WO2017084240A1 - 一种目标定位跟踪系统、装置及定位跟踪方法 - Google Patents

一种目标定位跟踪系统、装置及定位跟踪方法 Download PDF

Info

Publication number
WO2017084240A1
WO2017084240A1 PCT/CN2016/079452 CN2016079452W WO2017084240A1 WO 2017084240 A1 WO2017084240 A1 WO 2017084240A1 CN 2016079452 W CN2016079452 W CN 2016079452W WO 2017084240 A1 WO2017084240 A1 WO 2017084240A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
radio frequency
target
frequency positioning
distance
Prior art date
Application number
PCT/CN2016/079452
Other languages
English (en)
French (fr)
Inventor
桂小琰
史宝祥
刘焕云
伍冬睿
Original Assignee
西安斯凯智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安斯凯智能科技有限公司 filed Critical 西安斯凯智能科技有限公司
Publication of WO2017084240A1 publication Critical patent/WO2017084240A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S2013/466Indirect determination of position data by Trilateration, i.e. two antennas or two sensors determine separately the distance to a target, whereby with the knowledge of the baseline length, i.e. the distance between the antennas or sensors, the position data of the target is determined

Definitions

  • the invention relates to the field of target location tracking, in particular to a precise positioning and tracking system based on radio frequency and monocular vision and a positioning and tracking method.
  • Target positioning and tracking technologies cover multiple directions including sensor technology, information fusion, image processing, computer vision, pattern recognition and artificial intelligence. Limited by the accuracy of target positioning, the accuracy of target tracking, etc., the drone industry adopts a cautious attitude towards the use of autonomous follow-up functions. Currently, most of them are equipped with a manual operation terminal for the drone, and the user manipulates the joystick. Way to complete the mission. This process of manually operating the drone will inevitably reduce the accuracy of the target positioning and the accuracy of the target tracking.
  • the present invention provides a target positioning and tracking device, including: a radio frequency positioning device, a core processing device, and a photographing device disposed on a flying device; wherein the radio frequency positioning device includes a first radio frequency positioning device and a second a radio frequency positioning device; the first radio frequency positioning device and the second radio frequency positioning device are capable of transceiving a radio signal with the target tag; and the core processing device respectively transmits the sum according to the first radio frequency positioning device and the second radio frequency positioning device Receiving the time of the relevant signals respectively, obtaining the transmission time of the respective signals in the air, respectively acquiring the distance between the first RF positioning device and the target marker and the second RF positioning device and the target a distance between the markers, and determining distance information and angle information of the target marker from the photographing device based on the acquired distance; the photographing device according to the distance information and the acquired by the core processing device The angle information adjusts the shooting angle and shoots the target.
  • the radio frequency positioning device includes a first radio frequency positioning device and a second a radio
  • the photographing device, the first radio frequency positioning device, the second radio frequency positioning device, and the target marker are in one plane.
  • the photographing device is disposed along a line with the first radio frequency positioning device and the second radio frequency positioning device.
  • the first radio frequency positioning device and the second radio frequency positioning device are disposed on both sides of the flying device.
  • the first radio frequency positioning device and the second radio frequency positioning device are arranged in an axisymmetric relationship with respect to the photographing device.
  • the first radio frequency positioning device and the second radio frequency positioning device respectively transmit a first interrogation signal and a second interrogation signal to the target tag, and receive a first response signal and a second from the target tag a response signal, wherein the first response signal is sent by the target tag to the first radio frequency positioning device based on the received first interrogation signal, and the second response signal is The target marker is sent to the second radio frequency positioning device based on the received second interrogation signal; the first radio frequency positioning device is capable of separately recording the first time and time of transmitting the first interrogation signal Receiving a second time at which the target marker transmits the first response signal and a third time at which the target marker receives the first interrogation signal and the target marker emitting the first response signal a fourth time; the second radio frequency positioning device is capable of recording a fifth time when the second interrogation signal is transmitted by itself and receiving the second response signal by the target tag And a seventh time at which the target marker receives the second interrogation signal and an eighth time at which the target marker
  • the first radio frequency positioning device and the second radio frequency positioning device are further capable of transmitting a third response signal and a fourth response signal to the target tag; the first radio frequency positioning device and the second radio frequency positioning device are further capable of Recording, respectively, the ninth time and the tenth time of the third response signal and the fourth response signal, transmitting the third response signal and the fourth response signal, and the target marker receiving the third response signal and An eleventh time and a twelfth time of the fourth response signal; wherein the core processing device further subtracts the ninth time from the difference between the eleventh time and the fourth time Obtaining a third time of the first radio frequency positioning device, and subtracting a difference between the twelfth time and the eighth time by the tenth time and the sixth time Obtaining a fourth transmission time of the second radio frequency positioning device, and acquiring the first radio frequency positioning device and the second radio frequency positioning device and the target tag based on the third transmission time and the fourth transmission time a third distance and a fourth distance; adding the first distance and the third distance
  • the core processing device determines a distance and an angle between the photographing device and the target marker by a triangular geometric relationship.
  • the first and second radio frequency positioning devices respectively have a first timing device and a second timing device, and the first timing device is capable of recording the first time, the second time, and the ninth time
  • the second timing device is capable of recording the fifth time, the sixth time, and the tenth time
  • the target marker has a third timing device
  • the third timing device is capable of recording the third Time, the fourth time, the seventh time, the eighth time, the eleventh time, and the twelfth time.
  • the method further includes: a ground control terminal; the ground control terminal capable of transmitting the set shooting distance information of the photographing device and the target marker to the flying device, and being capable of receiving the shooting by the flying device Target image.
  • the core processing device further comprises position adjustment means capable of determining distance and angle information between the camera and the target marker determined by the core processing device and by the ground control terminal The set shooting distance adjusts the position of the flying device.
  • Another aspect of the present invention also provides a target positioning and tracking method, comprising: a target positioning step of using a first radio frequency positioning device and a second radio frequency positioning device disposed on a flight device respectively with a target marker disposed on a target Receiving and receiving radio signals, respectively acquiring transmission times of respective corresponding signals in the air according to respective times of transmitting and receiving signals, thereby respectively acquiring distances between the first radio frequency positioning device and the target tag and the first a distance between the radio frequency positioning device and the target marker, and determining distance information and angle information of the photographing device of the flying device and the target marker based on the acquired distance; target tracking step, the photographing The device tracks and photographs the target according to the distance information acquired in the target positioning step and the angle information.
  • the target positioning step comprises: the first radio frequency positioning device transmitting a first interrogation signal to the target tag; recording a first time of transmitting the first interrogation signal; the second radio frequency positioning device The target marker transmits a second interrogation signal; recording a fifth time at which the second interrogation signal is transmitted; receiving a first response signal from the target marker, the target marker receiving the first interrogation signal a third time and a fourth time at which the target marker transmits the first response signal, and recording a second time when the first response signal is received, and the first target signal receiving the first interrogation signal a third time and a fourth time at which the target marker transmits the first response signal; receiving a second response signal from the target marker, a seventh time sum of the target marker receiving the second interrogation signal An eighth time at which the target marker transmits the second response signal; a sixth time at which the second response signal is received is recorded, and the target marker receives the second query a seventh time of the number and an eighth time at which the target marker transmits the second
  • the target positioning step further comprises: the first radio frequency positioning device transmitting a third response signal to the target, and recording a ninth time for transmitting the third response signal; the second radio frequency positioning device Transmitting, by the target, a fourth response signal, and recording a tenth time for transmitting the fourth response signal; receiving an eleventh time from the target marker for the third response signal received by the target marker a twelfth time of the fourth response signal; obtaining the first radio frequency positioning unit by subtracting the difference between the eleventh time and the fourth time by the difference between the ninth time and the second time Transmitting a third time based on the third transmission time and obtaining a third distance between the first radio frequency positioning device and the target marker; by subtracting the difference between the twelfth time and the eighth time And obtaining, by the difference between the tenth time and the sixth time, a fourth transmission time of the second radio frequency positioning device, and acquiring, between the second radio frequency positioning device and the target tag, based on the fourth transmission time Four distance Adding the first distance
  • the distance between the first radio frequency positioning device and the second radio frequency positioning device and the distance between the first radio frequency positioning device and the second radio frequency positioning device is determined by using a triangular geometric relationship. A distance and an angle between the photographing device and the target marker.
  • the method further includes: a ground control step of presetting the shooting distance information between the photographing device of the flying device and the target marker.
  • the target tracking step further includes a position adjustment step, according to distance information and angle information between the photographing device and the target marker determined in the target positioning step, and a preset between the photographing device and the target marker The distance information is taken to adjust the position of the flying device.
  • the present invention also provides a target positioning and tracking system, including: a radio frequency positioning unit, a core processing module, and a photographing module; wherein the radio frequency positioning unit includes a first radio frequency positioning unit and a second radio frequency positioning unit; The unit and the second radio frequency positioning unit are respectively capable of transceiving a radio signal with the target tag module; the core processing module acquires the transmission time of the relevant signal in the air according to the time when the radio frequency positioning unit transmits and receives the relevant signal, The distance between the first RF positioning device and the target marker and the distance between the second RF positioning device and the target marker are respectively obtained, and the distance information between the target marker and the imaging device is determined based on the acquired distance. And the angle information; the shooting module adjusts the shooting angle according to the distance information and the angle information acquired by the core processing module, and captures the target.
  • the radio frequency positioning unit includes a first radio frequency positioning unit and a second radio frequency positioning unit
  • the unit and the second radio frequency positioning unit are respectively capable of transceiving a radio signal
  • the first radio frequency positioning unit and the second radio frequency positioning unit respectively transmit a first interrogation signal and a second interrogation signal to the target tag module, and receive a first response signal and a second from the target tag module.
  • Response letter The first response signal is sent by the target tagging module to the first radio frequency positioning unit based on the received first interrogation signal, and the second response signal is the target
  • the marking module is sent to the second radio frequency positioning unit based on the received second interrogation signal;
  • the first radio frequency positioning unit is capable of separately recording the first time and the self transmitting the first interrogation signal a second time when the target tagging module transmits the first response signal, a third time when the target tagging module receives the first interrogation signal, and a third time that the target tagging module sends the first response signal Four time;
  • the second radio frequency positioning unit is capable of recording a fifth time when the second interrogation signal is transmitted by itself and a sixth time of receiving the second response signal by the target tag module, and the target
  • the first radio frequency positioning unit and the second radio frequency positioning unit are further configured to send a third response signal and a fourth response signal to the target tagging module; the first radio frequency positioning unit and the second radio frequency positioning unit are further capable of Recording, respectively, the ninth time and the tenth time of the third response signal and the fourth response signal, transmitting the third response signal and the fourth response signal, and the target tagging module receiving the third response signal and An eleventh time and a twelfth time of the fourth response signal; wherein the core processing module further subtracts the ninth time from the difference between the eleventh time and the fourth time Obtaining a third transmission time of the first radio frequency positioning unit, and subtracting a difference between the twelfth time and the eighth time by the tenth time and the sixth time Obtaining a fourth transmission time of the second radio frequency positioning unit, and acquiring the first radio frequency positioning device and the second radio frequency positioning device and the MPU respectively according to the third transmission time and the fourth transmission time a third distance and a fourth distance between the markers
  • the core processing module determines a distance and an angle between the photographing device and the target marker by a triangular geometric relationship.
  • the method further includes: a ground control module; the ground control module capable of transmitting the set shooting distance information of the photographing device and the target marker to the flying device, and being capable of receiving the photographing by the flying device Target image.
  • the core processing module further includes a position adjustment unit capable of determining distance and angle information between the photographing device and the target marker determined by the core processing module and by the ground control module The set shooting distance adjusts the position of the flying device.
  • two radio frequency positioning devices are used, and the two radio frequency positioning devices are capable of respectively determining the distance between each of the radio frequency positioning units and the target tag, and calculating the imaging module and the target tag by using the triangular relationship.
  • the precise distance of the object to achieve precise positioning of the target.
  • the system compares the precise distance and the shooting distance of the target marker set by the ground control terminal with the shooting module, thereby achieving tracking shooting of the target marker. Thereby achieving accurate positioning and tracking of the target marker by the flying device.
  • FIG. 1 is a schematic structural diagram of a positioning and tracking device based on radio frequency and monocular vision according to the present invention
  • FIG. 2 is a schematic structural diagram of a positioning and tracking system based on radio frequency and monocular vision according to the present invention:
  • FIG. 3 is a schematic structural diagram of a radio frequency positioning unit according to the present invention.
  • FIG. 4 is a schematic structural view of a target marker according to the present invention.
  • FIG. 5 is a flowchart of a method for positioning and tracking based on radio frequency and monocular vision according to the present invention
  • FIG. 6 is a flowchart of a radio frequency positioning based positioning method according to the present invention.
  • FIG. 7 is a schematic diagram of distance measurement of a target positioning and tracking method according to the present invention.
  • the positioning and tracking device includes a flight device 10, a ground control terminal 20, and a target marker 30.
  • the flight device 10 is connected to the ground control terminal 20 and the target tag 30, for example, by wireless communication, and performs data transmission.
  • the ground control terminal 20 and the units and modules inside the flight device 10 are also connected by communication, for example, through a coaxial cable, a bus or a serial port, and can perform data transmission.
  • the flying device 10 has a target tracking and positioning function, preferably the flying device 10 is a drone, and the flying device 10 is provided with two radio frequency positioning devices 11 and 11 ′ at different positions, an image transmitting device 12 , The core processing device 13, the imaging device 14, and the data receiving device 15. Wherein the radio frequency positioning devices 11 and 11' are located The flight devices are front and respectively located at both sides of the camera 14 of the flight device. The radio frequency positioning devices 11 and 11', the imaging device 14, and the target marker 30 are in one plane. Preferably, the two radio frequency positioning devices 11 and 11' are disposed in line with the photographing device 14. More preferably, the two radio frequency positioning devices 11 and 11' are symmetrically distributed with respect to the axis of the camera 14.
  • the radio frequency positioning device 11/11' is capable of transmitting a radio signal to a target tag 30 disposed on a target to be tracked and receiving a response thereof.
  • the radio frequency positioning devices 11 and 11' are UWB signal transceiving devices capable of The UWB signal is transmitted or received; the UWB signal is an ultra-wideband signal, and has the advantages of multi-channel, high bandwidth, low power, and the like, and operates from 3.1 GHz to 10.6 GHz.
  • the core processing device 13 is capable of calculating the distance and angle information of the target marker 30 from the camera 14 according to the time when the radio signal is transmitted in the air; and the core processing device 13 can also process the image captured by the camera 14 The processed image information is transmitted from the image transmitting device 12 to the ground control terminal 20.
  • the photographing device 14 is preferably a monocular camera, and the orientation and viewing angle of the monocular camera can be adjusted to perform image capturing.
  • the ground control terminal 20 can be located on the ground and controlled by an operator.
  • the ground control terminal 20 includes an image receiving device 21, an image capturing card 22, a control device 23, and a data transmitting device 24, and the image receiving device 21 receives image information transmitted by the image transmitting device 12 of the flying device, the image capturing card
  • the image signal received by the image receiving device 21 is collected in the control device 23, and stored in a data file on a hard disk (not shown).
  • the control device 23 can display the acquired image signal on a display (not shown); the operator can set the shooting distance of the target marker 30 and the imaging device 14 by the control device 23.
  • the data transmitting device 24 transmits the data information such as the shooting distance to the data receiving device 15 of the flying device 10, and transmits it to the core processing device 13 by the data receiving device 15.
  • the target marker 30 can be a radio frequency transceiver capable of receiving and responding to radio signals transmitted by the radio frequency positioning devices 11 and 11'; it is also capable of timing or storing received or transmitted signals.
  • each device in the structural schematic diagram of the radio frequency and monocular vision based tracking device in FIG. 1 is controlled by a corresponding control module or unit.
  • FIG. 2 is a schematic structural diagram of a positioning and tracking system based on radio frequency and monocular vision according to the embodiment.
  • the structure of the system includes a radio frequency positioning module 1, an image transmitting module 2, a core processing module 3, a photographing module 4, a data receiving module 5, an information processing unit 31, a position adjusting unit 32, and an image processing unit 33.
  • the radio frequency positioning module 1, the image transmitting module 2, the core processing module 3, the photographing module 4, and the data receiving module 5 are located on the flying device 10; the information processing unit 31, the position adjusting unit 32, the image processing unit 33, and the storage unit 34 are located on the ground. Control terminal 20.
  • the radio frequency positioning module 1 controls the radio frequency positioning devices 11 and 11' to transmit or receive radio signals and sounds
  • the radio frequency positioning module 1 includes radio frequency positioning units a and a' and controls the radio frequency positioning devices 11 and 11', respectively.
  • FIG. 3 is a schematic structural diagram of a radio frequency positioning unit according to an embodiment of the present invention.
  • the two identical radio frequency positioning units a and a' respectively include a signal transmitting unit 111, a timing unit 112, a processing unit 113, a storage unit 114, and a signal receiving unit 115, between the units.
  • the mutual communication connection is made via the data bus 116.
  • the signal transmitting unit 111 is capable of controlling the operation of the radio frequency positioning device 11/11' to transmit a radio signal (i.e., interrogation signal) or a response signal and related data information, such as controlling the frequency, channel, clock, etc., of the transmitted radio signal.
  • a radio signal i.e., interrogation signal
  • a response signal and related data information such as controlling the frequency, channel, clock, etc.
  • the signal receiving unit 115 can control the radio frequency positioning device 11/11' to receive the radio signal transmitted by the target tag 30, and the processing unit 113 can perform the data information transmitted and received by the radio frequency positioning device 11/11'. Processing and identifying radio signals transmitted or received by a particular radio frequency positioning device based on the results of the processing.
  • the timing unit 112 has a function of controlling the timing of the radio frequency positioning device 11/11', and is capable of controlling the time information of the radio frequency positioning device 11/11' for transmitting a radio signal and receiving the response signal sent by the target tag 30. Time information is recorded.
  • the storage unit 114 can control the radio frequency positioning device 11/11' to store the recorded time information and other data or information, etc., while controlling the radio frequency positioning device 11/11' to transmit the recorded time information thereof to the core processing device 13. .
  • the core processing module 3 can control the core processing device 13 to calculate the photographing device 14 using time information of radio signals transmitted and received by the radio frequency positioning device 11/11' and related data information of transmitting and receiving radio signals.
  • the distance and angle information from the target marker 30, and the position 10 of the adjustment flight device and the photographing angle of the photographing device 14 are controlled according to the distance and angle information.
  • the core processing module 3 can control the core processing device 13 to receive the control information transmitted by the ground control terminal 20 through the data receiving device 15.
  • the core processing module 3 can also control the core processing device 13 to perform image processing on the acquired image information. Specifically, as shown in FIG.
  • the core processing module 3 includes an information processing unit 31, a position adjustment unit 32, an image processing unit 33, and a storage unit 34.
  • the information processing unit 31 controls the core processing device 13 to receive the time information of the radio frequency positioning device 11/11' transmitting the radio signal and other data information, and calculates the target marker 30 based on the time information of the received radio signal or the like.
  • the distance information and the angle information of the module 4 are taken, and the core processing means 13 is controlled by the storage unit 34 to store the above distance and angle information.
  • the position adjustment unit 32 controls the distance of the imaging device 14 of the adjustment flight device from the target marker 30 based on the distance information of the target marker 30 from the imaging module 4 and the imaging distance information transmitted by the ground control terminal 20 calculated by the information processing unit 31.
  • the position adjusting unit 32 can also control the photographing device 14 to adjust the photographing angle thereof according to the photographing angle information calculated by the information processing unit 31, so that the photographing device 14 can photograph a certain region.
  • the photographing module 4 can control the photographing device 14 to perform a photographing task to acquire a photographed image
  • the storage unit 34 controls the core processing device 13 to store the photographed image.
  • the image processing unit 33 is capable of The control core processing device 13 processes the image information captured by the imaging device 14 or the image information stored in the core processing device 13 to obtain corresponding target image information; and the image transmitting module 2 controls the image transmitting device 12 to process the processed target image information. Send to the ground control terminal 20.
  • the image receiving module 25 of the ground control terminal 20 controls the image receiving device 21 in FIG. 1 to receive image information transmitted by the flying device, and the image capturing module 26 controls the image capturing card 22 to collect the image receiving device 21 to receive the image receiving device 21 Image information and control to transmit the image information to the control device 23.
  • the ground control module 27 controls the control device 23 to display an image, and the operator can also set the shooting distance set by the control device 23.
  • the data transmitting module 28 controls the data transmitting device 24 to transmit the shooting distance to the flying device 10.
  • the radio frequency transceiver module 301 has a signal transceiving unit 41, a timing unit 42, a storage unit 43, and a processing unit 44, and each unit can be communicably connected through a data bus 45.
  • the signal transceiving unit 41 is capable of controlling the target tag 30 to receive a radio signal or other data information transmitted by the radio frequency positioning device 11/11', and controlling the target tag 30 to transmit a response signal, the response signal.
  • the UWB signal is an ultra-wideband signal, which has the advantages of multi-channel, high bandwidth, low power, etc., and operates from 3.1 GHz to 10.6 GHz).
  • the processing unit 44 is capable of processing the radio signal and data information received by the target marker 30 and controlling the target marker 30 to generate a response signal.
  • the timing unit 42 is capable of controlling the time information of the radio signal from the radio frequency positioning device 11/11' received by the target tag 30 and the time information of the transmitted response signal, while the timing unit 42
  • the target marker 30 can also be controlled to transmit the recorded time information to the flight device 10.
  • the storage unit 43 can control the target tag 30 to store time information recorded thereon as well as other data or information and the like.
  • FIG. 5 is a flowchart of a target positioning and tracking method based on radio frequency and monocular vision according to the embodiment.
  • the operator sets the flying height of the above-described flying device 10 and the shooting distance d 0 between the target marker 30 and the photographing device 14 on the flying device 10 through the control device 23 of the ground control terminal 20, and controls the data by the data transmitting module 28.
  • the transmitting device 24 transmits the shooting distance d 0 to the flying device 10 while the storage unit 34 of the flying device 10 controls to store the shooting distance d 0 in the core processing device 13, and then the operator controls the activation through the ground control terminal 20 Flight device 10 (step S1).
  • the radio frequency positioning module 1 of the flight device controls the radio frequency positioning device 11/11' to receive a signal
  • the information processing unit 31 of the core processing module 3 of the flight device processes the received signal and determines whether the received signal is new.
  • the positioning tracking information is the handshake signal transmitted by the target marker 30 (step S2). If it is determined that the received signal is not new positioning tracking information (NO in step S2), then returning to step S2 to continue receiving the signal and making a determination; if it is determined that the received signal is new positioning tracking information (YES in step S2),
  • the information processing unit 31 of the core processing module 3 controls the core processing device 13 to calculate the actual distance d and the angle ⁇ between the acquisition target marker 30 and the imaging device 14 (step S3).
  • the specific process of step S3 is as follows.
  • FIG. 6 is a flowchart of a positioning method based on radio frequency positioning in step S3; as shown in FIG. 6, the radio frequency positioning units a and a' respectively control radio frequency positioning devices 11 and 11' to transmit radio signals (Poll signals) with respective ID information,
  • the timing unit 112 of the radio frequency positioning units a and a' controls the radio frequency positioning devices 11 and 11' to record the times T a , T a of the radio frequency positioning devices 11 and 11 ′ respectively transmitting the above-mentioned Poll signals, and the storage unit 114 controls the radio frequency positioning.
  • the devices 11 and 11' store the times T a , T a , respectively (step S31).
  • the ID information may be a specific number of the radio frequency positioning devices 11 and 11' or specific code information that the target tag 30 can identify the radio frequency positioning devices 11 and 11'.
  • the Poll signals transmitted by the radio frequency positioning devices 11 and 11' are received by the target tag 30.
  • the processing unit 44 of the radio frequency transceiver module 301 determines whether the target tag 30 receives the Poll signal transmitted from the radio frequency positioning devices 11 and 11' based on the ID information (step S32). If the processing unit 44 of the radio transceiver module 301 determines that the Poll signal is not received (NO in step S32), it continues to wait.
  • the timing unit 42 of the radio transceiver module 301 controls the target tag 30 to separately record and receive the Poll signal.
  • the time T b , T b , and the storage unit 43 controls the target marker 30 to store the time T b , T b (step S33).
  • the processing unit 44 of the radio frequency transceiver module 301 performs confirmation processing on the received Poll signals transmitted by the radio frequency positioning devices 11 and 11' and respectively generates corresponding response signals (step S34), and respectively carries the radio frequency signals.
  • a response signal positioning means 11 and 11 'of the ID information the transmission time of transmitting the response signal recorded T d, T d, and the time T b, T b, and other information are transmitted together with the positioning means 11 to the RF And 11' (step S35).
  • the processing unit 113 determines whether the radio frequency positioning devices 11 and 11 ′ respectively receive the response signal sent by step S35 according to the ID information.
  • the time T d , T d , and the time T b , T b , and the like are described (step S36).
  • the processing unit 113 determines that the radio frequency positioning devices 11 and 11' have not received the response signal or the like (NO in step S36), it continues to wait. If the processing unit 113 determines that the radio frequency positioning devices 11 and 11' receive the respective response signals and the like (YES in step S36), the timing unit 112 of the radio frequency positioning units a and a' controls the radio frequency positioning device 11 and 11 ', respectively, the response time of recording the received signal is T c, T c , the storing unit 114 controls the radio frequency positioning means 11 and 11' respectively store the time T c, T c, (step S37), At the same time, the radio frequency positioning units a and a' respectively perform a confirmation process on the received response signals.
  • the radio frequency positioning units a and a' control the radio frequency positioning devices 11 and 11' to store all of the above time information T a , T b , T c , T d and T a , T b , T c , T d is sent to the core processing device 13; according to the information received by the core processing device 13, the information processing unit 31 of the core processing module 3 controls the core processing device 13 to calculate the wireless signals corresponding to the radio frequency positioning devices 11 and 11', respectively.
  • the radio frequency positioning devices 11 and 11' respectively emit the response signals of the radio frequency transceiver module 301, respectively.
  • Another response signal of the ID information, and respectively recording the time T e at which the radio frequency positioning device 11 transmits another response signal and the time T e ' at which the radio frequency positioning device 11' transmits another response signal step S39.
  • the processing unit 44 of the radio frequency transceiver module 301 determines whether the received signal is the information sent in step S39 according to the ID information (step S310), if the processing unit 44 of the radio frequency transceiver module 301 determines that the radio frequency positioning device 11/11' is not received.
  • the other response signal transmitted continues to wait. If the processing unit 44 of the radio frequency transceiver module 301 determines that another response signal transmitted by the radio frequency positioning devices 11 and 11' is received (YES in step S310), the timing unit 42 of the radio frequency transceiver module 301 controls the target tag. 30 respectively recording the time T f of receiving another response signal sent by the radio frequency positioning device 11 and the time T f ' of another response signal sent by the radio frequency positioning device 11 ′ , while the storage unit 43 controls the target tag to be The times T f , T f ' are stored (step S311).
  • the target marker 30 then transmits the time information Tf and Tf' in step S311 to the core processing device 13 of the flying device, and the information processing unit 31 of the core processing module 3 controls the core processing device 13 to calculate the radio frequency positioning device 11, respectively.
  • Target tracking and ranging in FIG. 7 is a schematic view of the embodiment shown in Figure 7, wherein the RF UWB1 positioning means 11, UWB2 RF positioning means 11 ', d u and du', respectively 14 to the imaging apparatus
  • the distance between the radio frequency positioning devices 11 and 11' is a known amount.
  • the angle formed by the RF positioning device 11, the RF positioning device 11' and the imaging device 14, and the heights of the RF positioning device 11, the RF positioning device 11' and the imaging device 14 from the ground are also known.
  • the distance d and the angle ⁇ between the target marker 30 and the imaging device 14 can be calculated by the triangular relationship based on the calculated d 1 , d 2 and the above known amount information.
  • the core processing module 3 determines whether the actual distance d between the imaging device 14 and the target marker 30 calculated in step S3 is transmitted from the ground processing terminal 20 based on the shooting distance d 0 stored in the core processing device 13.
  • the shooting distance d 0 is matched, and it is judged whether the angle ⁇ acquired in step S3 matches the actual angle of the current photographing device 14 (the angle at which the core processing module 3 can acquire the photographing device in real time) (step S4). If at least one of them does not match (NO in step S4), the position adjustment unit 32 of the core processing module 3 acquires the actual distance d of the photographing device 14 and the target marker 30 and the photographing device set by the ground processing terminal 20 according to step S3.
  • step S6 shoot 14 with the target marker (30) a distance d from the acquisition of the flying device to be adjusted 0 dd 0, flight control means for adjusting its position, and / or the core processing module 3 control adjustment imaging apparatus 14 imaging according to the angle ⁇ in step S3 acquired Angle, and re-execute step S3 (step S5); if all match (step S4 is YES), the shooting module 4 controls the camera 14 to capture the target, and the captured image information is transmitted and stored in the core processing device 3; The distance between the target marker 30 and the imaging device 14 is always the shooting distance and the imaging device 14 is aimed at the target during shooting (step S6).
  • the image processing unit 33 processes the received image information using a specific processing procedure, and transmits the processed target image information to the ground control terminal 20 through the image transmitting module 2 (step S7).
  • the ground control module 27 of the ground control terminal 20 controls the control device 23 to display the received target image information, and the operator determines whether or not to adjust the shooting distance d 0 based on the information such as the sharpness of the displayed image (step S8). When the operator judges that the adjustment is not made (NO in step S8), no processing is performed. When the operator determines the adjustment (YES in step S8), the operator resets the shooting distance between the target marker 30 and the photographing device 14 through the ground control terminal 20, and transmits the photographing distance through the data transmitting module 28. Go to the flight device (step S9) and perform step S3.
  • the image processing unit processes the image and transmits the target image to the ground processing terminal, and the ground operator determines subjectively whether to adjust the shooting distance according to the sharpness of the received target image, but is not limited thereto.
  • the image processing unit under the core processing module of the flying device processes the image captured by the shooting module, can automatically recognize the sharpness or other information of the target in the target image, and automatically adjust the shooting distance between the target marker 30 and the capturing device. And simultaneously transmitting the target image and the new shooting distance to the ground control terminal.

Abstract

本发明提供一种目标定位跟踪装置,包括:设置在飞行装置上的射频定位装置、核心处理装置和拍摄装置;其中,射频定位装置包括能够与目标标记物之间收发无线电信号的第一射频定位装置和第二射频定位装置;核心处理装置根据第一射频定位装置和第二射频定位装置分别发送和接收有关信号的时间分别获取各自相应的信号在空中的传输时间,以此分别获取第一射频定位装置与目标标记物之间的距离和第二射频定位装置与目标标记物之间的距离,并基于所获取的距离来确定目标标记物与拍摄装置的距离信息和角度信息;拍摄装置根据核心处理装置获取的距离信息和角度信息调整拍摄角度,对目标进行拍摄。本发明还提供一种目标定位跟踪系统以及一种目标定位跟踪方法。

Description

一种目标定位跟踪系统、装置及定位跟踪方法 技术领域
本发明涉及目标定位跟踪领域,尤其涉及一种基于射频和单目视觉的精确定位跟踪系统及定位跟踪方法。
背景技术
近年来,目标定位和跟踪技术一直是各种智能设备或装置的研究热点和难点。目前备受关注的民用无人机行业,一直致力于无人机的自主跟随功能的研究。目标定位和跟踪技术涉及的内容涵盖了传感器技术、信息融合、图像处理、计算机视觉、模式识别和人工智能等多个方向。受限于目标定位的精度、目标跟踪的准确性等问题,导致无人机行业对使用自主跟随功能采取谨慎的态度,目前大多是为无人机配置一个手动操作端,用户通过操纵操作杆的方式来完成飞行任务。这种通过手动操作无人机的过程必然会使目标定位精确度和目标跟踪的准确性下降。
发明内容
为了解决以上问题,本发明提供一种目标定位跟踪装置,包括:设置在飞行装置上的射频定位装置、核心处理装置和拍摄装置;其中,所述射频定位装置包括第一射频定位装置和第二射频定位装置;所述第一射频定位装置和第二射频定位装置与目标标记物之间能够收发无线电信号;所述核心处理装置根据所述第一射频定位装置和第二射频定位装置分别发送和接收有关信号的时间分别获取各自相应的信号在空中的传输时间,以此分别获取所述第一射频定位装置与所述目标标记物之间的距离和所述第二射频定位装置与所述目标标记物之间的距离,并基于所获取的距离来确定所述目标标记物与所述拍摄装置的距离信息和角度信息;所述拍摄装置根据所述核心处理装置获取的所述距离信息和所述角度信息调整拍摄角度,对目标进行拍摄。
优选地,所述拍摄装置、第一射频定位装置、第二射频定位装置以及目标标记物在一个平面内。
优选地,所述拍摄装置与所述第一射频定位装置和所述第二射频定位装置沿一直线设置。
优选地,所述第一射频定位装置和第二射频定位装置设置于所述飞行装置的两侧。
优选地,所述第一射频定位装置和所述第二射频定位装置相对于所述拍摄装置以轴对称设置。
优选地,所述第一射频定位装置和第二射频定位装置分别向所述目标标记物发射第一询问信号和第二询问信号,并接收来自所述目标标记物的第一响应信号和第二响应信号;其中,所述第一响应信号是所述目标标记物基于所接收到的所述第一询问信号后向所述第一射频定位装置所发送的,所述第二响应信号是所述目标标记物基于所接收到的所述第二询问信号后向所述第二射频定位装置所发送的;所述第一射频定位装置能够分别记录自身发射所述第一询问信号的第一时间和收到所述目标标记物发射所述第一响应信号的第二时间以及所述目标标记物接收到所述第一询问信号的第三时间和所述目标标记物发出所述第一响应信号的第四时间;第二射频定位装置能够记录自身发射所述第二询问信号的第五时间和收到所述目标标记物发射所述第二响应信号第六时间以及所述目标标记物接收到所述第二询问信号的第七时间和所述目标标记物发出所述第二响应信号的第八时间;其中,所述核心处理装置通过将所述第二时间和所述第一时间的差值减去所述第四时间和所述第三时间的差值获取所述第一射频定位装置的第一传输时间,通过将所述第六时间和所述第五时间的差值减去所述第八时间和所述第七时间的差值获取所述第二射频定位装置的第二传输时间,基于所述第一传输时间和所述第二传输时间分别获取所述第一射频定位装置和第二射频定位装置与所述目标标记物之间的第一距离和第二距离。
优选地,所述第一射频定位装置和第二射频定位装置还能够向所述目标标记物发送第三响应信号和第四响应信号;所述第一射频定位装置和第二射频定位装置还能够分别记录所述第三响应信号和第四响应信号、发送所述第三响应信号和第四响应信号的第九时间和第十时间,以及所述目标标记物接收到所述第三响应信号和第四响应信号的第十一时间和第十二时间;其中,所述核心处理装置还通过将所述第十一时间和所述第四时间的差值减去所述第九时间和所述第二时间的差值获取所述第一射频定位装置的第三传输时间,将所述第十二时间和所述第八时间的差值减去所述第十时间和所述第六时间的差值获取所述第二射频定位装置的第四传输时间,并基于所述第三传输时间和第四传输时间获取所述第一射频定位装置和第二射频定位装置与所述目标标记物之间的第三距离和第四距离;将所述第一距离和所述第三距离相加后除以2作为所述第一射频定位装置与所述目标标记物的距离,将所述第二距离和所述第四距离相加后除以2后的距离作为所述第二射频定位装置与所述目标标记物的距离。
优选地,基于所述第一射频定位装置和所述第二射频定位装置各自与所述目标标记物之间的距离以及所述第一射频定位装置与所述第二射频定位装置之间的距离,所述核心处理装置通过三角几何关系确定所述拍摄装置与所述目标标记物之间的距离和角度。
优选地,所述第一和第二射频定位装置分别具有第一计时装置和第二计时装置,所述第一计时装置能够记录所述第一时间、所述第二时间和所述第九时间,所述第二计时装置能够记录所述第五时间、所述第六时间和所述第十时间;所述目标标记物具有第三计时装置,所述第三计时装置能够记录所述第三时间、所述第四时间、所述第七时间、所述第八时间、所述第十一时间和第十二时间。
优选地,还包括:地面控制终端;所述地面控制终端能够将设置的所述拍摄装置与所述目标标记物的拍摄距离信息并发送给所述飞行装置,同时能够接收所述飞行装置所拍摄的目标图像。
优选地,所述核心处理装置还包括位置调整装置,所述位置调整装置能够根据所述核心处理装置确定的所述拍摄装置与所述目标标记物之间的距离和角度信息以及由地面控制终端设置的拍摄距离调整所述飞行装置的位置。
本发明的另一方面还提供一种目标定位跟踪方法,包括:目标定位步骤,利用设置在飞行装置上的第一射频定位装置和第二射频定位装置分别与设置在目标上的目标标记物之间收发无线电信号,根据各自发送和接收信号的时间分别获取各自相应的信号在空中的传输时间,以此分别获取所述第一射频定位装置与所述目标标记物之间的距离和所述第二射频定位装置与所述目标标记物之间的距离,并基于所获取的距离来确定所述飞行装置的拍摄装置与所述目标标记物的距离信息和角度信息;目标跟踪步骤,所述拍摄装置根据目标定位步骤中获取的所述距离信息和所述角度信息跟踪并拍摄所述目标。
优选地,所述目标定位步骤包括;所述第一射频定位装置向所述目标标记物发射第一询问信号;记录发射所述第一询问信号的第一时间;所述第二射频定位装置向所述目标标记物发射第二询问信号;记录发射所述第二询问信号的第五时间;接收来自所述目标标记物的第一响应信号、所述目标标记物接收所述第一询问信号的第三时间和所述目标标记物发送所述第一响应信号的第四时间,并记录收到所述第一响应信号的第二时间、所述目标标记物接收所述第一询问信号的第三时间和所述目标标记物发送所述第一响应信号的第四时间;接收来自所述目标标记物的第二响应信号、所述目标标记物接收所述第二询问信号的第七时间和所述目标标记物发送所述第二响应信号的第八时间;记录接收所述第二响应信号的第六时间、所述目标标记物接收所述第二询问信号的第七时间和所述目标标记物发送所述第二响应信号的第八时间;基于所述第一时间、所述第二时间、所述第三时间和所述第四时间获取所述第一射频定位装置与所述目标标记物之间的第一距离;基于所述第五时间、所述第六时间、所述第七时间和所述第八时间获取所述第二射频定位装置与所述目标标记装置之间的第 二距离。
优选地,所述目标定位步骤还包括:所述第一射频定位装置向所述目标发送第三响应信号,并记录发送所述第三响应信号的第九时间;所述第二射频定位装置向所述目标发送第四响应信号,并记录发送所述第四响应信号的第十时间;接收来自所述目标标记物的其所收到所述第三响应信号的第十一时间和所述第四响应信号的第十二时间;通过将所述第十一时间和所述第四时间的差值减去所述第九时间和所述第二时间的差值获取第一射频定位单元的第三传输时间,并基于所述第三传输时间获取第一射频定位装置与所述目标标记物之间的第三距离;通过将所述第十二时间和所述第八时间的差值减去所述第十时间和所述第六时间的差值获取第二射频定位装置的第四传输时间,并基于所述第四传输时间获取第二射频定位装置与所述目标标记物之间的第四距离;将所述第一距离和所述第三距离相加后除以2作为第一射频定位装置与所述目标标记物的距离;将所述第二距离和所述第四距离相加后除以2作为第二射频定位装置与所述目标标记物的距离。
优选地,基于所述第一射频定位装置、第二射频定位装置分别与所述目标标记物的距离以及所述第一射频定位装置和第二射频定位装置之间的距离,利用三角几何关系确定所述拍摄装置与所述目标标记物之间的距离和角度。
优选地,还包括:地面控制步骤,预先设置飞行装置的拍摄装置与目标标记物之间的拍摄距离信息。
优选地,在所述目标跟踪步骤中还包括位置调整步骤,根据目标定位步骤中确定的拍摄装置与目标标记物之间的距离信息和角度信息以及预先设置的拍摄装置与目标标记物之间的拍摄距离信息来调整所述飞行装置的位置。
本发明还提供一种目标定位跟踪系统,包括:射频定位单元、核心处理模块和拍摄模块;其中,所述射频定位单元包括第一射频定位单元和第二射频定位单元;所述第一射频定位单元和所述第二射频定位单元分别能够与目标标记模块之间收发无线电信号;所述核心处理模块根据所述射频定位单元的发送和接收有关信号的时间获取有关信号在空中的传输时间,以此分别获取第一射频定位装置与目标标记物之间的距离和第二射频定位装置与目标标记物之间的距离,并基于所获取的距离来确定目标标记物与拍摄装置之间的距离信息和角度信息;所述拍摄模块根据所述核心处理模块获取的距离信息和角度信息调整拍摄角度,对目标进行拍摄。
优选地,所述第一射频定位单元和第二射频定位单元分别向所述目标标记模块发射第一询问信号和第二询问信号,并接收来自所述目标标记模块的第一响应信号和第二响应信 号;其中,所述第一响应信号是所述目标标记模块基于所接收到的所述第一询问信号后向所述第一射频定位单元所发送的,所述第二响应信号是所述目标标记模块基于所接收到的所述第二询问信号后向所述第二射频定位单元所发送的;所述第一射频定位单元能够分别记录自身发射所述第一询问信号的第一时间和收到所述目标标记模块发射所述第一响应信号的第二时间以及所述目标标记模块接收到所述第一询问信号的第三时间和所述目标标记模块发出所述第一响应信号的第四时间;第二射频定位单元能够记录自身发射所述第二询问信号的第五时间和收到所述目标标记模块发射所述第二响应信号第六时间以及所述目标标记模块接收到所述第二询问信号的第七时间和所述目标标记模块发出所述第二响应信号的第八时间;其中,所述核心处理模块通过将所述第二时间和所述第一时间的差值减去所述第四时间和所述第三时间的差值获取所述第一射频定位单元的第一传输时间,通过将所述第六时间和所述第五时间的差值减去所述第八时间和所述第七时间的差值获取所述第二射频定位单元的第二传输时间,基于所述第一传输时间和所述第二传输时间分别获取所述第一射频定位装置和第二射频定位装置与所述目标标记物之间的第一距离和第二距离。
优选地,所述第一射频定位单元和第二射频定位单元还能够向所述目标标记模块发送第三响应信号和第四响应信号;所述第一射频定位单元和第二射频定位单元还能够分别记录所述第三响应信号和第四响应信号、发送所述第三响应信号和第四响应信号的第九时间和第十时间,以及所述目标标记模块接收到所述第三响应信号和第四响应信号的第十一时间和第十二时间;其中,所述核心处理模块还通过将所述第十一时间和所述第四时间的差值减去所述第九时间和所述第二时间的差值获取所述第一射频定位单元的第三传输时间,将所述第十二时间和所述第八时间的差值减去所述第十时间和所述第六时间的差值获取所述第二射频定位单元的第四传输时间,并基于所述第三传输时间和第四传输时间分别获取所述第一射频定位装置和第二射频定位装置与所述目标标记物之间的第三距离和第四距离;将所述第一距离和所述第三距离相加后除以2作为所述第一射频定位装置与所述目标标记物的距离,将所述第二距离和所述第四距离相加后除以2后的距离作为所述第二射频定位装置与所述目标标记物的距离。
优选地,基于所述第一射频定位装置和所述第二射频定位装置各自与所述目标标记物之间的距离以及所述第一射频定位装置与所述第二射频定位装置之间的距离,所述核心处理模块通过三角几何关系确定所述拍摄装置与所述目标标记物之间的距离和角度。
优选地,还包括:地面控制模块;所述地面控制模块能够将设置的所述拍摄装置与所述目标标记物的拍摄距离信息并发送给所述飞行装置,同时能够接收所述飞行装置所拍摄 的目标图像。
优选地,所述核心处理模块还包括位置调整单元,所述位置调整单元能够根据所述核心处理模块确定的所述拍摄装置与所述目标标记物之间的距离和角度信息以及由地面控制模块设置的拍摄距离调整所述飞行装置的位置。
在本发明中采用了两个射频定位装置,所述两个射频定位装置,所述两个射频定位单元能够分别测定各自与目标标记物的距离,并利用三角儿何关系计算拍摄模块与目标标记物的精确距离,实现对目标的精确定位。所述系统根据所述精确距离和通过地面控制终端设置的目标标记物与拍摄模块的拍摄距离进行比较,从而实现对目标标记物的跟踪拍摄。从而实现飞行装置对目标标记物的精确定位和跟踪。
附图说明
图1为本发明所涉及的基于射频和单目视觉的定位跟踪装置结构示意图;
图2为本发明所涉及的基于射频和单目视觉的定位跟踪系统的结构示意图:
图3为本发明所涉及的射频定位单元的结构示意图;
图4为本发明所涉及的目标标记物的结构示意图;
图5为本发明所涉及的基于射频和单目视觉的定位跟踪方法的流程图;
图6为本发明所涉及的基于射频定位的定位方法流程图;
图7为本发明所涉及的目标定位跟踪方法测距示意图。
具体实施方式
下面根据附图所示实施方式阐述本发明。此次公开的实施方式可以认为在所有方面均为例示,不具限制性。本发明的范围不受以下实施方式的说明所限,仅由权利要求书的范围所示,而且包括与权利要求范围具有同样意思及权利要求范围内的所有变形。
图1为本发明具体实施方式所涉及的基于射频和单目视觉的定位跟踪装置结构示意图;如图1所示,所述定位跟踪装置包括飞行装置10、地面控制终端20以及目标标记物30。飞行装置10与地面控制终端20和目标标记物30之间均进行通信连接,比如通过无线通信方式连接,并进行数据传输。所述地面控制终端20和飞行装置10内部各单元和模块之间也均进行通信连接,比如通过同轴电缆、总线或者串口的方式进行通信连接,并可进行数据传输。
所述飞行装置10具有目标跟踪定位功能,优选地所述飞行装置10为无人机,所述飞行装置10上设置有两个位于不同位置的射频定位装置11和11’、图像发射装置12、核心处理装置13、拍摄装置14以及数据接收装置15。其中,所述射频定位装置11和11’位于 飞行装置正面且分别位于所述飞行装置的所述拍摄装置14的两侧位置。所述射频定位装置11和11’、拍摄装置14以及目标标记物30在一个平面内。优选地,两个射频定位装置11和11’与所述拍摄装置14沿一直线设置。更优选地,所述两个射频定位装置11和11’相对于拍摄装置14所在轴线呈对称分布。所述射频定位装置11/11’能够向设置在需要跟踪的目标上的目标标记物30发射无线电信号并接收其响应,优选地,所述射频定位装置11和11’为UWB信号收发装置,能够发射或接收UWB信号;所述UWB信号为超宽频信号,具有多频道、高带宽、低功率等优点,工作于3.1GHz~10.6GHz。所述核心处理装置13能够根据无线电信号在空气中传输的时间计算目标标记物30与拍摄装置14的距离和角度信息;同时核心处理装置13还能对所述拍摄装置14拍摄的图像进行处理,处理后的图像信息由图像发射装置12发送至地面控制终端20。拍摄装置14优选为一个单目摄像头,所述单目摄像头的方位和视角可以调节,能够执行图像的拍摄。
所述地面控制终端20可以位于地面上,由操作人员控制。所述地面控制终端20包括图像接收装置21、图像采集卡22、控制装置23以及数据发射装置24,所述图像接收装置21接收飞行装置的图像发射装置12发送的图像信息,所述图像采集卡22将图像接收装置21接收到的图像信号采集到控制装置23中,以数据文件的形式保存在未图示的硬盘上。所述控制装置23能够将采集到的图像信号显示于未图示的显示器上;操作人员可以通过所述控制装置23设置目标标记物30与拍摄装置14的拍摄距离。所述数据发射装置24将所述拍摄距离等数据信息发送至飞行装置10的数据接收装置15,由数据接收装置15发送至核心处理装置13。
目标标记物30可以为射频收发装置,能够接收射频定位装置11和11’发射的无线电信号并对其进行响应;同时还能够对接收或发射的信号进行计时或者存储。
图1中基于射频和单目视觉的定位跟踪装置的结构示意图中的各装置的具体功能的实施均由相应的控制模块或单元控制完成。
图2为本实施方式所涉及的基于射频和单目视觉的定位跟踪系统的结构示意图。如图2所示,所述系统的结构包括射频定位模块1、图像发射模块2、核心处理模块3、拍摄模块4、数据接收模块5、信息处理单元31、位置调整单元32、图像处理单元33、存储单元34以及目标标记物30的射频收发模块301。其中射频定位模块1、图像发射模块2、核心处理模块3、拍摄模块4、数据接收模块5位于飞行装置10上;信息处理单元31、位置调整单元32、图像处理单元33、存储单元34位于地面控制终端20上。
所述射频定位模块1控制射频定位装置11和11’发射或接收无线电信号并进行响 应,优选地,射频定位模块1包括射频定位单元a和a’并分别控制射频定位装置11和11’。
图3为本实施方式所涉及的射频定位单元的结构示意图。如图3所示,所述两个相同的射频定位单元a和a’都分别包括信号发射单元111、计时单元112、处理单元113、存储单元114和信号接收单元115,所述各单元之间通过数据总线116进行相互的通信连接。其中所述信号发射单元111能够控制射频定位装置11/11’发射无线电信号(即询问信号)或响应信号以及相关数据信息等的工作,如控制发射无线电信号的频率、信道、时钟等。所述信号接收单元115能够控制射频定位装置11/11’接收目标标记物30发射的无线电信号,所述处理单元113能够对所述射频定位装置11/11’所发射和接收到的数据信息进行处理,并根据处理的结果识别特定的射频定位装置发射或接收的无线电信号。所述计时单元112具有控制射频定位装置11/11’计时的功能,能够控制射频定位装置11/11’对其发射无线电信号的时间信息和接收到所述目标标记物30所发送的响应信号的时间信息进行记录。所述存储单元114可以控制射频定位装置11/11’存储所记录的时间信息以及其他数据或信息等,同时控制射频定位装置11/11’将其记录的时间信息发送到所述核心处理装置13。
返回图2,所述核心处理模块3能够控制核心处理装置13利用所述射频定位装置11/11’发射和接收的无线电信号以及发送和接收无线电信号的相关数据信息等的时间信息计算拍摄装置14距离目标标记物30的距离和角度信息,并根据该距离和角度信息控制调整飞行装置的位置10和拍摄装置14的拍摄角度。同时,所述核心处理模块3能够控制核心处理装置13通过数据接收装置15接收地面控制终端20发送的控制信息。此外,所述核心处理模块3还能控制所述核心处理装置13对获取的图像信息进行图像处理。具体的如图2所示,所述核心处理模块3包括信息处理单元31、位置调整单元32、图像处理单元33以及存储单元34。所述信息处理单元31控制核心处理装置13接收射频定位装置11/11’发送无线电信号的时间信息以及其他数据信息,并根据所述接收到的无线电信号的时间信息等计算出目标标记物30与拍摄模块4的距离信息和角度信息,并由存储单元34控制核心处理装置13将上述距离和角度信息存储起来。位置调整单元32根据信息处理单元31计算的目标标记物30距离拍摄模块4的距离信息以及所述地面控制终端20发送的拍摄距离信息,控制调整飞行装置的拍摄装置14距离目标标记物30的距离;同时所述位置调整单元32还能根据信息处理单元31计算的拍摄角度信息控制拍摄装置14调整其拍摄角度,使拍摄装置14能够对某特定区域进行拍摄。所述拍摄模块4能够控制拍摄装置14执行拍摄任务获取拍摄图像,并由存储单元34控制核心处理装置13将拍摄的图像存储起来。图像处理单元33能够 控制核心处理装置13对拍摄装置14拍摄的图像信息或者存储于核心处理装置13内的图像信息进行处理得到相应目标图像信息;并由图像发射模块2控制图像发射装置12将处理后的目标图像信息发送至地面控制终端20。
所述地面控制终端20的图像接收模块25控制图1中的图像接收装置21接收飞行装置发送的图像信息,由所述图像采集模块26控制图像采集卡22采集所述图像接收装置21接收到的图像信息,并控制将所述图像信息发送至控制装置23。所述地面控制模块27控制控制装置23对图像进行显示,操作人员还可以通过控制装置23设置的拍摄距离。所述数据发射模块28控制数据发射装置24将所述拍摄距离发送至飞行装置10。
图4为本实施方式所涉及的目标标记物的射频收发模块的结构示意图。如图4所示,所述射频收发模块301具有信号收发单元41、计时单元42、存储单元43以及处理单元44,各单元之间能够通过数据总线45进行通信连接。其中所述信号收发单元41能够控制所述目标标记物30接收所述射频定位装置11/11’发射的无线电信号或其他数据信息,并控制所述目标标记物30发射响应信号,所述响应信号优选地为UWB信号(UWB信号为超宽频信号,具有多频道、高带宽、低功率等优点,工作于3.1GHz~10.6GHz)。所述处理单元44能够对所述目标标记物30接收到的无线电信号和数据信息进行处理,并控制所述目标标记物30产生响应信号。所述计时单元42能够控制所述目标标记物30对其接收的来自所述射频定位装置11/11’的无线电信号的时间信息和发送的响应信号的时间信息进行记录,同时所述计时单元42也可以控制所述目标标记物30将所记录的时间信息发送到飞行装置10。所述存储单元43可以控制所述目标标记物30存储其所记录的时间信息以及其他数据或信息等。
图5为本实施方式所涉及的基于射频和单目视觉的目标定位跟踪方法的流程图。操作人员通过地面控制终端20的控制装置23设置上述飞行装置10的飞行高度,以及目标标记物30与飞行装置10上的拍摄装置14之间的拍摄距离d0,并由数据发射模块28控制数据发射装置24将所述拍摄距离d0发送至飞行装置10,同时所述飞行装置10的存储单元34控制将拍摄距离d0存储于核心处理装置13中,然后操作人员通过地面控制终端20控制启动飞行装置10(步骤S1)。飞行装置的射频定位模块1控制射频定位装置11/11’接收信号,所述飞行装置的核心处理模块3的信息处理单元31对所述接收信号进行处理,并判断接收到的信号是否是新的定位跟踪信息即目标标记物30发射的握手信号(步骤S2)。如果判断接收到的信号不是新的定位跟踪信息(步骤S2为否),则返回步骤S2继续接收信号并进行判断;如果判断接收到的信号为新的定位跟踪信息(步骤S2为是),则所述核心处理模块3 的信息处理单元31控制核心处理装置13计算获取目标标记物30与拍摄装置14之间的实际距离d与角度α(步骤S3)。步骤S3的具体过程如下。
图6为步骤S3基于射频定位的定位方法流程图;如图6所示,射频定位单元a和a’分别控制射频定位装置11和11’发射带有各自ID信息的无线电信号(Poll信号),所述射频定位单元a和a’的计时单元112控制射频定位装置11和11’分别记录射频定位装置11和11’发射上述Poll信号的时间Ta、Ta,,同时存储单元114控制射频定位装置11和11’分别存储时间Ta、Ta,(步骤S31)。其中,上述ID信息可以是射频定位装置11和11’的特定编号或者为目标标记物30能够识别所述射频定位装置11和11’的特定码信息。所述射频定位装置11和11’所发射的Poll信号由目标标记物30接收。所述射频收发模块301的处理单元44根据ID信息判断所述目标标记物30是否接收到发射自所述射频定位装置11和11’的Poll信号(步骤S32)。如果所述射频收发模块301的处理单元44判断未接收到所述Poll信号(步骤S32为否),则继续等待。如果所述射频收发模块301的处理单元44判断接收到所述Poll信号(步骤S32为是),所述射频收发模块301的计时单元42控制所述目标标记物30分别记录接收到所述Poll信号的时间Tb、Tb,,并由存储单元43控制所述目标标记物30将时间Tb、Tb,存储起来(步骤S33)。所述射频收发模块301的处理单元44对接收到的所述射频定位装置11和11’发射的Poll信号进行确认处理并分别产生相应的响应信号(步骤S34),并将分别带有所述射频定位装置11和11’的ID信息的响应信号、发送所述响应信号时所记录的发送时间Td、Td,和所述时间Tb、Tb,等信息分别一起发送至射频定位装置11和11’(步骤S35)。所述射频定位装置11和11’接收到目标标记物30发送的信息后,所述处理单元113根据所述ID信息分别判断射频定位装置11和11’是否接收到步骤S35发送的响应信号及所述时间Td、Td,和所述时间Tb、Tb,等信息(步骤S36)。如果所述处理单元113判断射频定位装置11和11’未接收到响应信号等信息(步骤S36为否),则继续等待。如果所述处理单元113判断射频定位装置11和11’接收到各自的响应信号等信息(步骤S36为是),所述射频定位单元a和a’的计时单元112控制所述射频定位装置11和11’分别记录接收到所述响应信号的时间Tc、Tc,,所述存储单元114控制所述射频定位装置11和11’分别存储所述时间Tc、Tc,(步骤S37),同时所述射频定位单元a和a’对接收到的响应信号分别进行确认处理。所述射频定位单元a和a’控制所述射频定位装置11和11’将上述所有的时间信息Ta、Tb、Tc、Td以及Ta,、Tb,、Tc,、Td,都发送至核心处理装置13;根据上述核心处理装置13接收到的信息,核心处理模块3的信息处理单元31控制核心处理装置13分别计算所述射频定位装置11和11’对应的无线信号(Poll信号)和响应 信号在空中飞行所用时间T1=(Tc-Ta)-(Td-Tb)和T1’=(Tc’-Ta’)-(Td’-Tb’)。同时,因为信号在空中的飞行速度可视为与光速相当,所以可以分别测算射频定位装置11和11’与目标标记物之间的第一距离为D11=(T1×光速)/2和d11’=(T1’×光速)/2(步骤S38)。
为了进一步地消除射频定位装置11和11’与目标标记物30之间的时钟差,所述射频定位装置11和11’在分别收到所述射频收发模块301的响应信号的同时分别发出带有ID信息的另一响应信号、并分别记录所述射频定位装置11发送另一响应信号的时间Te和所述射频定位装置11’发送另一响应信号的时间Te’(步骤S39)。射频收发模块301的处理单元44根据ID信息判断接收到的信号是否为步骤S39发送的信息(步骤S310),如果所述射频收发模块301的处理单元44判断未接收到射频定位装置11/11’发射的所述另一响应信号(步骤S310为否),则继续等待。如果所述射频收发模块301的处理单元44判断接收到射频定位装置11和11’发射的另一响应信号(步骤S310为是),所述射频收发模块301的计时单元42控制所述目标标记物30分别记录接收到所述射频定位装置11发送的另一响应信号的时间Tf和所述射频定位装置11’发送的另一响应信号的时间Tf’,同时存储单元43控制目标标记物将所述时间Tf、Tf’存储起来(步骤S311)。之后所述目标标记物30将步骤S311中的时间信息Tf和Tf’发送至飞行装置的核心处理装置13,核心处理模块3的信息处理单元31控制核心处理装置13分别计算射频定位装置11和11’对应的响应信号和另一响应信号在空中的飞行时间为T2=(Tf-Td)-(Te-Tc)和T2’=(Tf’-Td’)-(Te’-Tc’),并分别测算出射频定位装置11和11’与目标标记物之间的第二距离d21=(T2×光速)/2和d21’=(T2’×光速)/2(步骤S312)。核心处理模块3控制核心处理装置13对上述步骤S38和S312中的距离取平均,即可得射频定位装置11和11’与目标标记物30之间的距离分别为:d1=(d11+d21)/2和d2=(d11’+d21’)/2。然后通过三角儿何关系计算出拍摄装置14和目标标记物30的实际距离d和角度信息α(步骤S313)。
图7为本实施方式涉及的目标定位跟踪方法测距示意图,如图7所示,其中UWB1为射频定位装置11,UWB2为射频定位装置11’,du和du’分别为拍摄装置14到所述射频定位装置11和11’之间的距离,为已知量。同时,射频定位装置11、射频定位装置11’和拍摄装置14三者所形成的角度,以及射频定位装置11、射频定位装置11’和拍摄装置14离地面的高度,均也为已知量。根据计算的d1、d2以及上述已知量信息通过三角儿何关系即可计算出目标标记物30与拍摄装置14之间的距离d和角度α。
返回图5,所述核心处理模块3根据核心处理装置13内存储的拍摄距离d0,判断步骤S3计算的拍摄装置14与目标标记物30之间的实际距离d是否与地面处理终端20发送的 所述拍摄距离d0相匹配,并判断步骤S3获取的角度α与目前拍摄装置14的实际角度(核心处理模块3可以实时获取拍摄装置的角度)是否匹配(步骤S4)。如果至少其中之一不匹配(步骤S4为否),则核心处理模块3的位置调整单元32根据步骤S3获取的拍摄装置14与目标标记物30的实际距离d以及地面处理终端20设置的拍摄装置14与目标标记物30的拍摄距离d0获取飞行装置需要调整的距离d-d0,控制飞行装置调整自身的位置,和/或核心处理模块3根据步骤S3所获取的角度α控制拍摄装置14调整拍摄角度,并重新执行步骤S3(步骤S5);如果都匹配(步骤S4为是),则拍摄模块4控制拍摄装置14对目标进行拍摄,并将拍摄的图像信息发送并存储于核心处理装置3;在拍摄过程中始终保持目标标记物30与拍摄装置14的距离为拍摄距离以及拍摄装置14对准目标进行拍摄(步骤S6)。所述图像处理单元33利用特定的处理过程对接收到的图像信息进行处理,并将处理后的目标图像信息通过图像发射模块2发送至地面控制终端20(步骤S7)。地面控制终端20的地面控制模块27控制控制装置23将接收到的目标图像信息显示出来,操作人员根据显示的图像的清晰度等信息判断是否调整拍摄距离d0(步骤S8)。当操作人员判断不调整时(步骤S8为否),则不进行任何的处理。当操作人员判断调整时(步骤S8为是),则操作人员通过地面控制终端20重新设定目标标记物30与拍摄装置14之间的拍摄距离,并将所述拍摄距离通过数据发射模块28发送至飞行装置(步骤S9),并执行步骤S3。
本实施例中,图像处理单元对图像进行处理并将目标图像发送至地面处理终端,由地面操作人员根据接收到的目标图像的清晰度主观判断是否调整拍摄距离,但不限于此。所述飞行装置的核心处理模块下的图像处理单元对拍摄模块拍摄的图像进行处理,能够自动识别目标图像中目标的清晰度或其他信息,自动调整目标标记物30和拍摄装置之间的拍摄距离,同时将所述目标图像和新的拍摄距离发送至地面控制终端。

Claims (23)

  1. 一种目标定位跟踪装置,包括:设置在飞行装置上的射频定位装置、核心处理装置和拍摄装置;其中,
    所述射频定位装置包括第一射频定位装置和第二射频定位装置;所述第一射频定位装置和第二射频定位装置与目标标记物之间能够收发无线电信号;
    所述核心处理装置根据所述第一射频定位装置和第二射频定位装置分别发送和接收有关信号的时间分别获取各自相应的信号在空中的传输时间,以此分别获取所述第一射频定位装置与所述目标标记物之间的距离和所述第二射频定位装置与所述目标标记物之间的距离,并基于所获取的距离来确定所述目标标记物与所述拍摄装置的距离信息和角度信息;
    所述拍摄装置根据所述核心处理装置获取的所述距离信息和所述角度信息调整拍摄角度,对目标进行拍摄。
  2. 根据权利要求1所述的目标定位跟踪装置,其特征在于:
    所述拍摄装置、所述第一射频定位装置、所述第二射频定位装置与所述目标标记物在一个平面内。
  3. 根据权利要求2所述的目标定位跟踪装置,其特征在于:所述第一射频定位装置和第二射频定位装置设置于所述飞行装置的两侧。
  4. 根据权利要求2所述的目标定位跟踪装置,其特征在于:
    所述拍摄装置与所述第一射频定位装置和所述第二射频定位装置沿一直线设置。
  5. 根据权利要求3所述的目标定位跟踪装置,其特征在于:
    所述第一射频定位装置和所述第二射频定位装置相对于所述拍摄装置以轴对称设置。
  6. 根据权利要求1~5任意一项所述的目标定位跟踪装置,其特征在于:所述第一射频定位装置和第二射频定位装置分别向所述目标标记物发射第一询问信号和第二询问信号,并接收来自所述目标标记物的第一响应信号和第二响应信号;
    其中,所述第一响应信号是所述目标标记物基于所接收到的所述第一询问信号后向所述第一射频定位装置所发送的,所述第二响应信号是所述目标标记物基于所接收到的所述第二询问信号后向所述第二射频定位装置所发送的;
    所述第一射频定位装置能够分别记录自身发射所述第一询问信号的第一时间和收到所述目标标记物发射所述第一响应信号的第二时间以及所述目标标记物接收到所述第一询问信号的第三时间和所述目标标记物发出所述第一响应信号的第四时间;第二射频定位装置能够记录自身发射所述第二询问信号的第五时间和收到所述目标标记物发射所述第二响应信号第六时间以及所述目标标记物接收到所述第二询问信号的第七时间和所述目标标记物发出所述第二响 应信号的第八时间;
    其中,所述核心处理装置通过将所述第二时间和所述第一时间的差值减去所述第四时间和所述第三时间的差值获取所述第一射频定位装置的第一传输时间,通过将所述第六时间和所述第五时间的差值减去所述第八时间和所述第七时间的差值获取所述第二射频定位装置的第二传输时间,基于所述第一传输时间和所述第二传输时间分别获取所述第一射频定位装置和第二射频定位装置与所述目标标记物之间的第一距离和第二距离。
  7. 根据权利要求6所述的目标定位跟踪装置,其特征在于:
    所述第一射频定位装置和第二射频定位装置还能够向所述目标标记物发送第三响应信号和第四响应信号;
    所述第一射频定位装置和第二射频定位装置还能够分别记录所述第三响应信号和第四响应信号、发送所述第三响应信号和第四响应信号的第九时间和第十时间,以及所述目标标记物接收到所述第三响应信号和第四响应信号的第十一时间和第十二时间;
    其中,所述核心处理装置还通过将所述第十一时间和所述第四时间的差值减去所述第九时间和所述第二时间的差值获取所述第一射频定位装置的第三传输时间,将所述第十二时间和所述第八时间的差值减去所述第十时间和所述第六时间的差值获取所述第二射频定位装置的第四传输时间,并基于所述第三传输时间和第四传输时间获取所述第一射频定位装置和第二射频定位装置与所述目标标记物之间的第三距离和第四距离;
    将所述第一距离和所述第三距离相加后除以2作为所述第一射频定位装置与所述目标标记物的距离,将所述第二距离和所述第四距离相加后除以2后的距离作为所述第二射频定位装置与所述目标标记物的距离。
  8. 根据权利要求7所述的目标定位跟踪装置,其特征在于:
    基于所述第一射频定位装置和所述第二射频定位装置各自与所述目标标记物之间的距离以及所述第一射频定位装置与所述第二射频定位装置之间的距离,所述核心处理装置通过三角几何关系确定所述拍摄装置与所述目标标记物之间的距离和角度。
  9. 根据权利要求8所述的目标定位跟踪装置,其特征在于:
    所述第一和第二射频定位装置分别具有第一计时装置和第二计时装置,所述第一计时装置能够记录所述第一时间、所述第二时间和所述第九时间,所述第二计时装置能够记录所述第五时间、所述第六时间和所述第十时间;
    所述目标标记物具有第三计时装置,所述第三计时装置能够记录所述第三时间、所述第四时间、所述第七时间、所述第八时间、所述第十一时间和第十二时间。
  10. 根据权利要求1~5中任一项所述的目标定位跟踪装置,还包括:地面控制终端;
    所述地面控制终端能够将设置的所述拍摄装置与所述目标标记物的拍摄距离信息并发送给所述飞行装置,同时能够接收所述飞行装置所拍摄的目标图像。
  11. 根据权利要求1~5中任一项所述的目标定位跟踪装置,其特征在于:
    所述核心处理装置还包括位置调整装置,所述位置调整装置能够根据所述核心处理装置确定的所述拍摄装置与所述目标标记物之间的距离和角度信息以及由地面控制终端设置的拍摄距离调整所述飞行装置的位置。
  12. 一种目标定位跟踪方法,包括:
    目标定位步骤,利用设置在飞行装置上的第一射频定位装置和第二射频定位装置分别与设置在目标上的目标标记物之间收发无线电信号,根据各自发送和接收信号的时间分别获取各自相应的信号在空中的传输时间,以此分别获取所述第一射频定位装置与所述目标标记物之间的距离和所述第二射频定位装置与所述目标标记物之间的距离,并基于所获取的距离来确定所述飞行装置的拍摄装置与所述目标标记物的距离信息和角度信息;
    目标跟踪步骤,所述拍摄装置根据目标定位步骤中获取的所述距离信息和所述角度信息跟踪并拍摄所述目标。
  13. 根据权利要求12所述的目标定位跟踪方法,其特征在于,所述目标定位步骤包括;
    所述第一射频定位装置向所述目标标记物发射第一询问信号;
    记录发射所述第一询问信号的第一时间;
    所述第二射频定位装置向所述目标标记物发射第二询问信号;
    记录发射所述第二询问信号的第五时间;
    接收来自所述目标标记物的第一响应信号、所述目标标记物接收所述第一询问信号的第三时间和所述目标标记物发送所述第一响应信号的第四时间,并记录收到所述第一响应信号的第二时间、所述目标标记物接收所述第一询问信号的第三时间和所述目标标记物发送所述第一响应信号的第四时间;
    接收来自所述目标标记物的第二响应信号、所述目标标记物接收所述第二询问信号的第七时间和所述目标标记物发送所述第二响应信号的第八时间;
    记录接收所述第二响应信号的第六时间、所述目标标记物接收所述第二询问信号的第七时间和所述目标标记物发送所述第二响应信号的第八时间;
    基于所述第一时间、所述第二时间、所述第三时间和所述第四时间获取所述第一射频定位装置与所述目标标记物之间的第一距离;
    基于所述第五时间、所述第六时间、所述第七时间和所述第八时间获取所述第二射频定位装置与所述目标标记装置之间的第二距离。
  14. 根据权利要求13所述的目标定位跟踪方法,其特征在于:
    所述目标定位步骤还包括:
    所述第一射频定位装置向所述目标发送第三响应信号,并记录发送所述第三响应信号的第九时间;
    所述第二射频定位装置向所述目标发送第四响应信号,并记录发送所述第四响应信号的第十时间;
    接收来自所述目标标记物的其所收到所述第三响应信号的第十一时间和所述第四响应信号的第十二时间;
    通过将所述第十一时间和所述第四时间的差值减去所述第九时间和所述第二时间的差值获取第一射频定位单元的第三传输时间,并基于所述第三传输时间获取第一射频定位装置与所述目标标记物之间的第三距离;
    通过将所述第十二时间和所述第八时间的差值减去所述第十时间和所述第六时间的差值获取第二射频定位装置的第四传输时间,并基于所述第四传输时间获取第二射频定位装置与所述目标标记物之间的第四距离;
    将所述第一距离和所述第三距离相加后除以2作为第一射频定位装置与所述目标标记物的距离;
    将所述第二距离和所述第四距离相加后除以2作为第二射频定位装置与所述目标标记物的距离。
  15. 根据权利要求12~14中任一项所述的目标定位跟踪方法,其特征在于:
    基于所述第一射频定位装置、第二射频定位装置分别与所述目标标记物的距离以及所述第一射频定位装置和第二射频定位装置之间的距离,利用三角几何关系确定所述拍摄装置与所述目标标记物之间的距离和角度。
  16. 根据权利要求12~14中任一项所述的目标定位跟踪方法,还包括:
    地面控制步骤,预先设置飞行装置的拍摄装置与目标标记物之间的拍摄距离信息。
  17. 根据权利要求12~14中任一项所述的目标定位跟踪方法,其特征在于:
    在所述目标跟踪步骤中还包括位置调整步骤,根据目标定位步骤中确定的拍摄装置与目标标记物之间的距离信息和角度信息以及预先设置的拍摄装置与目标标记物之间的拍摄距离信息来调整所述飞行装置的位置。
  18. 一种目标定位跟踪系统,包括:射频定位单元、核心处理模块和拍摄模块;其中,
    所述射频定位单元包括第一射频定位单元和第二射频定位单元;所述第一射频定位单元和所述第二射频定位单元分别能够与目标标记模块之间收发无线电信号;
    所述核心处理模块根据所述射频定位单元的发送和接收有关信号的时间获取有关信号在空中的传输时间,以此分别获取第一射频定位装置与目标标记物之间的距离和第二射频定位装置与目标标记物之间的距离,并基于所获取的距离来确定目标标记物与拍摄装置之间的距离信息和角度信息;
    所述拍摄模块根据所述核心处理模块获取的距离信息和角度信息调整拍摄角度,对目标进行拍摄。
  19. 根据权利要求18所述的目标定位跟踪系统,其特征在于:
    所述第一射频定位单元和第二射频定位单元分别向所述目标标记模块发射第一询问信号和第二询问信号,并接收来自所述目标标记模块的第一响应信号和第二响应信号;
    其中,所述第一响应信号是所述目标标记模块基于所接收到的所述第一询问信号后向所述第一射频定位单元所发送的,所述第二响应信号是所述目标标记模块基于所接收到的所述第二询问信号后向所述第二射频定位单元所发送的;
    所述第一射频定位单元能够分别记录自身发射所述第一询问信号的第一时间和收到所述目标标记模块发射所述第一响应信号的第二时间以及所述目标标记模块接收到所述第一询问信号的第三时间和所述目标标记模块发出所述第一响应信号的第四时间;
    第二射频定位单元能够记录自身发射所述第二询问信号的第五时间和收到所述目标标记模块发射所述第二响应信号第六时间以及所述目标标记模块接收到所述第二询问信号的第七时间和所述目标标记模块发出所述第二响应信号的第八时间;
    其中,所述核心处理模块通过将所述第二时间和所述第一时间的差值减去所述第四时间和所述第三时间的差值获取所述第一射频定位单元的第一传输时间,通过将所述第六时间和所述第五时间的差值减去所述第八时间和所述第七时间的差值获取所述第二射频定位单元的第二传输时间,基于所述第一传输时间和所述第二传输时间分别获取所述第一射频定位装置和第二射频定位装置与所述目标标记物之间的第一距离和第二距离。
  20. 根据权利要求19所述的目标定位跟踪系统,其特征在于:
    所述第一射频定位单元和第二射频定位单元还能够向所述目标标记模块发送第三响应信号和第四响应信号;
    所述第一射频定位单元和第二射频定位单元还能够分别记录所述第三响应信号和第四响应信 号、发送所述第三响应信号和第四响应信号的第九时间和第十时间,以及所述目标标记模块接收到所述第三响应信号和第四响应信号的第十一时间和第十二时间;
    其中,所述核心处理模块还通过将所述第十一时间和所述第四时间的差值减去所述第九时间和所述第二时间的差值获取所述第一射频定位单元的第三传输时间,将所述第十二时间和所述第八时间的差值减去所述第十时间和所述第六时间的差值获取所述第二射频定位单元的第四传输时间,并基于所述第三传输时间和第四传输时间分别获取所述第一射频定位装置和第二射频定位装置与所述目标标记物之间的第三距离和第四距离;
    将所述第一距离和所述第三距离相加后除以2作为所述第一射频定位装置与所述目标标记物的距离,将所述第二距离和所述第四距离相加后除以2后的距离作为所述第二射频定位装置与所述目标标记物的距离。
  21. 根据权利要求18~20中任一项所述的目标定位跟踪系统,其特征在于:
    基于所述第一射频定位装置和所述第二射频定位装置各自与所述目标标记物之间的距离以及所述第一射频定位装置与所述第二射频定位装置之间的距离,所述核心处理模块通过三角几何关系确定所述拍摄装置与所述目标标记物之间的距离和角度。
  22. 根据权利要求18~20中任一项所述的目标定位跟踪系统,还包括:地面控制模块;
    所述地面控制模块能够将设置的所述拍摄装置与所述目标标记物的拍摄距离信息并发送给所述飞行装置,同时能够接收所述飞行装置所拍摄的目标图像。
  23. 根据权利要求18~20中任一项所述的目标定位跟踪系统,其特征在于:
    所述核心处理模块还包括位置调整单元,所述位置调整单元能够根据所述核心处理模块确定的所述拍摄装置与所述目标标记物之间的距离和角度信息以及由地面控制模块设置的拍摄距离调整所述飞行装置的位置。
PCT/CN2016/079452 2015-11-20 2016-04-15 一种目标定位跟踪系统、装置及定位跟踪方法 WO2017084240A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510804673.7 2015-11-20
CN201510804673.7A CN105357484A (zh) 2015-11-20 2015-11-20 一种目标定位跟踪系统、装置及定位跟踪方法

Publications (1)

Publication Number Publication Date
WO2017084240A1 true WO2017084240A1 (zh) 2017-05-26

Family

ID=55333334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079452 WO2017084240A1 (zh) 2015-11-20 2016-04-15 一种目标定位跟踪系统、装置及定位跟踪方法

Country Status (2)

Country Link
CN (1) CN105357484A (zh)
WO (1) WO2017084240A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105357484A (zh) * 2015-11-20 2016-02-24 西安斯凯智能科技有限公司 一种目标定位跟踪系统、装置及定位跟踪方法
CN105872371B (zh) * 2016-03-31 2019-04-02 纳恩博(北京)科技有限公司 一种信息处理方法和电子设备
CN105915784A (zh) * 2016-04-01 2016-08-31 纳恩博(北京)科技有限公司 信息处理方法和装置
CN105764029B (zh) * 2016-04-19 2021-11-26 福州佳璞辨溯科技有限公司 基于rfid的视频定位系统和定位方法
CN107466371B (zh) * 2016-07-21 2021-08-13 深圳前海达闼云端智能科技有限公司 目标跟踪装置及系统、机器人
WO2018090181A1 (zh) * 2016-11-15 2018-05-24 深圳市大疆创新科技有限公司 超宽带测距方法和设备、避障方法以及避障设备
CN106791371A (zh) * 2016-11-29 2017-05-31 北京小米移动软件有限公司 一种拍摄方法和可移动拍摄装置
DE102018002765A1 (de) * 2018-04-04 2019-10-10 Zactrack Gmbh Beleuchtungssystem
CN110806755A (zh) * 2018-08-06 2020-02-18 中兴通讯股份有限公司 一种无人机跟踪拍摄方法、终端及计算机可读存储介质
CN109782812B (zh) * 2019-03-06 2022-04-19 深圳慧源创新科技有限公司 无人机飞行方法、装置、pid控制器及存储介质
CN111464941A (zh) * 2020-04-17 2020-07-28 支付宝(杭州)信息技术有限公司 数据传输的方法、终端和非暂态计算机可读存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101467063A (zh) * 2006-06-14 2009-06-24 三星电子株式会社 位置识别方法及系统
WO2015007799A2 (de) * 2013-07-16 2015-01-22 Leica Geosystems Ag Lasertracker mit zielsuchfunktionalität
CN104375135A (zh) * 2014-11-05 2015-02-25 江苏舟航网络科技有限公司 射频定位方法、装置和系统
US20150134143A1 (en) * 2013-10-04 2015-05-14 Jim Willenborg Novel tracking system using unmanned aerial vehicles
CN104662434A (zh) * 2012-05-11 2015-05-27 杰克创克有限公司 通信设备
CN104853104A (zh) * 2015-06-01 2015-08-19 深圳市微队信息技术有限公司 一种自动跟踪拍摄运动目标的方法以及系统
CN204697171U (zh) * 2015-05-27 2015-10-07 杨珊珊 一种智能多模式飞行拍摄设备
CN105071852A (zh) * 2015-08-27 2015-11-18 杨珊珊 一种利用无人机实现的智能中继系统及方法
CN105357484A (zh) * 2015-11-20 2016-02-24 西安斯凯智能科技有限公司 一种目标定位跟踪系统、装置及定位跟踪方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2183399A (en) * 1937-05-15 1939-12-12 Bell Telephone Labor Inc Ultra-short wave altimeter for aircraft
US8077078B1 (en) * 2008-07-25 2011-12-13 Rockwell Collins, Inc. System and method for aircraft altitude measurement using radar and known runway position
CN102156481B (zh) * 2011-01-24 2013-06-05 广州嘉崎智能科技有限公司 无人飞行器的智能追踪控制方法及系统
US20140073352A1 (en) * 2012-09-11 2014-03-13 Qualcomm Incorporated Method for precise location determination
CN105049733B (zh) * 2015-08-28 2018-08-28 罗永进 一种定位拍摄辅助装置及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101467063A (zh) * 2006-06-14 2009-06-24 三星电子株式会社 位置识别方法及系统
CN104662434A (zh) * 2012-05-11 2015-05-27 杰克创克有限公司 通信设备
WO2015007799A2 (de) * 2013-07-16 2015-01-22 Leica Geosystems Ag Lasertracker mit zielsuchfunktionalität
US20150134143A1 (en) * 2013-10-04 2015-05-14 Jim Willenborg Novel tracking system using unmanned aerial vehicles
CN104375135A (zh) * 2014-11-05 2015-02-25 江苏舟航网络科技有限公司 射频定位方法、装置和系统
CN204697171U (zh) * 2015-05-27 2015-10-07 杨珊珊 一种智能多模式飞行拍摄设备
CN104853104A (zh) * 2015-06-01 2015-08-19 深圳市微队信息技术有限公司 一种自动跟踪拍摄运动目标的方法以及系统
CN105071852A (zh) * 2015-08-27 2015-11-18 杨珊珊 一种利用无人机实现的智能中继系统及方法
CN105357484A (zh) * 2015-11-20 2016-02-24 西安斯凯智能科技有限公司 一种目标定位跟踪系统、装置及定位跟踪方法

Also Published As

Publication number Publication date
CN105357484A (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
WO2017084240A1 (zh) 一种目标定位跟踪系统、装置及定位跟踪方法
US11656635B2 (en) Heading generation method and system of unmanned aerial vehicle
JP4587166B2 (ja) 移動体追跡システム、撮影装置及び撮影方法
CN108919838B (zh) 一种基于双目视觉的无人机输电线路自动跟踪方法
WO2017000875A1 (zh) 飞行器及其避障方法和系统
CN108702448B (zh) 无人机图像采集方法及无人机、计算机可读存储介质
CN104361770B (zh) 用于交通信息采集无人机的精确降落自动控制方法
WO2017197729A1 (zh) 一种跟踪系统及跟踪方法
KR101634966B1 (ko) Vr 기반의 객체인식 정보를 이용한 영상 추적시스템, 그리고 영상 추적방법
WO2017024673A1 (zh) 一种基于射频和双目视觉的目标定位系统及方法
WO2018098824A1 (zh) 一种拍摄控制方法、装置以及控制设备
CN105245846A (zh) 一种多无人机协同跟踪的拍摄系统及拍摄方法
KR101634878B1 (ko) 무인 비행체의 군집 비행을 이용한 항공 영상 정합 장치 및 방법
CN107741175B (zh) 一种人工智能精确瞄准方法
CN105487550A (zh) 一种飞行装置的自主降落的系统及降落方法
CN105959630B (zh) 基于远距离光电摄像的飞机姿态近距离观测系统与方法
KR20180050589A (ko) 객체 추적 장치
KR20170014841A (ko) 그린에서의 퍼팅정보 제공방법
Gao et al. Automatic extraction of multi-vehicle trajectory based on traffic videotaping from quadcopter model
CN107124606A (zh) 基于无人机航拍的数字视频广告远程拍摄方法
KR101954748B1 (ko) 목표지점 좌표 추출 시스템 및 방법
KR101651152B1 (ko) 공간 모델과 결합하는 드론의 영상영역 모니터링 시스템
KR101537324B1 (ko) 영상기반 비행체 자동 이착륙 유도 시스템
CN110989645A (zh) 一种基于复眼成像原理的目标空间姿态处理方法
US11875080B2 (en) Object sharing method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865423

Country of ref document: EP

Kind code of ref document: A1