CN107313783A - 沟槽预裂冲击式破岩方法 - Google Patents

沟槽预裂冲击式破岩方法 Download PDF

Info

Publication number
CN107313783A
CN107313783A CN201710750752.3A CN201710750752A CN107313783A CN 107313783 A CN107313783 A CN 107313783A CN 201710750752 A CN201710750752 A CN 201710750752A CN 107313783 A CN107313783 A CN 107313783A
Authority
CN
China
Prior art keywords
rock
tbm
groove
presplitting
impact type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710750752.3A
Other languages
English (en)
Inventor
谭立平
王伟
张开顺
郁光耀
王元清
李勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Railway 11th Bureau Group Co Ltd
Fifth Engineering Co Ltd of China Railway 11th Bureau Group Co Ltd
Original Assignee
China Railway 11th Bureau Group Co Ltd
Fifth Engineering Co Ltd of China Railway 11th Bureau Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Railway 11th Bureau Group Co Ltd, Fifth Engineering Co Ltd of China Railway 11th Bureau Group Co Ltd filed Critical China Railway 11th Bureau Group Co Ltd
Priority to CN201710750752.3A priority Critical patent/CN107313783A/zh
Publication of CN107313783A publication Critical patent/CN107313783A/zh
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • E21D9/106Making by using boring or cutting machines with percussive tools, e.g. pick-hammers
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • E21D9/1006Making by using boring or cutting machines with rotary cutting tools
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/12Devices for removing or hauling away excavated material or spoil; Working or loading platforms

Abstract

本发明公开了一种沟槽预裂冲击式破岩方法,涉及硬岩、矿石、非爆破开挖施工领域,第一步,由冲击器在掌子面上施加冲击力,开凿出一道道同心环形沟槽作为预裂槽,从而使整个掌子面上的岩石或混凝土结构由一面临空、三面受压的状态变成三面临空、单面受压的状态;第二步,由撕裂刀具在相邻两道环形沟槽之间对环形的岩石或混凝土结构的中部施加轴向力,以实现对岩石或混凝土结构的静压剪切破碎。利用岩石单向受压比三向受压状态下更容易破碎的特性,先利用冲击力进行预裂,再在单向剪切的状态下进行撕裂破碎,以提高施工效率,降低施工成本。进一步,所述撕裂刀具和冲击器集成到一个设备上,构成了冲击式TBM,冲击式TBM比TBM的掘进速度提高3倍,成本降低60%。

Description

沟槽预裂冲击式破岩方法
技术领域
本发明涉及硬岩、矿石、非爆破开挖施工领域,在平面、深井、混凝土结构、环境要求苛刻的工程中都能使用。
背景技术
如何提高岩石、矿石、混凝土结构、深井及对环境影响要求高的项目施工速度,是长期困扰人们的一道国际难题。TBM被认为是多变复杂岩土开挖最理想的机具。
TBM集光、机、电、液、传感、信息技术于一体,具有开挖切削土体、输送土碴、拼装隧道衬砌、测量导向纠偏等功能,施工过程地面干扰小,机械化和自动化程度高,在土体和软岩隧道施工中,有绝对优势。然而,实践证明,对于复杂硬岩地层、上软下硬、上硬下软、孤石、硬岩、超硬岩开挖的施工,TBM掘进速度依然十分缓慢,且成本及能耗消耗巨大。
TBM掘进多变复杂岩土的速度为什么远远不如土体或软岩呢?究其原因,主要是破碎切削方法不适应于多变复杂岩土的施工。
首先,TBM属于滚压切削破碎岩石。它与旋转切削钻的区别仅仅在于,旋转切削钻的钻头是轴向旋转,而TBM的滚刀是径向旋转,在推进力和旋转扭矩的驱动下,滚刀随刀盘旋转过程中,同时对岩石进行切削破碎和静压冲击破碎。与普通的切削钻相比,其破岩效率有很大的提高。然而,由于钻头的旋转速度很慢,一般为100r/min左右,所产生的冲击载荷很小,与潜孔冲击锤或液压凿岩机相比,其冲击器载荷几乎可以忽略不计。所以,严格来说,TBM属于静载破岩机具,其穿孔速度无法与潜孔冲击锤或液压凿岩机相提并论。
其次,TBM没有利用岩石的各向异性的特点及薄弱环节。通过研究发现,岩石抵抗破碎强度的高低,与其受压状态和受力方式有关。测试数据显示:TBM掘进中属于三向受压,三向受压比单向受压强度高1.5~5倍,而单向受压时,抗剪强度只有三向抗压强度的1/8~1/12。如果能利用岩石这一特性,使其在单向抗剪的状态下通过TBM进行滚压破碎,其施工效率将会大幅度提高,起到事半功倍的效果。
然而,在TBM掘进过程中,岩石处于一面临空,三面受压的状态。这就意味着,无论整个刀盘,还是单个滚刀,都在对三向受压状态的岩石进行强行破碎。显然,这种破岩机理在复杂硬岩地层、上软下硬、上硬下软、孤石、硬岩、超硬岩开挖是不可取的。
由此可见,不改变TBM的破岩方法和破碎机理,只在滚刀上做文章,这无异于缘木求鱼。
发明内容
本发明旨在提供一种专用于岩石、混凝土结构开挖的沟槽预裂冲击式破岩方法,利用岩石单向受压比三向受压状态下更容易破碎的特性,先利用冲击力进行预裂,再在单向剪切的状态下进行撕裂破碎,以提高施工效率,降低施工成本。
为此,本发明所采用的技术方案为:一种沟槽预裂冲击式破岩方法,包括以下步骤:
第一步,由冲击器在掌子面上施加冲击力,开凿出一道道同心环形沟槽作为预裂槽,从而使整个掌子面上的岩石或混凝土结构由一面临空、三面受压的状态变成三面临空、单面受压的状态;
第二步,由撕裂刀具在相邻两道环形沟槽之间对环形的岩石或混凝土结构的中部施加轴向力,以实现对岩石或混凝土结构的静压剪切破碎。
优选为,所述环形沟槽的横截面为矩形,并等距间隔设置,环形沟槽的间距为80~100mm,宽度为36~42mm,深度为10~30mm。优化布置及参数设定,进一步提高破岩效果。
作为上述方案的优选,所述撕裂刀具和冲击器集成到一个设备上,构成了冲击式TBM;所述冲击式TBM包括TBM刀盘、出渣机构、回转接头、液压冲击器和滚刀,所述TBM刀盘是由钢筒和腹板组焊而成的钢型结构体,在所述腹板上布设有若干液压冲击器和滚刀,且液压冲击器和滚刀相间地布置在TBM刀盘的不同环道上,液压冲击器通过液压油缸、前支架、后支架浮动支撑在TBM刀盘的腹板上,并通过居中设置在TBM刀盘中部的回转接头实现回转运动,所述液压冲击器的钻具采用切削刀,且切削刀的刃口相对滚刀的刃口向前延伸20~30mm。由同一设备完成,进一步提高了施工效率。
各液压冲击器的冲击功大致相等,在TBM刀盘不同环道上的液压冲击器的冲击频率则不同,环道越大,冲击频率越高。
所述出渣机构采用刮板链,其渣料承受件为槽型结构,出渣机构的前端位于TBM刀盘的正下方配合掘进出渣,出渣机构的后端朝上逐渐抬高以腾出过人空间。相比当今使用的TBM均由带式输送机或螺旋输送机进行出渣,刮板链型式输送机的渣料承受件为槽型结构,出渣效率更高、范围更广;出渣机构采用前低后高倾斜布置的方式,一方面是在前端正上方腾出空间,以方便在TBM刀盘中心位置处布置回转接头,另一方面是在TBM正下方腾出足够的空间方便施工人员及操作人员行走。
本发明的有益效果:该方法通过先冲槽再撕裂的破碎方式实现了动静载荷耦合,可大幅度提高掘进速度和降低掘进成本。首先,动静耦合式破岩效率远远大于单一的静载或动载的破岩效率,岩石冲击破碎是一种古老的方法,据文字记载,我国远在公元前一、二世纪就使用冲击破碎方法凿井取卤制盐,但长期以来,人们只知道采用抡锤击钎方法凿孔,这种方法,没用施加轴压力,仅仅利用了冲击能。而该方法采用冲击能加轴压力的动静载荷耦合破碎方式,效果更好。
其次,先用冲击破碎方式开凿出环形沟槽,使岩石或混凝土的结构和应力状态发生变化,即由原来的三向受压状态,变为单向抗剪状态,其对抗力急剧下降,从而使滚压破碎效率大幅提高。这种动静载荷+滚压的破碎方法,不仅使沟槽开凿效率提高,也使滚刀效率提高,实践证明,冲击式TBM比TBM的掘进速度提高3倍,成本降低60%。
附图说明
图1为本工法进行岩石破裂时的作业面图。
图2为撕裂刀具的作业剖视图。
图3为撕裂刀具作业时岩石的受力示意图。
图4为冲击式TBM的侧视图。
图5为冲击式TBM的正视图。
图6为液压冲击器的浮动安装示意图。
图7为刮板链出渣机构的结构示意图。
具体实施方式
下面通过实施例并结合附图,对本发明作进一步说明:
一种沟槽预裂冲击式破岩方法,按以下步骤进行施工:
第一步,由冲击器在掌子面上施加冲击力,开凿出一道道环形沟槽作为预裂槽,从而使整个掌子面上的岩石或混凝土结构由一面临空、三面受压的状态变成三面临空、单面受压的状态;环形沟槽既可以是圆环形沟槽,也可以是矩形环沟槽。
第二步,由撕裂刀具在相邻两道环形沟槽之间对环形的岩石或混凝土结构的中部施加轴向力,以实现对岩石或混凝土结构的静压剪切破碎。
冲击器作业所在的环道与滚刀作业所在的环道相间设置,图1所示为采用圆形环道时,由内到外依次为R1、R2、R3、R4、R5、R6。
结合图2、图3所示,最好是,环形沟槽的横截面为矩形,并等距间隔设置,环形沟槽的间距以80~100mm,宽度为36~42mm,深度为10~30mm为宜。
完成第一步所用到的撕裂刀具和完成第二步所用的冲击器集成到一个设备上,构成了冲击式TBM。结合图4—图7所示,冲击式TBM主要由TBM刀盘1、出渣机构2、回转接头3、液压冲击器4和滚刀5组成。
TBM刀盘1是由钢筒和腹板组焊而成的钢型结构体,在腹板上布设有若干液压冲击器4和滚刀5,液压冲击器4用于完成第一步,滚刀5作为撕裂刀具用于完成第二步。
结合图1、图5所示,液压冲击器4和滚刀5相间地布置在TBM刀盘1的不同环道上,所有液压冲击器4在不同环道上同时工作以形成多道环形沟槽,所有TBM刀盘1在不同环道上同时工作以完成静压剪切破碎。
结合图4—图6所示,液压冲击器4通过液压油缸6、前支架7、后支架8浮动支撑在TBM刀盘1的腹板上,并通过居中设置在TBM刀盘1中部的回转接头3实现回转运动。液压冲击器4的钻具采用切削刀,且切削刀的刃口相对滚刀5的刃口向前延伸20~30mm。液压冲击器4浮动支撑,可防止刀具折断。
各液压冲击器4的冲击功大致相等,在TBM刀盘1不同环道上的液压冲击器的冲击频率则不同,环道越大,冲击频率越高。由于掌子面上的岩石强度基本一致或软硬不一,所以各液压冲击器的冲击功根据实际情况可调,而在刀盘不同环道上的冲击器随刀盘回转的线速不同,因而其冲击频率也就不同,环道越大,冲击频率越高。
出渣机构2采用刮板链结构形式,其渣料承受件为槽型结构,由驱动电机9作为动力,经减速机10减速后驱动链条刮板式出渣机构运动。出渣机构2的前端位于TBM刀盘1的正下方配合掘进出渣,掘进渣在重力作用下落到出渣机构2的前端的链条上,并通过链条向后输送除渣。出渣机构2的后端朝上逐渐抬高以腾出过人空间。出渣机构2采用前低后高倾斜布置的方式,一方面是在前端正上方腾出空间,以方便在TBM刀盘1中心位置处布置回转接头3,另一方面是在TBM正下方腾出足够的空间方便施工人员及操作人员行走。
该冲击式TBM在现有TBM上加载液压冲击器,并通过居中设置在TBM刀盘中部的回转接头实现回转,从而实现TBM+液压冲击器=冲击式TBM。不仅包括滚刀的滚压破碎,还包括冲击器的冲击破碎,当刀盘绕轴心回转时,先由冲击器在动静载荷耦合作用下,对掌子面的岩石进行冲击破碎,开凿出一道道环形沟槽,再由滚刀在两道环形沟槽之间进行滚压破碎。由于滚压之前有了沟槽,使岩石在滚刀两侧形成临空面,岩石由三向受压变为单向抗剪状态,其强度下降至原来的1/8~1/12,在滚刀施加的正压力N的水平分力Nx的作用下,使其剪切破碎,因而破碎效率大幅提高。
经过验证冲击式TBM破岩方法的最终结论是:
1.动静耦合载荷破岩,随着静压和冲击能的增加而增加,破岩比能则随之下降,不同的动静载荷组合有不同的破岩比能,合理选择动静载荷的比值,可使比能达到最小值,从而使破岩达到最佳效果。花岗岩与砂浆块的最优组合载荷为2100N,63J和1200N,35.5J。
2.线性切割试验表明:静压对岩石切削效果有一定的影响,但硬岩对静压敏感性差,切深随静压增加而增长缓慢,增加静压产生的效果不明显,而软岩对静压敏感性强,静压增加,切削深度增加较快。因此,在硬岩切削中,不能单靠增加静压来提高破岩效果,必须充分利用冲击能,实现动静载荷耦合破岩。
3.变冲击能下的切削试验表明:切削力随切削深度增加而增加,但加冲击载荷与不加冲击载荷相比,切削力增长速率不同,无冲击载荷时的增长速率比有冲击载荷时快,在相同的静压力作用下花岗岩在48J.、63J、78J冲击能的冲击下切削深比不加冲击能的切削深度分别增加3倍、3.767倍、4.21倍。1号砂浆块在30.4,35.153、39.9、49.4J四种不同冲击能作用下,切削深度比没有冲击能时的切削深度增加2.86倍、3.8倍、4.95倍、6.04倍。
4.冲击切削与静压切削相比,不仅可以增大切削深度,而且,可以大量降低切削力,在同一切削深度下,冲击切削花岗岩的切削力比单一静压切削的切削力可大幅度降低,冲击砂浆块的切削力一般降低30%~50%,平均降低45%,从而改善切削性能。从破岩比能分析,冲击切削破岩比能单一冲击压碎下的破岩比能要小,破岩效果得到提高。
5.在冲击+静压的切削破碎硬岩模式下,静压作用使切削深度增加,同时也增加刀具的磨损阻力,因此,合理加载方式应是冲击载荷(冲击能)使岩石产生足够的开裂区,静压和切削力使岩石形成片裂,当冲击功不足,在岩石中未能产生裂纹时增大静压力,提高凿入峰值力,从而实现岩石的体积破碎和破岩功效。
6.改变冲击间距,可以获得不同的破岩效果,当静压为2100N,冲击能为48J,间距为3、5、9mm时,花岗岩的切削深度比单纯切削分别增加7.5倍、7.2倍、6.15倍。但冲击间距的选择,与岩石的性质有关。当破碎硬岩或强研磨性的岩石时,破碎岩石主要依靠冲击的作用,要求冲击间距小,冲击频率高,对于裂隙发育或软塑性岩石,冲击间距可加大,冲击频率可降低,这有利于提高静压+冲击切削的效果。
综上所述,TBM+液压冲击器=冲击式TBM是一个1+1大于2的创新模式,不仅解决了硬岩、岩石软硬不一隧道掘进领域长期困扰人们的技术难题,而且产生了意想不到技术效果。

Claims (5)

1.一种沟槽预裂冲击式破岩方法,其特征在于,包括以下步骤:
第一步,由冲击器在掌子面上施加冲击力,开凿出一道道环形沟槽作为预裂槽,从而使整个掌子面上的岩石或混凝土结构由一面临空、三面受压的状态变成三面临空、单面受压的状态;
第二步,由撕裂刀具在相邻两道环形沟槽之间对环形的岩石或混凝土结构的中部施加轴向力,以实现对岩石或混凝土结构的静压剪切破碎。
2.按照权利要求1所述的沟槽预裂冲击式破岩方法,其特征在于:所述环形沟槽的横截面为矩形,并等距间隔设置,环形沟槽的间距为80~100mm,宽度为36~42mm,深度为10~30mm。
3.按照权利要求1所述的沟槽预裂冲击式破岩方法,其特征在于:所述撕裂刀具和冲击器集成到一个设备上,构成了冲击式TBM;所述冲击式TBM包括TBM刀盘(1)、出渣机构(2)、回转接头(3)、液压冲击器(4)和滚刀(5),所述TBM刀盘(1)是由钢筒和腹板组焊而成的钢型结构体,在所述腹板上布设有若干液压冲击器(4)和滚刀(5),且液压冲击器(4)和滚刀(5)相间地布置在TBM刀盘(1)的不同环道上,液压冲击器(4)通过液压油缸(6)、前支架(7)、后支架(8)浮动支撑在TBM刀盘(1)的腹板上,并通过居中设置在TBM刀盘(1)中部的回转接头(3)实现回转运动,所述液压冲击器(4)的钻具采用切削刀,且切削刀的刃口相对滚刀(5)的刃口向前延伸20~30mm。
4.按照权利要求3所述的沟槽预裂冲击式破岩方法,其特征在于:各液压冲击器(4)的冲击功大致相等,在TBM刀盘(1)不同环道上的液压冲击器的冲击频率则不同,环道越大,冲击频率越高。
5.按照权利要求3所述的沟槽预裂冲击式破岩方法,其特征在于:所述出渣机构(2)采用刮板链,其渣料承受件为槽型结构,出渣机构(2)的前端位于TBM刀盘(1)的正下方配合掘进出渣,出渣机构(2)的后端朝上逐渐抬高以腾出过人空间。
CN201710750752.3A 2017-08-28 2017-08-28 沟槽预裂冲击式破岩方法 Pending CN107313783A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710750752.3A CN107313783A (zh) 2017-08-28 2017-08-28 沟槽预裂冲击式破岩方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710750752.3A CN107313783A (zh) 2017-08-28 2017-08-28 沟槽预裂冲击式破岩方法

Publications (1)

Publication Number Publication Date
CN107313783A true CN107313783A (zh) 2017-11-03

Family

ID=60176448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710750752.3A Pending CN107313783A (zh) 2017-08-28 2017-08-28 沟槽预裂冲击式破岩方法

Country Status (1)

Country Link
CN (1) CN107313783A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109899079A (zh) * 2019-04-11 2019-06-18 黄河勘测规划设计研究院有限公司 具备pdc钻头辅助破岩的tbm刀盘
CN110107305A (zh) * 2019-06-26 2019-08-09 中国铁建重工集团股份有限公司 一种盾构机及其水射流联合滚刀破岩机构
CN111947970A (zh) * 2020-07-08 2020-11-17 北京卫星制造厂有限公司 一种适用于地外天体的低反力复合采样装置
CN112012760A (zh) * 2020-09-27 2020-12-01 中国铁建重工集团股份有限公司 一种隧道掘进机及其冲击破岩刀盘结构
CN112360490A (zh) * 2020-11-16 2021-02-12 安徽唐兴机械装备有限公司 一种击打式顶管机刀盘
CN112502726A (zh) * 2020-11-30 2021-03-16 中国铁建重工集团股份有限公司 一种冲击式刀盘装置的控制系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202659244U (zh) * 2012-06-08 2013-01-09 秦皇岛天业通联重工股份有限公司 一种全断面岩石掘进机刀盘
CN103195434A (zh) * 2013-03-29 2013-07-10 辽宁工程技术大学 一种加装于硬岩掘进机的液压冲击锤装置及硬岩掘进方法
CN203223223U (zh) * 2013-03-29 2013-10-02 辽宁工程技术大学 一种加装于硬岩掘进机的液压冲击锤装置
CN103362516A (zh) * 2013-08-02 2013-10-23 中铁隧道装备制造有限公司 一种复合式盾构机
CN104110262A (zh) * 2014-07-21 2014-10-22 洛阳理工学院 一种用于tbm的钻滚结合的刀盘结构
CN106368712A (zh) * 2016-11-15 2017-02-01 中南大学 一种具有冲击功能的全断面岩石掘进机刀盘

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202659244U (zh) * 2012-06-08 2013-01-09 秦皇岛天业通联重工股份有限公司 一种全断面岩石掘进机刀盘
CN103195434A (zh) * 2013-03-29 2013-07-10 辽宁工程技术大学 一种加装于硬岩掘进机的液压冲击锤装置及硬岩掘进方法
CN203223223U (zh) * 2013-03-29 2013-10-02 辽宁工程技术大学 一种加装于硬岩掘进机的液压冲击锤装置
CN103362516A (zh) * 2013-08-02 2013-10-23 中铁隧道装备制造有限公司 一种复合式盾构机
CN104110262A (zh) * 2014-07-21 2014-10-22 洛阳理工学院 一种用于tbm的钻滚结合的刀盘结构
CN106368712A (zh) * 2016-11-15 2017-02-01 中南大学 一种具有冲击功能的全断面岩石掘进机刀盘

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109899079A (zh) * 2019-04-11 2019-06-18 黄河勘测规划设计研究院有限公司 具备pdc钻头辅助破岩的tbm刀盘
CN110107305A (zh) * 2019-06-26 2019-08-09 中国铁建重工集团股份有限公司 一种盾构机及其水射流联合滚刀破岩机构
CN111947970A (zh) * 2020-07-08 2020-11-17 北京卫星制造厂有限公司 一种适用于地外天体的低反力复合采样装置
CN111947970B (zh) * 2020-07-08 2023-07-14 北京卫星制造厂有限公司 一种适用于地外天体的低反力复合采样装置
CN112012760A (zh) * 2020-09-27 2020-12-01 中国铁建重工集团股份有限公司 一种隧道掘进机及其冲击破岩刀盘结构
CN112360490A (zh) * 2020-11-16 2021-02-12 安徽唐兴机械装备有限公司 一种击打式顶管机刀盘
CN112360490B (zh) * 2020-11-16 2022-11-15 安徽唐兴装备科技股份有限公司 一种击打式顶管机刀盘
CN112502726A (zh) * 2020-11-30 2021-03-16 中国铁建重工集团股份有限公司 一种冲击式刀盘装置的控制系统及方法

Similar Documents

Publication Publication Date Title
CN107313783A (zh) 沟槽预裂冲击式破岩方法
Gong et al. TBM tunnelling under adverse geological conditions: an overview
CN103234403B (zh) 一种公路隧道静态爆破施工方法
CN102434105B (zh) 具有旋切破岩功能的复合钻头
CN104533467B (zh) 一种高承压水、断层破碎巷道的支护方法
CN108729924B (zh) 一种城市硬岩隧道机械开挖快速施工方法
CN102392603B (zh) 旋切钻头与pdc刀翼形成的复合钻头
CN108691508B (zh) 一种坚硬岩体强度弱化的掘进方法
CN102392605A (zh) Pdc钻头与旋切钻头形成的复合钻头
CN106225618B (zh) 一种半无限岩体中爆破扩裂的方法
CN105952460A (zh) 一种城市硬岩隧道非爆施工方法
Huang et al. The improved rock breaking efficiency of an annular-groove PDC bit
CN106014421B (zh) 一种爆破震动受限的岩石隧道开挖方法
CN107355228A (zh) 一种硬岩隧道施工设备及施工方法
CN106194193A (zh) 一种大断面竖井非爆破大孔径群孔辅助开挖方法
CN202493219U (zh) 旋切钻头与pdc刀翼形成的复合钻头
CN107514263A (zh) 冲击式tbm
CN203584301U (zh) 引孔设备
CN102400646A (zh) 旋切钻头与牙轮钻头形成的复合钻头
CN202441259U (zh) 旋切钻头与牙轮钻头形成的复合钻头
JPH0274792A (ja) トンネルの無発破施工法
CN109339808A (zh) 压打复合破岩盾构机
CN214836360U (zh) 一种富水上软下硬复合地层的盾构掘进施工结构
CN211647984U (zh) 一种提高旋挖钻机入岩效率的设备
CN211819264U (zh) 一种建筑工程用基桩钻掘套管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171103