚子与内外圈接触部分进行网格加密。由于只有当接触区域网格的最小尺寸大小要达到理论接触半宽的1/4~1/2才能保证计算结果在一定的误差范围内。所以在建立局部精细接触模型时,滚子与内外圈接触部分网格大小按照接触半宽的1/4取值为0.09mm,非接触区域网格大小为0.9mm。
3)局部精细接触模型静力接触分析:参照步骤1)中的计算结算,最底端滚子受力为26.97KN,1/2滚子受力大小为13.485KN,对此载荷下的局部精细接触模型进行静力接触计算,得到此时模型的中心点径向位移量为0.065mm。
4)建立轴承等效模型并计算:以整个N222E轴承为研究对象,利用弹簧-阻尼单元代替滚子建立轴承等效模型。静力计算时,静载荷大小不变为26.97KN,通过不断调整弹簧阻尼单元的刚度值,使轴承中心点位移和局部精细接触模型的弹性趋近量相同,即0.065mm,最终得到此载荷下的弹簧总径向刚度为2.07×106N/mm,即该载荷下轴承的等效径向刚度为2.07×106N/mm。
5)改变外载荷取值大小,根据公式(1)和(2)重新计算不同载荷下的接触半宽,取其1/4作为接触区域的网格大小重新建立局部精细接触模型,计算对应的中心点位移量。参照步骤4)中的方法识别不同载荷下的的轴承等效径向刚度,最终得到轴承径向刚度随径向载荷的变化图,如图2所示。
6)试验验证识别刚度的合理性:
a)设计试验方案:以轴-轴承系统为试验对象,利用压力机在轴承外圈上施压,使其径向刚度被完全激发,施加的外载荷大小为20KN。采用力锤激励,加速度传感器采集信号,将信号输入到OROS数据采集仪,最后传至计算机并记录;采用N-modal软件进行数据处理并识别出轴承试验结构的各阶模态频率与振型。
b)建立试验所用的轴-轴承系统的有限元模型,轴承滚子依旧采用弹簧单元代替。参照图2,取20KN对应下的径向刚度值为1.87×106N/mm,将其赋值给弹簧单元,进行预载荷下的模态计算。
c)将试验模态结果和计算模态计算进行对比,其中关注的两阶径向模态结果如表1所示:
表1试验和仿真模态参数对比
表1中的MAC为模态置信因子,分析的是有限元模态与试验模态振型的相关性。一般情况下,MAC值需满足大于0.7的条件。从表1中可以看出,两阶模态MAC值都较高,频率误差也较小,说明上述刚度取值的合理性,从而证明了基于局部精细接触模型识别轴承刚度方法的有效性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (3)

1.一种基于局部精细接触模型的轴承径向刚度识别方法,其特征在于:步骤如下:
1)建立轴承局部精细接触模型,选取轴承最底端滚子的一半作为研究对象,建立其精细接触模型,即轴承局部精细接触模型;
2)建立轴承整体等效模型,在轴承内外圈之间建立多个弹簧-阻尼单元代替滚动体,并给弹簧-阻尼单元赋任意初始刚度值;
3)静力接触计算,分别在上述两个模型的中心点施加径向外载荷1/2Q和Fr,Fr代表的是轴承整体受到的径向外载荷,Q代表此时最底端滚子受到的载荷大小,两者的关系如公式(1)所示,其中Z表示滚子的数量,在对应的载荷和边界条件下,分别对两个模型进行静力计算,观察两者的中心点径向位移量δ1和δ2
<mrow> <mi>Q</mi> <mo>=</mo> <mfrac> <msub> <mi>F</mi> <mi>r</mi> </msub> <mi>Z</mi> </mfrac> <mo>&amp;times;</mo> <mn>4.08</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
4)等效径向刚度识别,以局部精细接触模型的中心点径向位移量为标准,调整整体等效模型弹簧-阻尼单元的刚度值,使其中心点径向位移量与局部精细接触模型的中心点径向位移量相同,则认为此时弹簧单元总刚度值就是轴承整体在载荷Fr下的径向刚度值;
5)改变外载荷Fr大小,重新建立对应载荷下的局部精细接触模型,按照步骤3)和4)重新进行静力计算和等效径向刚度识别,得到多组载荷下的识别刚度值,从而拟合出轴承径向刚度随载荷变化的曲线,最终识别得到轴承等效径向刚度变化图;
6)设计合理的轴承模态试验方案,验证上述识别刚度的准确性。
2.如权利要求1所述的基于局部精细接触模型的轴承径向刚度识别方法,其特征在于:其中步骤6)具体包括:
a)设计试验方案:以轴-轴承结构为试验对象,采用力锤激励,加速度传感器采集信号,将信号输入到数据采集仪,最后传至计算机并记录,采用N-modal软件进行数据处理并识别出轴承试验结构的各阶模态频率与振型;
b)建立试验结构的有限元模型,参考步骤5)中的曲线,取试验载荷对应的刚度值代入有限元模型,进行模态计算,同样得到各阶模态频率与振型;
c)将相同振型下的试验模态频率和仿真模态频率进行比较,验证基于局部精细接触模型识别轴承径向刚度的有效性。
3.如权利要求2所述的基于局部精细接触模型的轴承径向刚度识别方法,其特征在于:步骤1)中轴承局部精细接触模型,其滚子和内外圈的接触区域网格大小要达到接触半宽的1/4到1/2才能达到精细模型的条件,接触半宽根据赫兹理论公式(2)进行计算
<mrow> <mi>b</mi> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <mn>4</mn> <mi>Q</mi> </mrow> <mrow> <mi>&amp;pi;</mi> <mi>l</mi> <mi>&amp;Sigma;</mi> <mi>&amp;rho;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;mu;</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mrow> <msub> <mi>E</mi> <mn>1</mn> </msub> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;mu;</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> <msub> <mi>E</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
其中,b表示接触半宽;l表示圆柱滚子长度;∑ρ为主曲率和;E1,E2表示两接触物体的弹性模量,μ12为泊松比。
CN201710426821.5A 2017-06-08 2017-06-08 基于局部精细接触模型的轴承等效径向刚度识别方法 Active CN107330158B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710426821.5A CN107330158B (zh) 2017-06-08 2017-06-08 基于局部精细接触模型的轴承等效径向刚度识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710426821.5A CN107330158B (zh) 2017-06-08 2017-06-08 基于局部精细接触模型的轴承等效径向刚度识别方法

Publications (2)

Publication Number Publication Date
CN107330158A true CN107330158A (zh) 2017-11-07
CN107330158B CN107330158B (zh) 2020-11-06

Family

ID=60194885

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710426821.5A Active CN107330158B (zh) 2017-06-08 2017-06-08 基于局部精细接触模型的轴承等效径向刚度识别方法

Country Status (1)

Country Link
CN (1) CN107330158B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916583A (zh) * 2019-04-04 2019-06-21 大连交通大学 一种带齿防松垫圈轴向刚度的等效验证方法
CN111460714A (zh) * 2020-03-31 2020-07-28 上海机电工程研究所 适用于多体静力接触问题的辅助刚度逼近计算方法及系统
CN111523193A (zh) * 2019-01-16 2020-08-11 苏州安靠电源有限公司 基于cae电池模组连接结构等效模型的建立方法
CN112434453A (zh) * 2020-11-11 2021-03-02 西安电子科技大学 轴承有限元模型简化等效方法、系统、介质、设备及终端
CN113392544A (zh) * 2021-05-28 2021-09-14 东北林业大学 一种基于变形协调理论的行星螺纹滚柱轴承接触载荷计算方法
CN113468781A (zh) * 2021-06-21 2021-10-01 中国科学院西安光学精密机械研究所 一种基于刚度的空间精密轴系预紧力的测量方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030034700A1 (en) * 2001-08-20 2003-02-20 Brackett Norman C. Dual stiffness bearing damping system
US20080317392A1 (en) * 2007-06-25 2008-12-25 Seagate Technology Llc Air purging for a fluid dynamic bearing
CN102889990A (zh) * 2012-09-22 2013-01-23 马会防 一种轴承径向刚度和轴向刚度的动力学测量方法
CN103530468A (zh) * 2013-10-23 2014-01-22 清华大学 一种考虑轴承刚度耦合非线性的多支撑轴系有限元方法
CN103868691A (zh) * 2014-03-06 2014-06-18 南京理工大学 角接触球轴承动态参数测试装置
CN106248328A (zh) * 2016-07-15 2016-12-21 中船动力研究院有限公司 一种测量轴系结构扭转动柔度的间接方法
CN106560816A (zh) * 2016-02-02 2017-04-12 梁明轩 滚动轴承动刚度的影响因素分析方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030034700A1 (en) * 2001-08-20 2003-02-20 Brackett Norman C. Dual stiffness bearing damping system
US20080317392A1 (en) * 2007-06-25 2008-12-25 Seagate Technology Llc Air purging for a fluid dynamic bearing
CN102889990A (zh) * 2012-09-22 2013-01-23 马会防 一种轴承径向刚度和轴向刚度的动力学测量方法
CN103530468A (zh) * 2013-10-23 2014-01-22 清华大学 一种考虑轴承刚度耦合非线性的多支撑轴系有限元方法
CN103868691A (zh) * 2014-03-06 2014-06-18 南京理工大学 角接触球轴承动态参数测试装置
CN106560816A (zh) * 2016-02-02 2017-04-12 梁明轩 滚动轴承动刚度的影响因素分析方法
CN106248328A (zh) * 2016-07-15 2016-12-21 中船动力研究院有限公司 一种测量轴系结构扭转动柔度的间接方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
谢军太等: "径向定载条件下圆柱滚子轴承的振动分析", 《振动.测试与诊断》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111523193A (zh) * 2019-01-16 2020-08-11 苏州安靠电源有限公司 基于cae电池模组连接结构等效模型的建立方法
CN109916583A (zh) * 2019-04-04 2019-06-21 大连交通大学 一种带齿防松垫圈轴向刚度的等效验证方法
CN111460714A (zh) * 2020-03-31 2020-07-28 上海机电工程研究所 适用于多体静力接触问题的辅助刚度逼近计算方法及系统
CN111460714B (zh) * 2020-03-31 2022-11-29 上海机电工程研究所 适用于多体静力接触问题的辅助刚度逼近计算方法及系统
CN112434453A (zh) * 2020-11-11 2021-03-02 西安电子科技大学 轴承有限元模型简化等效方法、系统、介质、设备及终端
CN112434453B (zh) * 2020-11-11 2024-03-26 西安电子科技大学 轴承有限元模型简化等效方法、系统、介质、设备及终端
CN113392544A (zh) * 2021-05-28 2021-09-14 东北林业大学 一种基于变形协调理论的行星螺纹滚柱轴承接触载荷计算方法
CN113392544B (zh) * 2021-05-28 2022-08-26 东北林业大学 一种基于变形协调理论的行星螺纹滚柱轴承接触载荷计算方法
CN113468781A (zh) * 2021-06-21 2021-10-01 中国科学院西安光学精密机械研究所 一种基于刚度的空间精密轴系预紧力的测量方法

Also Published As

Publication number Publication date
CN107330158B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
CN107330158A (zh) 基于局部精细接触模型的轴承等效径向刚度识别方法
Zhao et al. Performance prediction using high-order differential mathematical morphology gradient spectrum entropy and extreme learning machine
CN104155108B (zh) 一种基于振动时频分析的滚动轴承故障诊断方法
CN109781411A (zh) 一种结合改进稀疏滤波器与kelm的轴承故障诊断方法
CN113375941B (zh) 高速动车组轴承的开集故障诊断方法
CN110717229A (zh) 一种基于试验数据的虚拟载荷谱自更新构造方法
Chen et al. Intelligent diagnosis of bearing knock faults in internal combustion engines using vibration simulation
CN106650146B (zh) 一种转子系统轴承支座松动故障在线定量识别分析方法
CN108062514A (zh) 一种基于三维谱图分析的胶印机墨辊故障诊断方法
CN106354974B (zh) 一种滚动轴承等效刚度与等效阻尼的计算方法
CN106354955A (zh) 一种基于磨机振动模态参数的滑动轴承刚度识别方法
CN109165632A (zh) 一种基于改进d-s证据理论的设备故障诊断方法
CN106095791A (zh) 一种基于上下文的抽象样本信息检索系统及其抽象样本特征化表示方法
CN107843428A (zh) 轴承载荷在线获取方法及装置、轴承寿命评估方法及装置
Qin et al. Cross-domain fault diagnosis based on improved multi-scale fuzzy measure entropy and enhanced joint distribution adaptation
Qiyue et al. Virtual prototype modeling and performance analysis of the air-powered engine
Qi et al. Feature classification method of frequency cepstrum coefficient based on weighted extreme gradient boosting
CN109341989A (zh) 一种能够剔除车辆动力效应的桥梁影响线识别方法
Kang et al. A dual-experience pool deep reinforcement learning method and its application in fault diagnosis of rolling bearing with unbalanced data
CN108364021A (zh) 一种基于层次排列熵的轴承故障特征提取方法
Gao et al. Identification of power output of diesel engine by analysis of the vibration signal
CN104156623A (zh) 一种机械复合故障的诊断方法
Caponetto et al. Deep learning algorithm for predictive maintenance of rotating machines through the analysis of the orbits shape of the rotor shaft
CN106446443A (zh) 一种轨道扣件系统共振频率的识别方法及装置
CN117034669A (zh) 一种旋转机械滚动轴承剩余寿命预测方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant