CN107325365A - 环保复合型低能耗pe管材生产工艺 - Google Patents

环保复合型低能耗pe管材生产工艺 Download PDF

Info

Publication number
CN107325365A
CN107325365A CN201710485774.1A CN201710485774A CN107325365A CN 107325365 A CN107325365 A CN 107325365A CN 201710485774 A CN201710485774 A CN 201710485774A CN 107325365 A CN107325365 A CN 107325365A
Authority
CN
China
Prior art keywords
bamboo charcoal
tubing
energy consumption
nano modified
environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710485774.1A
Other languages
English (en)
Inventor
范文君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Han Da Plastic Technology Development Co Ltd
Original Assignee
Yunnan Han Da Plastic Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Han Da Plastic Technology Development Co Ltd filed Critical Yunnan Han Da Plastic Technology Development Co Ltd
Priority to CN201710485774.1A priority Critical patent/CN107325365A/zh
Publication of CN107325365A publication Critical patent/CN107325365A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Abstract

本发明公开了一种环保复合型低能耗PE管材生产工艺,包括以下步骤:将添加了防结垢母粒、抗菌母粒的PE原料混合后添加至内层挤出机中,将PE树脂中加入5—10%的纳米改性竹炭塑料颗粒混合均匀直接加入外层挤出机中,通过多层共挤模头挤出管材,分别通过真空箱、冷却水箱、牵引机、切割机制得复合型PE管材。本发明操作简便、实用性强、成本低、绿色环保,纳米改性竹炭塑料颗粒的分散性好,性质稳定,内层设置为防结垢抗菌层,降低了管材内壁的摩擦系数,使得管材内部不易结垢,阻止细菌的滋生,提高了水质的安全,复合管材外层采用纳米改性竹炭塑料颗粒具有抗老化和抗菌性的双层功效,具备较强的实际应用价值和市场开发前景。

Description

环保复合型低能耗PE管材生产工艺
技术领域
本发明属于管材加工技术领域,具体涉及一种环保复合型低能耗 PE管材生产工艺。
背景技术
PE管材是一种结晶度高、非极性的热塑性树脂管材,由于PE 管材具有无毒、无味、无臭、良好的耐寒、耐热性和化学稳定性、较高的刚性和韧性,以及机械性能好、安装方便等诸多优点,被广泛的应用于建筑给、排水,埋地排水管、输气管及电讯工程等领域。但PE 管材露天存放或使用时,在紫外光线的作用下,易发生老化,变色、变脆甚至粉化,从而丧失其力学性能,影响了PE管材的使用,因而需要对PE管材进行改良,使其具有较好的抗老化性能,延长使用年限和扩展使用范围。另一方面,PE管材大量用于输送饮用水,对PE 管材的抗菌和抑菌作用也提出了较高要求。对于提高PE管材的抗菌和抑菌效果,现有技术主要是通过添加银、铜、锌、钛等无机抗菌剂而实现,单纯的无机抗菌剂虽然具有热稳定性好,在塑料挤出和加工过程中不会分解和变质等优点,但人类长期饮用含有银、铜、锌、钛等无机抗菌剂的饮用水,会对人体的肝脏造成负面影响,所以,这也限制了无机抗菌剂的应用,采用有机抗菌剂替代无机抗菌剂成为目前的研究热点和发展趋势。
发明内容
为克服现有PE管材制备技术存在的缺点,本发明人经过大量试验,终于发明出一种环保复合型低能耗PE管材生产工艺,该工艺操作简便、实用性强、成本低、绿色环保。
本发明通过以下技术方案实现:一种环保复合型低能耗PE管材生产工艺,包括以下步骤:将添加了防结垢母粒、抗菌母粒的PE原料混合后添加至内层挤出机中,将PE树脂中加入5—10%的纳米改性竹炭塑料颗粒混合均匀直接加入外层挤出机中,通过多层共挤模头挤出管材,分别通过真空箱、冷却水箱、牵引机、切割机制得复合型 PE管材。
进一步地,所述纳米改性竹炭塑料颗粒的制备方法为:将纳米改性竹炭粉体5份、10号白油0.1-5份、聚乙烯蜡2-8份、硅烷偶联剂 0.1-5份和PE树脂20-40份加入高速搅拌机混合,混合后经过双螺杆挤出机挤出造粒,得到纳米改性竹炭塑料颗粒。
进一步地,在纳米改性竹炭塑料颗粒的制作过程中,聚乙烯蜡是主分散剂,10号白油是辅助分散剂,硅烷偶联剂是表面改性剂,PE 树脂是纳米改性竹炭粉体的载体,其中聚乙烯蜡优选分子量为 3000-5000的,PE树脂优选熔融指数在10-30g/min范围内的。
进一步地,所述纳米改性竹炭粉体的制备方法为:氧化钛-氧化锌复合粉体在沸水中溶解搅拌制成乳液,再将竹炭碎成竹炭粉,在沸水中制成高温炭-浮液,将两种溶液以1:4-1:6的体积比混合得到混合乳液,混合乳液经蒸发干燥即得纳米改性竹炭粉体。
进一步地,所述防结垢母粒采用硅氧烷、硅氧烷共聚物、硅氧烷弹性体中的一种或多种与聚乙烯材料进行混合后造粒所得。
进一步地,所述抗菌母粒采用纳米银、铜或锌的离子抗菌剂添加到聚乙烯材料中,进行混合后造粒所得。
本发明的有益效果是:
本发明通过采用以上技术方案,其操作简便、实用性强、成本低、绿色环保,纳米改性竹炭塑料颗粒的分散性好,性质稳定,所得复合 PE管材的内层的防结垢抗菌层,降低了管材内壁的摩擦系数,使得管材内部不易结垢,从而减少了管材内部清理次数,降低了管材维护成本,同时还能阻止细菌的滋生,提高了水质的安全,复合管材外层采用纳米改性竹炭塑料颗粒具有抗老化和抗菌性的双层功效,具备较强的实际应用价值和市场开发前景。
具体实施方式
为使本发明的目的、特征、优点能够更加的明显和易懂,下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域的技术人员所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种环保复合型低能耗PE管材生产工艺,包括以下步骤:将添加了2重量份的防结垢母粒、3重量份的抗菌母粒和100重量份的PE 原料混合后添加至内层挤出机中,将PE树脂中加入5%的纳米改性竹炭塑料颗粒混合均匀直接加入外层挤出机中,在170℃时通过多层共挤模头挤出管材,分别通过真空箱、冷却水箱、牵引机、切割机制得复合型PE管材。
作为本实施例的一个优选,所述纳米改性竹炭塑料颗粒的制备方法为:将纳米改性竹炭粉体5份、10号白油0.2份、聚乙烯蜡3份、硅烷偶联剂0.2份和PE树脂20份加入高速搅拌机混合,混合后经过双螺杆挤出机挤出造粒,得到纳米改性竹炭塑料颗粒。
作为本实施例的一个优选,在纳米改性竹炭塑料颗粒的制作过程中,聚乙烯蜡是主分散剂,10号白油是辅助分散剂,硅烷偶联剂是表面改性剂,PE树脂是纳米改性竹炭粉体的载体,其中聚乙烯蜡优选分子量为3000的,PE树脂优选熔融指数在10g/min范围内的。
作为本实施例的一个优选,所述纳米改性竹炭粉体的制备方法为:氧化钛-氧化锌复合粉体在沸水中溶解搅拌制成乳液,再将竹炭碎成竹炭粉,在沸水中制成高温炭-浮液,将两种溶液以1:4的体积比混合得到混合乳液,混合乳液经蒸发干燥即得纳米改性竹炭粉体。
作为本实施例的一个优选,所述防结垢母粒采用硅氧烷、硅氧烷共聚物、硅氧烷弹性体中的一种或多种与聚乙烯材料进行混合后造粒所得。
作为本实施例的一个优选,所述抗菌母粒采用纳米银、铜或锌的离子抗菌剂添加到聚乙烯材料中,进行混合后造粒所得。
实施例2
一种环保复合型低能耗PE管材生产工艺,包括以下步骤:将添加了4重量份的防结垢母粒、5重量份的抗菌母粒和100重量份的PE 原料混合后添加至内层挤出机中,将PE树脂中加入10%的纳米改性竹炭塑料颗粒混合均匀直接加入外层挤出机中,在185℃时通过多层共挤模头挤出管材,分别通过真空箱、冷却水箱、牵引机、切割机制得复合型PE管材。
作为本实施例的一个优选,所述纳米改性竹炭塑料颗粒的制备方法为:将纳米改性竹炭粉体5份、10号白油5份、聚乙烯蜡8份、硅烷偶联剂5份和PE树脂40份加入高速搅拌机混合,混合后经过双螺杆挤出机挤出造粒,得到纳米改性竹炭塑料颗粒。
作为本实施例的一个优选,在纳米改性竹炭塑料颗粒的制作过程中,聚乙烯蜡是主分散剂,10号白油是辅助分散剂,硅烷偶联剂是表面改性剂,PE树脂是纳米改性竹炭粉体的载体,其中聚乙烯蜡优选分子量为5000的,PE树脂优选熔融指数在30g/min范围内的。
作为本实施例的一个优选,所述纳米改性竹炭粉体的制备方法为:氧化钛-氧化锌复合粉体在沸水中溶解搅拌制成乳液,再将竹炭碎成竹炭粉,在沸水中制成高温炭-浮液,将两种溶液以1:6的体积比混合得到混合乳液,混合乳液经蒸发干燥即得纳米改性竹炭粉体。
作为本实施例的一个优选,所述防结垢母粒采用硅氧烷、硅氧烷共聚物、硅氧烷弹性体中的一种或多种与聚乙烯材料进行混合后造粒所得。
作为本实施例的一个优选,所述抗菌母粒采用纳米银、铜或锌的离子抗菌剂添加到聚乙烯材料中,进行混合后造粒所得。
实施例3
一种环保复合型低能耗PE管材生产工艺,包括以下步骤:将添加了防结垢母粒、抗菌母粒的PE原料混合后添加至内层挤出机中,将PE树脂中加入5—10%的纳米改性竹炭塑料颗粒混合均匀直接加入外层挤出机中,通过多层共挤模头挤出管材,分别通过真空箱、冷却水箱、牵引机、切割机制得复合型PE管材。
进一步地,所述纳米改性竹炭塑料颗粒的制备方法为:将纳米改性竹炭粉体5份、10号白油3份、聚乙烯蜡5份、硅烷偶联剂3份和PE树脂30份加入高速搅拌机混合,混合后经过双螺杆挤出机挤出造粒,得到纳米改性竹炭塑料颗粒。
进一步地,在纳米改性竹炭塑料颗粒的制作过程中,聚乙烯蜡是主分散剂,10号白油是辅助分散剂,硅烷偶联剂是表面改性剂,PE 树脂是纳米改性竹炭粉体的载体,其中聚乙烯蜡优选分子量为4000 的,PE树脂优选熔融指数在20g/min范围内的。
进一步地,所述纳米改性竹炭粉体的制备方法为:氧化钛-氧化锌复合粉体在沸水中溶解搅拌制成乳液,再将竹炭碎成竹炭粉,在沸水中制成高温炭-浮液,将两种溶液以1:5的体积比混合得到混合乳液,混合乳液经蒸发干燥即得纳米改性竹炭粉体。
进一步地,所述防结垢母粒采用硅氧烷、硅氧烷共聚物、硅氧烷弹性体中的一种或多种与聚乙烯材料进行混合后造粒所得。
进一步地,所述抗菌母粒采用纳米银、铜或锌的离子抗菌剂添加到聚乙烯材料中,进行混合后造粒所得。
上述虽然对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围内。

Claims (6)

1.一种环保复合型低能耗PE管材生产工艺,包括以下步骤:将添加了防结垢母粒、抗菌母粒的PE原料混合后添加至内层挤出机中,将PE树脂中加入5—10%的纳米改性竹炭塑料颗粒混合均匀直接加入外层挤出机中,通过多层共挤模头挤出管材,分别通过真空箱、冷却水箱、牵引机、切割机制得复合型PE管材。
2.根据权利要求1所述的环保复合型低能耗PE管材生产工艺,其特征在于,所述纳米改性竹炭塑料颗粒的制备方法为:将纳米改性竹炭粉体5份、10号白油0.1-5份、聚乙烯蜡2-8份、硅烷偶联剂0.1-5份和PE树脂20-40份加入高速搅拌机混合,混合后经过双螺杆挤出机挤出造粒,得到纳米改性竹炭塑料颗粒。
3.根据权利要求1所述的环保复合型低能耗PE管材生产工艺,其特征在于,在纳米改性竹炭塑料颗粒的制作过程中,聚乙烯蜡是主分散剂,10号白油是辅助分散剂,硅烷偶联剂是表面改性剂,PE树脂是纳米改性竹炭粉体的载体,其中聚乙烯蜡优选分子量为3000-5000的,PE树脂优选熔融指数在10-30g/min范围内的。
4.根据权利要求1所述的环保复合型低能耗PE管材生产工艺,其特征在于,所述纳米改性竹炭粉体的制备方法为:氧化钛-氧化锌复合粉体在沸水中溶解搅拌制成乳液,再将竹炭碎成竹炭粉,在沸水中制成高温炭-浮液,将两种溶液以1:4-1:6的体积比混合得到混合乳液,混合乳液经蒸发干燥即得纳米改性竹炭粉体。
5.根据权利要求1所述的环保复合型低能耗PE管材生产工艺,其特征在于,所述防结垢母粒采用硅氧烷、硅氧烷共聚物、硅氧烷弹性体中的一种或多种与聚乙烯材料进行混合后造粒所得。
6.根据权利要求1所述的环保复合型低能耗PE管材生产工艺,其特征在于,所述抗菌母粒采用纳米银、铜或锌的离子抗菌剂添加到聚乙烯材料中,进行混合后造粒所得。
CN201710485774.1A 2017-06-23 2017-06-23 环保复合型低能耗pe管材生产工艺 Pending CN107325365A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710485774.1A CN107325365A (zh) 2017-06-23 2017-06-23 环保复合型低能耗pe管材生产工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710485774.1A CN107325365A (zh) 2017-06-23 2017-06-23 环保复合型低能耗pe管材生产工艺

Publications (1)

Publication Number Publication Date
CN107325365A true CN107325365A (zh) 2017-11-07

Family

ID=60194320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710485774.1A Pending CN107325365A (zh) 2017-06-23 2017-06-23 环保复合型低能耗pe管材生产工艺

Country Status (1)

Country Link
CN (1) CN107325365A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109677069A (zh) * 2018-12-20 2019-04-26 中核同辐(长春)辐射技术有限公司 一种多层复合型高导热辐照交联地暖管材及其制备方法
EP3695955A4 (en) * 2017-11-17 2020-10-21 Dalian University of Technology METHOD OF MANUFACTURING A BIOCARRIER FOR FIXING BIOMASS COAL USING THERMOPLASTIC RESIN
CN113512247A (zh) * 2021-07-21 2021-10-19 安徽万安环境科技股份有限公司 一种抗老化防蚁鼠纳米自洁阻燃的pe管道制备方法
CN114716746A (zh) * 2021-01-06 2022-07-08 中国石油天然气股份有限公司 一种疏水疏油型聚乙烯母粒及其制备方法、聚乙烯管道料
CN116001233A (zh) * 2023-01-05 2023-04-25 江苏惠升管业集团有限公司 一种用于传输高温污水的双层pe波纹管制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103881220A (zh) * 2014-04-21 2014-06-25 广西佳利工贸有限公司 一种抗老化、抗菌pe管材的制备方法
CN106764111A (zh) * 2016-12-09 2017-05-31 武汉金牛经济发展有限公司 一种防结垢抗菌型pe‑rt管材及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103881220A (zh) * 2014-04-21 2014-06-25 广西佳利工贸有限公司 一种抗老化、抗菌pe管材的制备方法
CN106764111A (zh) * 2016-12-09 2017-05-31 武汉金牛经济发展有限公司 一种防结垢抗菌型pe‑rt管材及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3695955A4 (en) * 2017-11-17 2020-10-21 Dalian University of Technology METHOD OF MANUFACTURING A BIOCARRIER FOR FIXING BIOMASS COAL USING THERMOPLASTIC RESIN
CN109677069A (zh) * 2018-12-20 2019-04-26 中核同辐(长春)辐射技术有限公司 一种多层复合型高导热辐照交联地暖管材及其制备方法
CN114716746A (zh) * 2021-01-06 2022-07-08 中国石油天然气股份有限公司 一种疏水疏油型聚乙烯母粒及其制备方法、聚乙烯管道料
CN113512247A (zh) * 2021-07-21 2021-10-19 安徽万安环境科技股份有限公司 一种抗老化防蚁鼠纳米自洁阻燃的pe管道制备方法
CN116001233A (zh) * 2023-01-05 2023-04-25 江苏惠升管业集团有限公司 一种用于传输高温污水的双层pe波纹管制备方法
CN116001233B (zh) * 2023-01-05 2024-02-20 江苏惠升管业集团有限公司 一种用于传输高温污水的双层pe波纹管制备方法

Similar Documents

Publication Publication Date Title
CN107325365A (zh) 环保复合型低能耗pe管材生产工艺
CN103980686B (zh) 一种抗菌性可生物降解包装软管材料及其软管制备方法
CN101307843B (zh) 一种给水用抗菌塑料管材的制作方法
CN104448476B (zh) 一种高分子季铵盐抗菌管及其制备方法
CN105419369A (zh) 一种秸秆增强再生塑料复合材料及其制备方法
CN106188746A (zh) 一种具有抗菌性能的聚乙烯给水管材及其制备方法
CN103225716B (zh) 一种三抗阻光复合管材的制造方法
CN103881220B (zh) 一种抗老化、抗菌pe管材的制备方法
CN104804361A (zh) 抗菌树脂复合材料及其制备方法
CN103709643A (zh) 涤纶抗菌母粒及其制备方法
CN102336943A (zh) 聚乙烯给水管管料
CN102492210B (zh) 一种包装用高阻隔抗紫外线瓶及其制备方法
CN106832603A (zh) 一种抗菌无规共聚聚丙烯给水管材及其生产方法
CN112876818A (zh) 一种生物可降解抗菌吸管及其制备方法
CN103146119B (zh) 一种耐磨抗菌abs改性材料及其制备方法
CN105037881A (zh) 一种复合塑料管
CN102250456A (zh) 一种抗菌聚乳酸餐具及其制备方法
CN105400067A (zh) 一种具有抑菌作用的聚丙烯
CN114834102A (zh) 一种抑制生鲜肉腐败菌的热收缩包装膜及其制备方法
CN101429316A (zh) Pvc/超细粉体复合阀门专用料及其制备技术
CN106764111A (zh) 一种防结垢抗菌型pe‑rt管材及其制备方法
CN105175894A (zh) 聚丙烯着色母料的制备方法
CN102993541A (zh) 特殊生物矿物源性食品包装袋(膜)
CN105153524A (zh) 一种防水耐腐抗老化柔韧性好的石头纸及其制备方法
CN104403342A (zh) 一种抗胀阻湿、强度高、耐老化的木塑复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171107

RJ01 Rejection of invention patent application after publication