CN107325331A - 一种柔性显示器基质材料制备方法 - Google Patents

一种柔性显示器基质材料制备方法 Download PDF

Info

Publication number
CN107325331A
CN107325331A CN201710419054.5A CN201710419054A CN107325331A CN 107325331 A CN107325331 A CN 107325331A CN 201710419054 A CN201710419054 A CN 201710419054A CN 107325331 A CN107325331 A CN 107325331A
Authority
CN
China
Prior art keywords
acetylation
nanofibrils
nanofibrils cellulose
acrylic resin
cellulose membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710419054.5A
Other languages
English (en)
Inventor
宋雪萍
杨爽
聂双喜
谢秋霞
刘秀宇
姜言
张坤
王双飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN201710419054.5A priority Critical patent/CN107325331A/zh
Publication of CN107325331A publication Critical patent/CN107325331A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • C08J2401/10Esters of organic acids
    • C08J2401/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开一种柔性显示器基质材料制备方法。该方法通过1)乙酰化纳米纤丝纤维素制备成膜、2)膜负压浸渍丙烯酸树脂和3)复合材料紫外光下固化三个步骤完成制备柔性显示器基质材料。本发明的优点:本发明提供了一种环境友好型柔性显示器基质材料的制备方法,并且赋予该柔性显示器基材较好的透光率、热性能、柔韧性以及表面平整度。

Description

一种柔性显示器基质材料制备方法
技术领域
本发明属于纳米纤丝纤维素复合材料领域,具体是一种柔性显示器基质材料制备方法。
背景技术
纳米纤丝纤维素与高分子材料复合,可使材料获得更优异的性能。根据高分子材料的结构、性能和应用的要求,纳米纤丝纤维素可作为增强相用于纳米复合材料的制备中,以提高复合材料的强度和降低生产成本,同时可开发环境友好型和高效的不同材料。因此纳米纤丝纤维素可为柔性屏幕、太阳能电池、柔性电极材料及导电纸提供新型的纳米复合材料基体。
光电子技术和柔性电子材料在过去十年中得到了快速地增长,在电子显示器领域,柔性屏幕优势明显,具有体积轻薄、功耗低、设备的续航能力长、可弯曲和柔韧性佳等优点。柔性屏幕的成功,量产不仅重大利好于新一代高端智能手机的制造,也因其低功耗、可弯曲的特性对可穿戴式设备的应用带来深远的影响,未来柔性屏幕将随着个人智能终端的不断渗透而广泛应用。目前研究成功的柔性显示器基材还存在效率、寿命、工艺操作性和成本等几方面的不足,因此尚未产业化。但预计3~5年内,柔性屏幕将有望大规模地运用到手机、可穿戴智能产品上。
在绿色复合材料的背景下,新的可生物降解的、柔软的和透明的纳米纤丝纤维素膜和再生纤维素膜(物)基板,引起了人们的关注,一些学者认为纳米纤丝纤维素复合材料具有作为柔性显示器基板的潜力。
发明内容
本发明的目的是提供一种柔性显示器基质材料制备方法。
本发明解决上述技术问题的技术方案如下:
一种柔性显示器基质材料制备方法,其特征在于:以乙酰化纳米纤丝纤维素和添加了活性稀释剂和光引发剂的丙烯酸树脂为原料,首先对纳米纤丝纤维素进行乙酰化改性处理,得到乙酰化纳米纤丝纤维素,然后通过真空抽滤法对乙酰化纳米纤丝纤维素抽滤制备成膜。将乙酰化纳米纤丝纤维素膜与添加了活性稀释剂和光引发剂的丙烯酸树脂通过负压浸渍后光固化制成一种改性纳米纤丝纤维素复合材料,操作步骤如下:
1.乙酰化纳米纤丝纤维素制备成膜:
取绝干量约为0.3g乙酰化纳米纤丝纤维素稀释至浓度为0.02%的悬浮液150mL,搅拌2h后使用直径90mm,孔径10~15μm,底层垫有孔径为0.22μm的亲水型聚四氟乙烯有机滤膜的G2砂芯漏斗进行真空抽滤制备乙酰化纳米纤丝纤维素膜,待乙酰化纳米纤丝纤维素均匀地成膜后将乙酰化纳米纤丝纤维素湿膜连同有机过滤膜一同取出,在乙酰化纳米纤丝纤维素膜上盖上一片有机过滤膜,并在有机过滤膜上覆盖滤纸,然后将样品用两块玻璃板平压夹持加予30N的压力,置于室温下干燥12h,再移到55℃的干燥箱中干燥24h,最终获得干燥的、平整光滑的乙酰化纳米纤丝纤维素膜;
2.膜负压浸渍丙烯酸树脂:
将步骤1)中制备好的乙酰化纳米纤丝纤维素膜在-0.09Mpa~-0.15Mpa压力下添加乙酰化纳米纤丝纤维素膜质量的0.2%~0.8%活性稀释剂和乙酰化纳米纤丝纤维素膜质量的10%~20%光引发剂的丙烯酸树脂中浸渍12h,浸渍结束后取出乙酰化纳米纤丝纤维素膜,使用小型涂布机刮去乙酰化纳米纤丝纤维素膜表面多余的丙烯酸树脂。
3.复合材料紫外光下固化:
将步骤2)中浸渍丙烯酸树脂的乙酰化纳米纤丝纤维素膜放入紫外光固化机中,在1000W的紫外光下固化3min~5min,最终获得复合材料,即柔性显示器基质材料。
本发明的优点:本发明提供了一种环境友好型柔性显示器基质材料的制备方法,并且赋予该柔性显示器基材较好的透光率、热性能、柔韧性以及表面平整度。
具体实施方式
以下结合具体实施例,对本发明作进一步详细说明。
实施例1
一种柔性显示器基质材料制备方法如下:
1.乙酰化纳米纤丝纤维素制备成膜:
取绝干量约为0.3g乙酰化纳米纤丝纤维素稀释至浓度为0.02%的悬浮液150mL,搅拌2h后使用直径90mm,孔径10~15μm,底层垫有孔径为0.22μm的亲水型聚四氟乙烯有机滤膜的G2砂芯漏斗进行真空抽滤制备乙酰化纳米纤丝纤维素膜,待乙酰化纳米纤丝纤维素均匀地成膜后将乙酰化纳米纤丝纤维素湿膜连同有机过滤膜一同取出,在乙酰化纳米纤丝纤维素膜上盖上一片有机过滤膜,并在有机过滤膜上覆盖滤纸,然后将样品用两块玻璃板平压夹持加予30N的压力,置于室温下干燥12h,再移到55℃的干燥箱中干燥24h,最终获得干燥的、平整光滑的乙酰化纳米纤丝纤维素膜。
2.膜负压浸渍丙烯酸树脂:
将步骤1中制备好的乙酰化纳米纤丝纤维素膜在-0.15Mpa压力下添加乙酰化纳米纤丝纤维素膜质量的0.2%~0.8%活性稀释剂和乙酰化纳米纤丝纤维素膜质量的10%~20%光引发剂的丙烯酸树脂中浸渍12h,浸渍结束后取出乙酰化纳米纤丝纤维素膜,使用小型涂布机刮去乙酰化纳米纤丝纤维素膜表面多余的丙烯酸树脂。
3.复合材料紫外光下固化:
将步骤2中浸渍丙烯酸树脂的乙酰化纳米纤丝纤维素膜放入紫外光固化机中,在1000W的紫外光下固化3min,最终获得复合材料,即柔性显示器基质材料。
实施例2
一种柔性显示器基质材料制备方法如下:
1.乙酰化纳米纤丝纤维素制备成膜:
取绝干量约为0.3g乙酰化纳米纤丝纤维素稀释至浓度为0.02%的悬浮液150mL,搅拌2h后使用直径90mm,孔径10~15μm,底层垫有孔径为0.22μm的亲水型聚四氟乙烯有机滤膜的G2砂芯漏斗进行真空抽滤制备乙酰化纳米纤丝纤维素膜,待乙酰化纳米纤丝纤维素均匀地成膜后将乙酰化纳米纤丝纤维素湿膜连同有机过滤膜一同取出,在乙酰化纳米纤丝纤维素膜上盖上一片有机过滤膜,并在有机过滤膜上覆盖滤纸,然后将样品用两块玻璃板平压夹持加予30N的压力,置于室温下干燥12h,再移到55℃的干燥箱中干燥24h,最终获得干燥的、平整光滑的乙酰化纳米纤丝纤维素膜。
2.膜负压浸渍丙烯酸树脂:
将步骤1中制备好的乙酰化纳米纤丝纤维素膜在-0.12Mpa压力下添加乙酰化纳米纤丝纤维素膜质量的0.2%~0.8%活性稀释剂和乙酰化纳米纤丝纤维素膜质量的10%~20%光引发剂的丙烯酸树脂中浸渍12h,浸渍结束后取出乙酰化纳米纤丝纤维素膜,使用小型涂布机刮去乙酰化纳米纤丝纤维素膜表面多余的丙烯酸树脂。
3.复合材料紫外光下固化:
将步骤2中浸渍丙烯酸树脂的乙酰化纳米纤丝纤维素膜放入紫外光固化机中,在1000W的紫外光下固化4min,最终获得复合材料,即柔性显示器基质材料。
实施例3
一种柔性显示器基质材料制备方法如下:
1.乙酰化纳米纤丝纤维素制备成膜:
取绝干量约为0.3g乙酰化纳米纤丝纤维素稀释至浓度为0.02%的悬浮液150mL,搅拌2h后使用直径90mm,孔径10~15μm,底层垫有孔径为0.22μm的亲水型聚四氟乙烯有机滤膜的G2砂芯漏斗进行真空抽滤制备乙酰化纳米纤丝纤维素膜,待乙酰化纳米纤丝纤维素均匀地成膜后将乙酰化纳米纤丝纤维素湿膜连同有机过滤膜一同取出,在乙酰化纳米纤丝纤维素膜上盖上一片有机过滤膜,并在有机过滤膜上覆盖滤纸,然后将样品用两块玻璃板平压夹持加予30N的压力,置于室温下干燥12h,再移到55℃的干燥箱中干燥24h,最终获得干燥的、平整光滑的乙酰化纳米纤丝纤维素膜。
2.膜负压浸渍丙烯酸树脂:
将步骤1中制备好的乙酰化纳米纤丝纤维素膜在-0.09Mpa压力下添加乙酰化纳米纤丝纤维素膜质量的0.2%~0.8%活性稀释剂和乙酰化纳米纤丝纤维素膜质量的10%~20%光引发剂的丙烯酸树脂中浸渍12h,浸渍结束后取出乙酰化纳米纤丝纤维素膜,使用小型涂布机刮去乙酰化纳米纤丝纤维素膜表面多余的丙烯酸树脂。
3.复合材料紫外光下固化:
将步骤2中浸渍丙烯酸树脂的乙酰化纳米纤丝纤维素膜放入紫外光固化机中,在1000W的紫外光下固化5min,最终获得复合材料,即柔性显示器基质材料。

Claims (1)

1.一种柔性显示器基质材料制备方法,其特征在于:以乙酰化纳米纤丝纤维素和添加了活性稀释剂和光引发剂的丙烯酸树脂为原料,首先对纳米纤丝纤维素进行乙酰化改性处理,得到乙酰化纳米纤丝纤维素,然后通过真空抽滤法对乙酰化纳米纤丝纤维素抽滤制备成膜。将乙酰化纳米纤丝纤维素膜与添加了活性稀释剂和光引发剂的丙烯酸树脂通过负压浸渍后光固化制成一种改性纳米纤丝纤维素复合材料,操作步骤如下:
1)乙酰化纳米纤丝纤维素制备成膜:
取绝干量约为0.3g乙酰化纳米纤丝纤维素稀释至浓度为0.02%的悬浮液150mL,搅拌2h后使用直径90mm,孔径10~15μm,底层垫有孔径为0.22μm的亲水型聚四氟乙烯有机滤膜的G2砂芯漏斗进行真空抽滤制备乙酰化纳米纤丝纤维素膜,待乙酰化纳米纤丝纤维素均匀地成膜后将乙酰化纳米纤丝纤维素湿膜连同有机过滤膜一同取出,在乙酰化纳米纤丝纤维素膜上盖上一片有机过滤膜,并在有机过滤膜上覆盖滤纸,然后将样品用两块玻璃板平压夹持加予30N的压力,置于室温下干燥12h,再移到55℃的干燥箱中干燥24h,最终获得干燥的、平整光滑的乙酰化纳米纤丝纤维素膜;
2)膜负压浸渍丙烯酸树脂:
将步骤1)中制备好的乙酰化纳米纤丝纤维素膜在-0.09Mpa~-0.15Mpa压力下添加乙酰化纳米纤丝纤维素膜质量的0.2%~0.8%活性稀释剂和乙酰化纳米纤丝纤维素膜质量的10%~20%光引发剂的丙烯酸树脂中浸渍12h,浸渍结束后取出乙酰化纳米纤丝纤维素膜,使用小型涂布机刮去乙酰化纳米纤丝纤维素膜表面多余的丙烯酸树脂;
3)复合材料紫外光下固化:
将步骤2)中浸渍丙烯酸树脂的乙酰化纳米纤丝纤维素膜放入紫外光固化机中,在1000W的紫外光下固化3min~5min,最终获得复合材料,即柔性显示器基质材料。
CN201710419054.5A 2017-06-06 2017-06-06 一种柔性显示器基质材料制备方法 Pending CN107325331A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710419054.5A CN107325331A (zh) 2017-06-06 2017-06-06 一种柔性显示器基质材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710419054.5A CN107325331A (zh) 2017-06-06 2017-06-06 一种柔性显示器基质材料制备方法

Publications (1)

Publication Number Publication Date
CN107325331A true CN107325331A (zh) 2017-11-07

Family

ID=60193843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710419054.5A Pending CN107325331A (zh) 2017-06-06 2017-06-06 一种柔性显示器基质材料制备方法

Country Status (1)

Country Link
CN (1) CN107325331A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109971014A (zh) * 2019-03-08 2019-07-05 广西大学 一种纳米纤维素复合材料及其制备方法和应用
CN114075796A (zh) * 2020-08-20 2022-02-22 华南理工大学 一种植物基纤维素纳米纤丝及其制备方法与应用
CN114481675A (zh) * 2021-12-21 2022-05-13 浙江金昌特种纸股份有限公司 一种麦草制备纤维素微纤丝薄膜的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101133107A (zh) * 2005-02-01 2008-02-27 日本电信电话株式会社 纤维增强复合材料及其制造方法
CN103396572A (zh) * 2013-08-19 2013-11-20 南京林业大学 一种木质纤维素纳米纤维/丙烯酸树脂复合膜的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101133107A (zh) * 2005-02-01 2008-02-27 日本电信电话株式会社 纤维增强复合材料及其制造方法
CN103396572A (zh) * 2013-08-19 2013-11-20 南京林业大学 一种木质纤维素纳米纤维/丙烯酸树脂复合膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YOKO OKAHISA等: ""Optically transparent wood–cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays"", 《COMPOSITES SCIENCE AND TECHNOLOGY》 *
莫健华等: "《液态树脂光固化增材制造技术》", 30 June 2013, 华中科技大学出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109971014A (zh) * 2019-03-08 2019-07-05 广西大学 一种纳米纤维素复合材料及其制备方法和应用
CN109971014B (zh) * 2019-03-08 2022-03-11 广西大学 一种纳米纤维素复合材料及其制备方法和应用
CN114075796A (zh) * 2020-08-20 2022-02-22 华南理工大学 一种植物基纤维素纳米纤丝及其制备方法与应用
CN114075796B (zh) * 2020-08-20 2022-12-16 华南理工大学 一种植物基纤维素纳米纤丝及其制备方法与应用
CN114481675A (zh) * 2021-12-21 2022-05-13 浙江金昌特种纸股份有限公司 一种麦草制备纤维素微纤丝薄膜的方法

Similar Documents

Publication Publication Date Title
Wang et al. Highly stretchable, transparent, and conductive wood fabricated by in situ photopolymerization with polymerizable deep eutectic solvents
Ye et al. Ultrahigh tough, super clear, and highly anisotropic nanofiber-structured regenerated cellulose films
Kargarzadeh et al. Advances in cellulose nanomaterials
Hou et al. Approaching theoretical haze of highly transparent all-cellulose composite films
Pang et al. Molecular‐scale design of cellulose‐based functional materials for flexible electronic devices
Zhu et al. Extreme light management in mesoporous wood cellulose paper for optoelectronics
Zhu et al. Transparent paper: fabrications, properties, and device applications
Ifuku et al. Fibrillation of dried chitin into 10–20 nm nanofibers by a simple grinding method under acidic conditions
Li et al. A facile approach for the fabrication of highly stable superhydrophobic cotton fabric with multi-walled carbon nanotubes− azide polymer composites
Fang et al. Development, application and commercialization of transparent paper
CN103015256B (zh) 一种碳纳米纤维纸及其制备方法
Song et al. Sustainable and superhydrophobic lignocellulose-based transparent films with efficient light management and self-cleaning
CN107325331A (zh) 一种柔性显示器基质材料制备方法
Li et al. UV-blocking, transparent and hazy cellulose nanopaper with superior strength based on varied components of poplar mechanical pulp
CN108795018B (zh) 一种聚氨酯/纤维素多功能形状记忆高分子材料的制备方法
Santmarti et al. Transparent poly (methyl methacrylate) composites based on bacterial cellulose nanofiber networks with improved fracture resistance and impact strength
R. Rebelo et al. Carbon nanotube-reinforced poly (4-vinylaniline)/polyaniline bilayer-grafted bacterial cellulose for bioelectronic applications
Rao et al. Rapid processing of holocellulose-based nanopaper toward an electrode material
Brooke et al. Nanocellulose and PEDOT: PSS composites and their applications
Zhang et al. Separation cellulose nanocrystals from microcrystalline cellulose using hydrated deep eutectic solvent and high shear force
Ou et al. Highly mechanical nanostructured aramid-composites with gradient structures
Qin et al. Preparing photocatalytic paper with improved catalytic activity by in situ loading poly-dopamine on cellulose fibre
Huang et al. Construction of HLNPs/Fe3O4 based superhydrophobic coating with excellent abrasion resistance, UV resistance, flame retardation and oil absorbency
Kiper et al. Electrospun cellulose nanofibers from toilet paper
Park et al. Green nanoarchitectonics for next generation electronics devices: Patterning of conductive nanowires on regenerated cellulose substrates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171107