CN107314759B - 基于无人机多角度拍摄的麦田产量估计方法与装置 - Google Patents

基于无人机多角度拍摄的麦田产量估计方法与装置 Download PDF

Info

Publication number
CN107314759B
CN107314759B CN201710411580.7A CN201710411580A CN107314759B CN 107314759 B CN107314759 B CN 107314759B CN 201710411580 A CN201710411580 A CN 201710411580A CN 107314759 B CN107314759 B CN 107314759B
Authority
CN
China
Prior art keywords
wheat
ears
aerial vehicle
unmanned aerial
whole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710411580.7A
Other languages
English (en)
Other versions
CN107314759A (zh
Inventor
张荣标
王欣
张业成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201710411580.7A priority Critical patent/CN107314759B/zh
Publication of CN107314759A publication Critical patent/CN107314759A/zh
Application granted granted Critical
Publication of CN107314759B publication Critical patent/CN107314759B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • H04N7/185Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source from a mobile camera, e.g. for remote control

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开一种基于无人机多角度拍摄的麦田产量估计方法与装置,地面取样遥控器遥控无人机飞行到麦田上方,控制照相机随机取样俯拍,控制无人机飞行到每个米尺所在的麦田的侧边侧拍,计算机处理每张俯拍取样点的图片,计算出整片麦田的麦穗平均宽度和平均密度,处理每张侧拍取样点的图片得到整片麦田的麦穗平均高度;对麦穗成熟时的一组麦穗进行人工标定,得到单位体积内的麦穗质量;计算出整片麦田内的单位面积麦穗总质量,再根据麦田的总面积估计出麦穗总质量。本发明借助灵活的无人机平台实现整片麦田的多点拍摄取样,再利用图片处理技术和相关计算得到与产量相关的重要参数,最后估算出整片麦田的产量,估产精准度高。

Description

基于无人机多角度拍摄的麦田产量估计方法与装置
技术领域
本发明涉及无人机技术以及麦田产量估计技术,具体是基于无人机拍摄的麦田产量估计方法与装置。
背景技术
目前,估计麦田产量方法有人工取样估计法和卫星遥感监测法,其中,人工取样估计法过于依赖人工,耗费大量的人力成本和时间成本,而且由于人工取样范围有限,会导致取样样本的代表性难以保证。采用卫星遥感监测时,因卫星、航空遥感的重访周期长、影像空间分辨率低、起飞条件要求高以及运营管理成本昂贵等因素制约,限制了农业遥感实时、连续监测的应用,同时,卫星遥感获取的影像资料远没有无人机拍摄的清晰,其取样的灵活性远不如无人机,且不能拍摄到麦田的侧面用于获取麦穗高度。
发明内容
本发明的目的是为解决现有麦田产量估计技术存在的问题,提出一种自动化程度高、估产精准度高的基于无人机多角度拍摄的麦田产量估计方法与装置,基于麦田面积大、麦子生长较整齐等特点,采用最简单的无人机多点拍摄麦田取样。
本发明基于无人机多角度拍摄的麦田产量估计装置采用的技术方案是:由无人机、地面取样遥控器和若干个米尺组成,麦田的一侧边缘处竖直安放若干个米尺,地面取样遥控器控制无人机飞行;地面取样遥控器包括单片机和与其连接的第一无线收发器,无人机上设有超声波测距传感器、照相机、舵机和机载ARM控制器,舵机带动照相机转动,ARM控制器分别连接超声波测距传感器、照相机、舵机和第二无线收发器,第二无线收发器和第一无线收发器之间通过天线传送信号,地面取样遥控器控制无人机飞行。
所述基于无人机多角度拍摄的麦田产量估计装置的估计方法采用的技术方案是包括以下步骤:
A、在麦穗抽穗之后和成熟之前的时间段内,地面取样遥控器遥控无人机飞行到麦田上方,控制照相机随机取样俯拍并控制超声波测距传感器测量无人机距离麦田的高度,将高度信息保存在ARM控制器中;
B、俯拍取样结束后,地面取样遥控器遥控无人机飞行到每个米尺所在的麦田的侧边,控制照相机侧拍,拍下每个米尺和麦田的侧面同框的照片;
C、将照相机拍摄的照片和ARM控制器存储的高度信息输入计算机中,计算机处理每张俯拍取样点的图片,计算出取样点对应的实际面积以及整片麦田的麦穗平均宽度和平均密度;处理每张侧拍取样点的图片,得到整片麦田的麦穗平均高度;
D、对麦穗成熟时的一组麦穗进行人工标定,得到单位体积内的麦穗质量;
E、根据整片麦田的麦穗平均宽度、平均高度、平均密度和单位体积内的麦穗质量,计算出整片麦田内的单位面积麦穗总质量,再根据麦田的总面积估计出麦穗总质量。
本发明与已有技术相比,具有如下优点:
1、本发明的装置自动化程度高。相对于人工取样估计麦田产量的方法,本发明采用无人机,充分发挥无人机随机取样的优势,利用无人机完成对麦田的多角度拍摄取样。
2、本发明的装置估产精准度高。本发明中无人机的拍摄设备利用舵机使得照相机的俯仰角度能够调节,实现对麦田侧面的拍摄取样,同时利用米尺并充分发挥图像处理技术的优势,得到图片中每个像素所代表的实际长度,从而精确地换算出麦穗的平均高度。本发明使用超声测距传感器,利用超声波回波测距原理测出无人机飞行的高度,再通过此高度计算出取样点的实际面积,得到图片中每个像素所代表的实际长度,从而精确地换算出麦穗的平均宽度和麦田密度。
3、本发明该方法可用于大面积的麦田产量估计,借助灵活的无人机平台实现整片麦田的多点拍摄取样,再利用图片处理技术和相关计算得到与产量相关的重要参数,最后估算出整片麦田的产量。
附图说明
图1是本发明基于无人机多角度拍摄的麦田产量估计装置中的无人机俯拍状态图;
图2是图1中的无人机侧拍状态图;
图3是图1中的无人机底部结构放大示意图;
图4是控制无人机飞行的地面取样遥控器的结构组成图;
图5是图3中机载ARM控制器的结构组成图;
图6是计算取样点实际面积的原理图;
图7是图6中的实际面积的俯视图;
图8是图2中单个麦穗的几何尺寸标注图。
图中:1.超声波测距传感器;2.机载ARM控制器;3.无人机底板;4.固定柱;5.舵机;6.轴套;7.转板;8.照相机;9.固定架;10.无人机;11.取样点;12.麦田;13.米尺;14.麦穗。
具体实施方式
参见图1和图2,本发明基于无人机多角度拍摄的麦田产量估计装置由无人机10、若干个米尺13、地面取样遥控器组成。在麦田12的一侧边缘处竖直安放若干个米尺13,地面取样遥控器控制无人机10飞行至麦田12中的某一取样点11的正上方进行俯拍,如图1,或者地面取样遥控器控制无人机10飞行至安放了若干个米尺13的麦田12的侧边进行侧拍,侧拍到麦田12侧面的麦穗14以及米尺13,如图2。
参见图3的无人机10,无人机10底部有一块底板3,底板3的底面上固定安装超声波测距传感器1和机载ARM控制器2,底板3的底面上还固定连接两个固定柱4的上端,两个固定柱4的下端各连接一个轴套6,两个轴套6之间连接转板7,转板7的一端同轴连接舵机5的输出轴。在转板7的正中间通过固定架9牢固地连接照相机8,照相机8用于对麦田12拍摄以获取取样图片,将照相机8牢固地固定在转板7上可避免因航拍时抖动而导致图片模糊。舵机5转动时,带动转板7转动,从而使照相机8转动。照相机8的初始摆放位置是正对着大地,和大地平行,当舵机5正向转动
Figure BDA0001312538710000031
角度时,舵机5带动转板7旋转
Figure BDA0001312538710000032
度,即照相机8也旋转
Figure BDA0001312538710000034
度。当舵机5再反方向转动
Figure BDA0001312538710000033
角度时,照相机8回到初始摆放角度,如此调节照相机8航拍时的俯仰角度,用于实现对麦田12侧面的拍摄。
超声测距传感器1用于测量无人机10取样时的飞行高度。超声波测距传感器1内设有超声波发射器和超声波接收器,利用超声波回波测距原理,测量无人机10飞行时距离麦田12的垂直高度。当需测量无人机10飞行时距离麦田的垂直高度时,超声波发射器向垂直方向发射超声波,在发射时刻的同时计数器开始计时,超声波在空气中传播,途中碰到麦田12阻挡就立即反射回来,超声波接收器收到反射回来的超声波就立即停止计时。由于超声波在空气中的速度已知,根据计时器记录的时间,即得到无人机10飞行时距离麦田12的垂直高度。
参见图4所示的地面取样遥控器结构,地面取样遥控器包括单片机和第一无线收发器,单片机通过接口驱动电路连接第一无线收发器,单片机还通过不同的两个输入接口电路连接不同的两个按键,这两个按键分别是俯拍取样按键和侧拍取样按键,若需俯拍采样时则按下俯拍取样按钮,若需侧拍采样时则按下侧拍取样按钮,这些信号传送给单片机,单片机再发送命令给第一无线收发器,第一无线收发器通过天线再发送无线信号给无人机10上的机载ARM控制器2。
参见图5,机载ARM控制器2包括ARM控制器和无线收发器,ARM控制器分别通过第二接口驱动电路连接超声波测距传感器1中的超声波发射器、通过第二输入接口电路连接超声波测距传感器1中的超声波接收器,通过图像采集接口连接照相机8、通过第一接口驱动电路连接舵机5、通过第一输入接口电路连接第二无线收发器。第二无线收发器和第一无线收发器之间通过天线传送信号,第二无线收发器通过天线接收地面取样遥控器和第一无线收发器发出的无线控制信号,并将命令传送入ARM控制器,之后ARM控制器再发送命令控制舵机5和超声波测距传感器1中的超声波发射器。当按下地面取样遥控器的俯拍取样按钮时,无人机上的第二无线收发器通过天线接收地面取样遥控器发出的无线俯拍取样控制信号,并将命令传送入ARM控制器,之后ARM控制器再发送命令控制舵机5的转动使得照相机8处于俯拍状态并控制照相机8拍摄图片。同时,控制超声波测距传感器1中的超声波发射器发射超声波且ARM控制器中的计时器开始计时。当超声波测距传感器1中的超声波接收器接收到超声波时,将信号传送给ARM控制器,ARM控制器中的计时器停止计时并计算出此次无人机10飞行时距离麦田12的高度。当按下地面取样遥控器的侧拍取样按钮时,无人机10上的第二无线收发器通过天线接收地面取样遥控器发出的无线侧拍取样控制信号,并将命令传送入ARM控制器,之后ARM控制器再发送命令控制舵机5的转动以调整照相机8的摄像头的俯仰角度,使得照相机8处于侧拍状态,并控制照相机8的拍摄图片。
参见图6和图7所示,P点处代表无人机10俯拍取样时的位置,H代表无人机10上的超声测距传感器1测得无人机10飞行时距离麦田12的高度,α代表照相机8上的摄像头的成像角度,实际俯拍时获取的图片为图6中的一个矩形图片。参见图7中矩形图片的俯视图,图7中,以O为圆心、r为半径的虚线圆是摄像头的圆形镜头得到的成像结果,但由于照相机8的感光元件是方形,所以矩形图片中的矩形的对角线便是虚线圆的直径,对角线长度是2r。根据无人机10飞行时距离麦田12的高度即O点和P点两点的距离H,照相机8上的摄像头的成像角度为α,可得
Figure BDA0001312538710000041
矩形面积即为无人机10俯拍的取样点大小,用S代表矩形取样点的实际面积。图片中矩形的长为a,宽为b,设矩形的对角线与矩形的长边所成的角度为β,根据三角函数公式,可得
Figure BDA0001312538710000042
Figure BDA0001312538710000043
已知矩形的对角线长度为2r,可得矩形的长a为2rcosβ,矩形的宽b为2rsinβ,则矩形的面积S即取样点的实际面积S为:
Figure BDA0001312538710000044
Figure BDA0001312538710000051
代入上式,最终得到取样点的实际面积S为:
Figure BDA0001312538710000052
参见图1-8,本发明基于无人机多角度拍摄的麦田产量估计装置的整体估计过程如下:
参见图1,在麦穗14抽穗之后和成熟之前的时间段内,用地面取样遥控器遥控无人机10起飞并飞行到麦田12中央某一处的上方。按下地面取样遥控器上的俯拍取样按钮,地面取样遥控器上的第一无线收发器发射无线俯拍取样控制信号。无人机10上的第二无线收发器通过天线接收此控制信号,并将命令传送入ARM控制器,之后ARM控制器再发送命令控制舵机5的转动使得照相机8处于俯拍状态,ARM控制器控制照相机8拍摄图片,同时控制超声波测距传感器1中的超声波发射器发射超声波且ARM控制器中的计时器开始计时。当超声波测距传感器1中的超声波接收到超声波时,ARM控制器中的计时器停止计时并计算出此次无人机10飞行时距离麦田12的高度H,高度H保存在ARM控制器中。按照同样的方法,遥控无人机10飞行至别处随机取样俯拍,共取样M次,随机选取的M个取样点11记为A1、A2…AM,在M个取样点11取样时无人机10飞行时距离麦田12的对应高度为H1、H2…HM
参见图2,俯拍取样结束后,地面取样遥控器遥控无人机10飞行到米尺13所在的麦田12的侧边一边缘处,按下地面取样遥控器上的侧拍取样按钮,地面取样遥控器上的无线收发器发射无线取样控制信号。无人机10上的无线收发器通过天线接收此控制信号,并将命令传送入ARM控制器,之后ARM控制器再发送命令控制舵机5的转动使得照相机8处于侧拍状态,并控制照相机8拍下麦田12的侧面和米尺13同框的照片。按照同样方法,遥控无人机10飞行到米尺13所在的麦田12的侧边边缘另一处进行取样拍摄,如此循环取样拍摄,拍下每个米尺13和麦田12的侧面同框的照片,共取样X次,X个取样点记为B1、B2…BX
地面取样遥控器遥控无人机10降落至地面,将照相机8拍摄的照片和ARM控制器存储的高度H参数信息输入计算机中,计算机利用图像处理技术先对第一张俯拍第一个取样点A1的图片进行处理,获取此图片的总像素Q1。根据ARM控制器存储的超声测距传感器1测到的无人机10取样时距离麦田12的对应高度H1,先采用公式(1)计算出第一个取样点A1对应的实际面积S1。根据取样点A1的实际面积S1和图片的总像素Q1,可以得到此图片中每个像素代表的实际长度l1为:
Figure BDA0001312538710000061
参见图8,利用图像处理技术处理取样点A1的图片,得到每个麦穗14在宽度d方向上占m1个像素,则此图片上麦穗14的实际宽度d1为:
Figure BDA0001312538710000062
利用图像处理技术处理取样点A1的图片,获取此图片中的麦穗总株数n1,通过公式(4)计算出此取样点中单位面积内的麦穗株数,即计算出麦穗的密度ρ1为:
Figure BDA0001312538710000063
同理,依次处理取样点A2至AM图片,分别得到各取样点的麦穗14的宽度分别为d2、d3…dM,并得到各取样点的麦穗的密度分别为ρ2、ρ3…ρM,如图8所示,则整片麦田的麦穗平均宽度d为:
Figure BDA0001312538710000064
则整片麦田12中麦穗14的密度ρ(即单位面积内麦穗的株数)为:
Figure BDA0001312538710000065
这样,通过无人机10的俯拍获取相关参数,计算出了整片麦田中的麦穗14的平均宽度d和密度ρ。
再次利用图像处理技术对B1、B2…BX这X个取样点获得的侧拍麦田12的照片进行处理。先获取第一个取样点B1的图片,此图片中的米尺13在高度方向上占t1个像素,已知米尺13的实际高度为Y,则此图片中每个像素代表的实际长度i1为:
Figure BDA0001312538710000071
再利用图片处理技术获取此图片中平均每个麦穗14(不含针芒)在高度方向上占j1个像素,则此图片上麦穗14的高度h1为:
Figure BDA0001312538710000072
同理,依次处理在米尺取样点B2至取样点BX处的侧拍麦田12的图片,分别得到各图片中的麦穗14的高度分别为h2、h3…hX,如图8所示,则整片麦田12的麦穗平均高度h为:
Figure BDA0001312538710000073
这样,通过照相机8侧拍,获取到相关参数,根据米尺13和麦田12侧面同框的照片和已知的米尺13的实际高度,得到每个像素所代表的实际长度,再利用图像处理技术得到取样图片中平均每个麦穗13的高度所占的像素数,换算出麦穗14的平均高度。并计算得到了麦穗14的平均高度h。
对成熟时的一组麦穗进行人工标定,设此组麦穗中共有D株麦穗,用天平称出此组麦穗的质量为g。测量出此组麦穗的平均宽度和麦穗的平均高度分别为w和z,可将每株麦穗都看作是一个底面直径为w、高度为z的圆柱体,则每株麦穗的体积v可表示为
Figure BDA0001312538710000074
设k代表单位体积内的麦穗质量,由已知的此组麦穗的重量g、麦穗株数D、每株麦穗的体积v,可得到单位体积内的麦穗质量
Figure BDA0001312538710000075
根据整片麦田12中麦穗14的平均宽度d、平均高度h和麦穗的密度ρ,可以得到单位面积麦穗体积
Figure BDA0001312538710000076
再根据单位体积内的麦穗质量k,可以得到整片麦田12内的单位面积麦穗总质量G为:
Figure BDA0001312538710000081
再根据麦田12的总面积E,则可估计出这片麦田12的麦穗总质量ζ为:
Figure BDA0001312538710000082

Claims (6)

1.一种基于无人机多角度拍摄的麦田产量估计方法,采用基于无人机多角度拍摄的麦田产量估计装置,该麦田产量估计装置由无人机(10)、地面取样遥控器和若干个米尺(13)组成,麦田的一侧边缘处竖直安放若干个米尺(13),地面取样遥控器控制无人机(10)飞行;地面取样遥控器包括单片机和与其连接的第一无线收发器,无人机(10)上设有超声波测距传感器(1)、照相机(8)、舵机(5)和机载ARM控制器(2),舵机(5)带动照相机(8)转动,ARM控制器分别连接超声波测距传感器(1)、照相机(8)、舵机(5)和第二无线收发器,第二无线收发器和第一无线收发器之间通过天线传送信号,地面取样遥控器控制无人机(10)飞行,其特征是包括以下步骤:
A、在麦穗抽穗之后和成熟之前的时间段内,地面取样遥控器遥控无人机(10)飞行到麦田上方,控制照相机(8)随机取样俯拍并控制超声波测距传感器(1)测量无人机(10)距离麦田的高度,将高度信息保存在ARM控制器中;
B、俯拍取样结束后,地面取样遥控器遥控无人机(10)飞行到每个米尺(13)所在的麦田的侧边,控制照相机(8)侧拍,拍下每个米尺(13)和麦田的侧面同框的照片;
C、将照相机(8)拍摄的照片和ARM控制器存储的高度信息输入计算机中,计算机处理每张俯拍取样点的图片,计算出取样点对应的实际面积以及整片麦田的麦穗平均宽度和整片麦田的麦穗平均密度;处理每张侧拍取样点的图片,得到整片麦田的麦穗平均高度;
D、对麦穗成熟时的一组麦穗进行人工标定,得到单位体积内的麦穗质量;
E、根据整片麦田的麦穗平均宽度、整片麦田的麦穗平均高度、整片麦田的麦穗平均密度和单位体积内的麦穗质量,计算出整片麦田内的单位面积麦穗总质量,再根据麦田的总面积估计出麦穗总质量。
2.根据权利要求1所述的估计方法,其特征是:步骤C中,俯拍时获取的图片为一个矩形图片,根据无人机(10)距离麦田的高度H,计算出取样点对应的实际面积
Figure FDA0002178809110000011
α为照相机(8)上的摄像头的成像角度,图片中矩形的长为a,b为矩形的宽。
3.根据权利要求2所述的估计方法,其特征是:计算机处理每张俯拍取样点的图片时,先获取俯拍第一个取样点A1的图片总像素Q1、取样点对应的实际面积S1、每个麦穗在宽度方向上占m1个像素、麦穗总株数n1,然后计算出此图片中每个像素的实际长度
Figure FDA0002178809110000021
麦穗的实际平均宽度d1=m1×l1,麦穗的密度
Figure FDA0002178809110000022
再处理其他的图片,分别得到各取样点的麦穗的的实际平均宽度d1和麦穗的密度ρ1,最后计算出整片麦田的麦穗平均宽度d和整片麦田的麦穗平均密度ρ。
4.根据权利要求1所述的估计方法,其特征是:步骤C中,计算机处理每张侧拍取样点的图片时,先获取侧拍第一个取样点B1的图片中的米尺(13)在高度方向上占t1个像素、平均每个麦穗在高度方向上占j1个像素,然后计算出每个像素代表的实际长度
Figure FDA0002178809110000023
此图片上麦穗的高度h1=i1×j1,Y为米尺(13)的实际高度;再处理其他的侧拍图片,分别得到各图片中的麦穗的高度,最后计算出整片麦田的麦穗平均高度h。
5.根据权利要求1所述的估计方法,其特征是:步骤D中,人工标定时,称出一组麦穗的质量g,此组麦穗中共有D株麦穗,测量出此组麦穗的平均宽度和平均高度分别为w和z,计算出单位体积内的麦穗质量
Figure FDA0002178809110000024
6.根据权利要求1所述的估计方法,其特征是:步骤E中,先计算出单位面积麦穗体积
Figure FDA0002178809110000025
再计算出整片麦田内的单位面积麦穗总质量G=k×V,最后计算出麦穗总质量ζ=G×E,E是麦田的总面积,ρ是整片麦田的麦穗平均密度,h是整片麦田的麦穗平均高度,d是整片麦田的麦穗平均宽度,k是单位体积内的麦穗质量。
CN201710411580.7A 2017-06-05 2017-06-05 基于无人机多角度拍摄的麦田产量估计方法与装置 Active CN107314759B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710411580.7A CN107314759B (zh) 2017-06-05 2017-06-05 基于无人机多角度拍摄的麦田产量估计方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710411580.7A CN107314759B (zh) 2017-06-05 2017-06-05 基于无人机多角度拍摄的麦田产量估计方法与装置

Publications (2)

Publication Number Publication Date
CN107314759A CN107314759A (zh) 2017-11-03
CN107314759B true CN107314759B (zh) 2020-03-31

Family

ID=60181637

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710411580.7A Active CN107314759B (zh) 2017-06-05 2017-06-05 基于无人机多角度拍摄的麦田产量估计方法与装置

Country Status (1)

Country Link
CN (1) CN107314759B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10852427B2 (en) * 2017-06-30 2020-12-01 Gopro, Inc. Ultrasonic ranging state management for unmanned aerial vehicles
CN108423187A (zh) * 2018-01-31 2018-08-21 芜湖市海联机械设备有限公司 一种公安消防执法用航拍采集无人机
CN110779497A (zh) * 2019-11-07 2020-02-11 航天信德智图(北京)科技有限公司 一种天地空一体化小麦产量评估方法
CN110927082A (zh) * 2019-11-25 2020-03-27 北京大学 一种基于无人机成像高光谱遥感的冬小麦产量预测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102988A (zh) * 2009-12-22 2011-06-22 中国农业科学院农业环境与可持续发展研究所 农作物产量信息实时测量方法、系统及装置
CN104697501A (zh) * 2015-03-08 2015-06-10 无锡桑尼安科技有限公司 苹果园产量测量系统
CN106768081A (zh) * 2017-02-28 2017-05-31 河源弘稼农业科技有限公司 一种判断果蔬生长状态的方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102980510B (zh) * 2012-08-07 2016-01-13 孟繁志 一种激光光尺影像测树装置及其测树方法
CN103033151B (zh) * 2012-12-24 2015-03-25 南京信息工程大学 一种基于激光和图像的叶面积测量方法
CN204137328U (zh) * 2014-08-08 2015-02-04 马鞍山市靓马航空科技有限公司 一种微型无人机快速拍摄比例尺正射影图的云台机构
CN205203414U (zh) * 2015-12-24 2016-05-04 中国农业科学院农业信息研究所 一种低空图像采集装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102988A (zh) * 2009-12-22 2011-06-22 中国农业科学院农业环境与可持续发展研究所 农作物产量信息实时测量方法、系统及装置
CN104697501A (zh) * 2015-03-08 2015-06-10 无锡桑尼安科技有限公司 苹果园产量测量系统
CN106768081A (zh) * 2017-02-28 2017-05-31 河源弘稼农业科技有限公司 一种判断果蔬生长状态的方法及系统

Also Published As

Publication number Publication date
CN107314759A (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
CN107314759B (zh) 基于无人机多角度拍摄的麦田产量估计方法与装置
US10771699B2 (en) Systems and methods for rolling shutter correction
CN108680143A (zh) 基于远程测距的目标定位方法、装置及无人机
KR101223242B1 (ko) 지형정보 변화에 따른 영상 이미지의 공간영상 도화 시스템
CN206147927U (zh) 无人机的遥控器结构
KR101881121B1 (ko) 거리를 측량하는 드론 및 드론의 제어 방법
WO2017024673A1 (zh) 一种基于射频和双目视觉的目标定位系统及方法
KR101308744B1 (ko) 항공촬영 영상의 지형대비 기준점 합성형 공간영상도화 시스템
US20170078553A1 (en) Method of determining a duration of exposure of a camera on board a drone, and associated drone
US10708572B2 (en) Photogrammetric system and photogrammetric method
CN107894780A (zh) 一种多旋翼无人机高度地理测绘系统
WO2017084240A1 (zh) 一种目标定位跟踪系统、装置及定位跟踪方法
WO2019080046A1 (zh) 惯性测量单元的漂移标定方法、设备及无人飞行器
JPH11230745A (ja) 高度計測装置
CN105959630B (zh) 基于远距离光电摄像的飞机姿态近距离观测系统与方法
CN105045276A (zh) 无人机飞行控制方法及装置
KR20120082728A (ko) 공중추적영상촬영을 위한 무인헬리콥터 탑재 카메라 짐벌의 시선각 연동 장치
WO2018180954A1 (ja) 画像処理装置、生育調査画像作成システム及びプログラム
CN107770437A (zh) 无人机摄影摄像系统及其位移补偿机构
CN113916187B (zh) 基于无人机的基站天线下倾角测量方法、装置和系统
KR102391210B1 (ko) 드론 및 드론의 제어 방법
JP2000131063A (ja) 飛行体を用いた測量方法及びその装置
WO2019160778A1 (en) Image capturing system, method, and analysis of objects of interest
CN212254095U (zh) 一种国土规划用土地测绘装置
CN110989645A (zh) 一种基于复眼成像原理的目标空间姿态处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant